Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Biol Chem ; 299(1): 102752, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436562

RESUMO

The MRE11-RAD50-NBS1 (MRN) complex plays essential roles in the cellular response to DNA double-strand breaks (DSBs), which are the most cytotoxic DNA lesions, and is a target of various modifications and controls. Recently, lysine 48-linked ubiquitination of NBS1, resulting in premature disassembly of the MRN complex from DSB sites, was observed in cells lacking RECQL4 helicase activity. However, the role and control of this ubiquitination during the DSB response in cells with intact RECQL4 remain unknown. Here, we showed that USP2 counteracts this ubiquitination and stabilizes the MRN complex during the DSB response. By screening deubiquitinases that increase the stability of the MRN complex in RECQL4-deficient cells, USP2 was identified as a new deubiquitinase that acts at DSB sites to counteract NBS1 ubiquitination. We determined that USP2 is recruited to DSB sites in a manner dependent on ATM, a major checkpoint kinase against DSBs, and stably interacts with NBS1 and RECQL4 in immunoprecipitation experiments. Phosphorylation of two critical residues in the N terminus of USP2 by ATM is required for its recruitment to DSBs and its interaction with RECQL4. While inactivation of USP2 alone does not substantially influence the DSB response, we found that inactivation of USP2 and USP28, another deubiquitinase influencing NBS1 ubiquitination, results in premature disassembly of the MRN complex from DSB sites as well as defects in ATM activation and homologous recombination repair abilities. These results suggest that deubiquitinases counteracting NBS1 ubiquitination are essential for the stable maintenance of the MRN complex and proper cellular response to DSBs.


Assuntos
Proteínas de Ciclo Celular , Quebras de DNA de Cadeia Dupla , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Enzimas Desubiquitinantes/genética , DNA , Reparo do DNA , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteína Homóloga a MRE11/genética , Ubiquitinação , Humanos , Linhagem Celular Tumoral , Ubiquitina Tiolesterase/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hidrolases Anidrido Ácido/metabolismo
2.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(2): 232-241, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38686720

RESUMO

DNA is susceptible to various factors in vitro and in vivo and experience different forms of damage,among which double-strand break(DSB)is a deleterious form.To maintain the stability of genetic information,organisms have developed multiple mechanisms to repair DNA damage.Among these mechanisms,homologous recombination(HR)is praised for the high accuracy.The MRE11-RAD50-NBS1(MRN)complex plays an important role in HR and is conserved across different species.The knowledge on the MRN complex mainly came from the previous studies in Saccharomyces cerevisiae and Caenorhabditis elegans,while studies in the last decades have revealed the role of mammalian MRN complex in DNA repair of higher animals.In this review,we first introduces the MRN complex regarding the composition,structure,and roles in HR.In addition,we discuss the human diseases such as ataxia-telangiectasia-like disorder,Nijmegen breakage syndrome,and Nijmegen breakage syndrome-like disorder that are caused by dysfunctions in the MRN complex.Furthermore,we summarize the mouse models established to study the clinical phenotypes of the above diseases.


Assuntos
Hidrolases Anidrido Ácido , Proteínas de Ciclo Celular , Enzimas Reparadoras do DNA , Proteínas de Ligação a DNA , Proteína Homóloga a MRE11 , Proteínas Nucleares , Humanos , Hidrolases Anidrido Ácido/metabolismo , Hidrolases Anidrido Ácido/genética , Proteína Homóloga a MRE11/metabolismo , Proteína Homóloga a MRE11/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Animais , Reparo do DNA , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Síndrome de Quebra de Nijmegen/metabolismo , Síndrome de Quebra de Nijmegen/genética
3.
J Biol Chem ; 297(4): 101148, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34473993

RESUMO

The proper cellular response to DNA double-strand breaks (DSBs) is critical for maintaining the integrity of the genome. RecQL4, a DNA helicase of which mutations are associated with Rothmund-Thomson syndrome (RTS), is required for the DNA DSB response. However, the mechanism by which RecQL4 performs these essential roles in the DSB response remains unknown. Here, we show that RecQL4 and its helicase activity are required for maintaining the stability of the Mre11-Rad50-Nbs1 (MRN) complex on DSB sites during a DSB response. We found using immunocytochemistry and live-cell imaging that the MRN complex is prematurely disassembled from DSB sites in a manner dependent upon Skp2-mediated ubiquitination of Nbs1 in RecQL4-defective cells. This early disassembly of the MRN complex could be prevented by altering the ubiquitination site of Nbs1 or by expressing a deubiquitinase, Usp28, which sufficiently restored homologous recombination repair and ATM, a major checkpoint kinase against DNA DSBs, activation abilities in RTS, and RecQL4-depleted cells. These results suggest that the essential role of RecQL4 in the DSB response is to maintain the stability of the MRN complex on DSB sites and that defects in the DSB response in cells of patients with RTS can be recovered by controlling the stability of the MRN complex.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Proteína Homóloga a MRE11/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , RecQ Helicases/metabolismo , Hidrolases Anidrido Ácido/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Proteína Homóloga a MRE11/genética , Complexos Multiproteicos/genética , Proteínas Nucleares/genética , RecQ Helicases/genética
4.
Int J Mol Sci ; 20(4)2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30769804

RESUMO

The MRE11-RAD50-NBS1 (MRN) complex has been studied in multiple cancers. The identification of MRN complex mutations in mismatch repair (MMR)-defective cancers has sparked interest in its role in colorectal cancer (CRC). To date, there is evidence indicating a relationship of MRN expression with reduced progression-free survival, although the significance of the MRN complex in the clinical setting remains controversial. In this review, we present an overview of the function of the MRN complex, its role in cancer progression, and current evidence in colorectal cancer. The evidence indicates that the MRN complex has potential utilisation as a biomarker and as a putative treatment target to improve outcomes of colorectal cancer.


Assuntos
Proteínas de Ciclo Celular/genética , Neoplasias Colorretais/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Proteína Homóloga a MRE11/genética , Proteínas Nucleares/genética , Hidrolases Anidrido Ácido , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Complexos Multiproteicos/genética , Prognóstico
5.
BMC Cancer ; 18(1): 869, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30176843

RESUMO

BACKGROUND: The MRE11/RAD50/NBS1 (MRN) complex plays an essential role in detecting and repairing double-stranded breaks, and thus the potential roles of MRE11, RAD50 and NBS1 proteins in the pathogenesis of various cancers is the subject of investigation. This study was aimed at assessing the three-protein panel of MRN complex subunits as a potential radiosensitivity marker and evaluating the prognostic and clinicopathological implications of MRN expression in rectal cancer. METHODS: Samples from 265 rectal cancer patients treated with surgery and adjuvant chemoradiotherapy, including samples from 55 patients who were treated with neoadjuvant radiotherapy between 2000 and 2011, were analyzed. Expression of MRN complex proteins in tissue samples was determined by immunohistochemistry. Univariate and multivariate analyses were carried out to identify clinicopathological characteristics that are associated with the MRN three-protein panel expression in rectal cancer samples. RESULTS: In Kaplan-Meier survival analyses, we found that high level expression of MRN complex proteins in postoperative samples was associated with poor disease-free (p = 0.021) and overall (P = 0.002) survival. Interestingly, high MRN expression also correlated with poor disease-free (P = 0.047) and overall (P = 0.024) survival in the neoadjuvant radiotherapy subgroup. In multivariate analysis, combined MRN expression (hazard ratio = 2.114, 95% confidence interval 1.096-4.078, P = 0.026) and perineural invasion (hazard ratio = 2.160, 95% confidence interval 1.209-3.859, P = 0.009) were significantly associated with a worse disease-free survival. CONCLUSIONS: Expression levels of MRN complex proteins significantly predict disease-free survival in rectal cancer patients, including those treated with neoadjuvant radiotherapy, and may have value in the management of these patients.


Assuntos
Proteínas de Ciclo Celular/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Proteína Homóloga a MRE11/genética , Proteínas Nucleares/genética , Neoplasias Retais/radioterapia , Hidrolases Anidrido Ácido , Adulto , Idoso , Idoso de 80 Anos ou mais , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Complexos Multiproteicos/genética , Terapia Neoadjuvante/efeitos adversos , Prognóstico , Neoplasias Retais/genética , Neoplasias Retais/patologia , Análise Serial de Tecidos
6.
Eur J Med Chem ; 250: 115238, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36868105

RESUMO

Conjunctival melanoma (CM), a rare and fatal malignant ocular tumor, lacks proper diagnostic biomarkers and therapy. Herein, we revealed the novel application of propafenone, an FDA-approved antiarrhythmic medication, which was identified effective in inhibiting CM cells viability and homologous recombination pathway. Detailed structure-activity relationships generated D34 as one of the most promising derivatives, which strongly suppressed the proliferation, viability, and migration of CM cells at submicromolar concentrations. Mechanically, D34 had the potential to increase γ-H2AX nuclear foci and aggravated DNA damage by suppressing homologous recombination pathway and its factors, particularly the complex of MRE11-RAD50-NBS1. D34 bound to human recombinant MRE11 protein and inhibited its endonuclease activity. Moreover, D34 dihydrochloride significantly suppressed tumor growth in the CRMM1 NCG xenograft model without obvious toxicity. Our finding shows that propafenone derivatives modulating the MRE11-RAD50-NBS1 complex will most likely provide an approach for CM targeted therapy, especially for improving chemo- and radio-sensitivity for CM patients.


Assuntos
Antineoplásicos , Melanoma , Humanos , Propafenona , Enzimas Reparadoras do DNA/metabolismo , Proteínas Nucleares/metabolismo , Reposicionamento de Medicamentos , Doenças Raras , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Recombinação Homóloga , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Melanoma/tratamento farmacológico , Reparo do DNA
7.
Front Mol Biosci ; 9: 1007064, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213114

RESUMO

During a normal topoisomerase II (TOP2) reaction, the enzyme forms a covalent enzyme DNA intermediate consisting of a 5' phosphotyrosyl linkage between the enzyme and DNA. While the enzyme typically rejoins the transient breakage after strand passage, a variety of conditions including drugs targeting TOP2 can inhibit DNA resealing, leading to enzyme-mediated DNA damage. A critical aspect of the repair of TOP2-mediated damage is the removal of the TOP2 protein covalently bound to DNA. While proteolysis plays a role in repairing this damage, nucleolytic enzymes must remove the phosphotyrosyl-linked peptide bound to DNA. The MRN complex has been shown to participate in the removal of TOP2 protein from DNA following cellular treatment with TOP2 poisons. In this report we used an optimized ICE (In vivo Complex of Enzyme) assay to measure covalent TOP2/DNA complexes. In agreement with previous independent reports, we find that the absence or inhibition of the MRE11 endonuclease results in elevated levels of both TOP2α and TOP2ß covalent complexes. We also examined levels of TOP2 covalent complexes in cells treated with the proteasome inhibitor MG132. Although MRE11 inhibition plus MG132 was not synergistic in etoposide-treated cells, ectopic overexpression of MRE11 resulted in removal of TOP2 even in the presence of MG132. We also found that VCP/p97 inhibition led to elevated TOP2 covalent complexes and prevented the removal of TOP2 covalent complexes by MRE11 overexpression. Our results demonstrate the existence of multiple pathways for proteolytic processing of TOP2 prior to nucleolytic processing, and that MRE11 can process TOP2 covalent complexes even when the proteasome is inhibited. The interactions between VCP/p97 and proteolytic processing of TOP2 covalent complexes merit additional investigation.

8.
Cell Rep ; 34(1): 108565, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33406426

RESUMO

The MRE11-RAD50-NBS1 (MRN) complex supports the synthesis of damage-induced long non-coding RNA (dilncRNA) by RNA polymerase II (RNAPII) from DNA double-strand breaks (DSBs) by an unknown mechanism. Here, we show that recombinant human MRN and native RNAPII are sufficient to reconstitute a minimal functional transcriptional apparatus at DSBs. MRN recruits and stabilizes RNAPII at DSBs. Unexpectedly, transcription is promoted independently from MRN nuclease activities. Rather, transcription depends on the ability of MRN to melt DNA ends, as shown by the use of MRN mutants and specific allosteric inhibitors. Single-molecule FRET assays with wild-type and mutant MRN show a tight correlation between the ability to melt DNA ends and to promote transcription. The addition of RPA enhances MRN-mediated transcription, and unpaired DNA ends allow MRN-independent transcription by RNAPII. These results support a model in which MRN generates single-strand DNA ends that favor the initiation of transcription by RNAPII.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína Homóloga a MRE11/metabolismo , Proteínas Nucleares/metabolismo , Desnaturação de Ácido Nucleico , RNA Polimerase II/metabolismo , RNA Longo não Codificante/biossíntese , Transcrição Gênica , Hidrolases Anidrido Ácido/genética , Proteínas de Ciclo Celular/genética , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/genética , Células HeLa , Humanos , Proteína Homóloga a MRE11/genética , Mutação , Proteínas Nucleares/genética , RNA Polimerase II/genética , RNA Longo não Codificante/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Cancer Lett ; 493: 254-265, 2020 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-32896617

RESUMO

IQ motif containing GTPase-activating protein 3 (IQGAP3) has been implicated in diverse cellular processes, including neuronal morphogenesis, cell proliferation and motility, and epithelial-mesenchymal transition. However, its role in cancer radioresistance is completely unknown. Here, we report that IQGAP3 is overproduced in lung cancer patients and correlates with poor clinical outcomes. Functionally, we demonstrate that depletion of IQGAP3 impairs oncogenesis and overcomes radioresistance in lung cancer in vitro and in vivo. Mechanistically, we uncover that IQGAP3 interacts with Rad17 and controls its expression to activate the ATM/Chk2 and ATR/Chk1 signaling pathways by recruiting the Mre11-Rad50-Nbs1 (MRN) complex in response to DNA damage. Moreover, Rad17 is identified as the major downstream effector that mediates the functions of IQGAP3 in lung cancer. Clinically, IQGAP3 overexpression positively correlates with Rad17 upregulation in human lung cancer tissues. Collectively, these data support key role for IQGAP3 in promoting lung cancer radioresistance by interacting with Rad17 and suggest that targeting IQGAP3 may be an attractive strategy for lung cancer radiotherapy.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Neoplasias Pulmonares/patologia , Tolerância a Radiação , Regulação para Cima , Células A549 , Hidrolases Anidrido Ácido/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Transição Epitelial-Mesenquimal , Feminino , Proteínas Ativadoras de GTPase/genética , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/terapia , Proteína Homóloga a MRE11/metabolismo , Camundongos , Transplante de Neoplasias , Proteínas Nucleares/metabolismo , Prognóstico , Transdução de Sinais
10.
Oncotarget ; 11(44): 4028-4044, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33216839

RESUMO

The canonical Wnt/ß-catenin signalling pathway plays a crucial role in a variety of functions including cell proliferation and differentiation, tumorigenic processes and radioresistance in cancer cells. The Mre11-Rad50-Nbs1 (MRN) complex has a pivotal role in sensing and repairing DNA damage. However, it remains unclear whether a connection exists between Wnt/ß-catenin signalling and the MRN complex in the repair of cisplatin-induced DNA interstrand cross-links (ICLs). Here, we report that (1) cisplatin exposure results in a significant increase in the levels of MRN complex subunits in human tumour cells; (2) cisplatin treatment stimulates Wnt/ß-catenin signalling through increased ß-catenin expression; (3) the functional perturbation of Wnt/ß-catenin signalling results in aberrant cell cycle dynamics and the activation of DNA damage response and apoptosis; (4) a treatment with CHIR99021, a potent and selective GSK3ß inhibitor, augments cisplatin-induced cell death in cancer cells. On the other hand, inactivation of the Wnt/ß-catenin signalling with FH535 promotes cell survival. Consistently, the staining pattern of γH2AX-foci is significantly reduced in the cells exposed simultaneously to cisplatin and FH535; and (5) inhibition of Wnt/ß-catenin signalling impedes cisplatin-induced phosphorylation of Chk1, abrogates the G2/M phase arrest and impairs recombination-based DNA repair. Our data further show that Wnt signalling positively regulates the expression of ß-catenin, Mre11 and FANCD2 at early time points, but declining thereafter due to negative feedback regulation. These results support a model wherein Wnt/ß-catenin signalling and MRN complex crosstalk during DNA ICL repair, thereby playing an important role in the maintenance of genome stability.

11.
Toxicol Lett ; 243: 22-30, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26723870

RESUMO

The Mre11, Rad50, and Nbs1 (MRN) complex is a DNA double-strand break sensor involved in DNA damage repair. Herein, we explored whether deletion of NAD(P)H: quinone oxidoreductase 1 (NQO1), a cytoprotective gene, affected MRN complex expression in the kidney after cisplatin-induced acute kidney injury (AKI). In vitro, cisplatin increased the expression of MRN complex proteins and NQO1 in NQO1-expressing ACHN cells in a time- and concentration-dependent manner. The expression of MRN complex proteins was relatively inhibited in NQO1-knockdown cells. In vivo, increased expression of renal MRN complex proteins was accompanied by upregulation of γ-H2A histone member X, a DNA damage marker, in cisplatin-treated wild-type mice. Although the NQO1-knockout (NQO1(-/-)) mice showed more severe cisplatin-induced renal damage, the renal expression of MRN complex proteins was lower than in NQO1-expressing mice; expression of poly[ADP-ribose] polymerase 1, which promotes MRN complex accumulation, was also lower in these animals. In addition, cisplatin-induced expression of DNA damage repair-related proteins, ataxia telangiectasia mutated and sirtuin1, markedly decreased in the NQO1(-/-) group, relative to the NQO1-expressing mice. These findings suggest that NQO1 deletion might be associated with decreased MRN complex expression, which might be partially responsible for the exacerbation of cisplatin-induced AKI in the absence of NQO1.


Assuntos
Injúria Renal Aguda/patologia , Cisplatino/toxicidade , Repressão Epigenética , Deleção de Genes , NAD(P)H Desidrogenase (Quinona)/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Hidrolases Anidrido Ácido , Injúria Renal Aguda/induzido quimicamente , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Reparo do DNA , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Inativação Gênica , Humanos , Proteína Homóloga a MRE11 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NAD(P)H Desidrogenase (Quinona)/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo
12.
Environ Toxicol Pharmacol ; 40(1): 12-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26056972

RESUMO

The aim of this study was to explore whether the Mre11, Rad50, and Nbs1 (MRN) complex is associated with DNA repair mechanisms in cisplatin-induced acute renal failure. Rats were randomly allocated into three groups: control, sacrificed 5 days (5D), and 10 days (10D) after 5mg/kg of cisplatin injection. The 5D group showed disrupted renal function together with enhanced MRN complex- and DNA repair-related protein expression. Meanwhile, in the 10D group, recovery from cisplatin-induced damage was accompanied by the reduced MRN expression, although the expression was still distinctive in proximal tubular cells and higher than the control group. Moreover, pretreatment with mirin, an MRN complex inhibitor, decreased cell viability and inhibited proliferating cell nuclear antigen expression in cisplatin-treated human embryonic kidney 293 cells. Taken together, cisplatin treatment could trigger the MRN complex expression in the kidney and inhibition of the complex might aggravate damage recovery processes.


Assuntos
Antineoplásicos/toxicidade , Cisplatino/toxicidade , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Animais , Proteína Homóloga a MRE11 , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
13.
Biomolecules ; 5(4): 2877-902, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26512707

RESUMO

The recognition, signalling and repair of DNA double strand breaks (DSB) involves the participation of a multitude of proteins and post-translational events that ensure maintenance of genome integrity. Amongst the proteins involved are several which when mutated give rise to genetic disorders characterised by chromosomal abnormalities, cancer predisposition, neurodegeneration and other pathologies. ATM (mutated in ataxia-telangiectasia (A-T) and members of the Mre11/Rad50/Nbs1 (MRN complex) play key roles in this process. The MRN complex rapidly recognises and locates to DNA DSB where it acts to recruit and assist in ATM activation. ATM, in the company of several other DNA damage response proteins, in turn phosphorylates all three members of the MRN complex to initiate downstream signalling. While ATM has hundreds of substrates, members of the MRN complex play a pivotal role in mediating the downstream signalling events that give rise to cell cycle control, DNA repair and ultimately cell survival or apoptosis. Here we focus on the interplay between ATM and the MRN complex in initiating signaling of breaks and more specifically on the adaptor role of the MRN complex in mediating ATM signalling to downstream substrates to control different cellular processes.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Hidrolases Anidrido Ácido , Animais , Quebras de DNA de Cadeia Dupla , Humanos , Proteína Homóloga a MRE11 , Estresse Oxidativo , Fosforilação
14.
Cell Cycle ; 14(3): 437-48, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25659039

RESUMO

The BRCA1 tumor suppressor plays an important role in homologous recombination (HR)-mediated DNA double-strand-break (DSB) repair. BRCA1 is phosphorylated by Chk2 kinase upon γ-irradiation, but the role of Chk2 phosphorylation is not understood. Here, we report that abrogation of Chk2 phosphorylation on BRCA1 delays end resection and the dispersion of BRCA1 from DSBs but does not affect the assembly of Mre11/Rad50/NBS1 (MRN) and CtIP at DSBs. Moreover, we show that BRCA1 is ubiquitinated by SCF(Skp2) and that abrogation of Chk2 phosphorylation impairs its ubiquitination. Our study suggests that BRCA1 is more than a scaffold protein to assemble HR repair proteins at DSBs, but that Chk2 phosphorylation of BRCA1 also serves as a built-in clock for HR repair of DSBs. BRCA1 is known to inhibit Mre11 nuclease activity. SCF(Skp2) activity appears at late G1 and peaks at S/G2, and is known to ubiquitinate phosphodegron motifs. The removal of BRCA1 from DSBs by SCF(Skp2)-mediated degradation terminates BRCA1-mediated inhibition of Mre11 nuclease activity, allowing for end resection and restricting the initiation of HR to the S/G2 phases of the cell cycle.


Assuntos
Proteína BRCA1/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Dano ao DNA , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Células HEK293 , Humanos , Camundongos , Complexos Multiproteicos/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Estabilidade Proteica/efeitos dos fármacos , Proteína de Replicação A/metabolismo , Fatores de Tempo , Ubiquitinação/efeitos dos fármacos
15.
Cell Cycle ; 13(19): 3026-36, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25486563

RESUMO

The presence of γH2AX foci on apparently intact mitotic chromosomes is controversial because they challenge the assumed relationship between γH2AX foci and DNA double-strand breaks (DSBs). In this work, we show that after irradiation during interphase, a variety of γH2AX foci are scored in mitotic cells. Surprisingly, approximately 80% of the γH2AX foci spread over apparently undamaged chromatin at Terminal or Interstitial positions and they can display variable sizes, thus being classified as Small, Medium and Big foci. Chromosome and chromatid breaks that reach mitosis are spotted with Big (60%) and Medium (30%) Terminal γH2AX foci, but very rarely are they signaled with Small γH2AX foci. To evaluate if Interstitial γH2AX foci might be signatures of misrejoining, an mFISH analysis was performed on the same slides. The results show that Interstitial γH2AX foci lying on apparently intact chromatin do not mark sites of misrejoining, and that misrejoined events were never signaled by a γH2AX foci during mitosis. Finally, when analyzing the presence of other DNA-damage response (DDR) factors we found that all γH2AX foci-regardless their coincidence with a visible break-always colocalized with MRE11, but not with 53BP1. This pattern suggests that these γH2AX foci may be hallmarks of both microscopically visible and invisible DNA damage, in which an active, although incomplete or halted DDR is taking place.


Assuntos
Cromossomos/genética , Dano ao DNA , Histonas/metabolismo , Linhagem Celular , Cromossomos/metabolismo , Cromossomos/efeitos da radiação , Reparo do DNA , Raios gama , Histonas/genética , Humanos , Hibridização in Situ Fluorescente , Interfase , Mitose
16.
Radiother Oncol ; 108(3): 362-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23849169

RESUMO

The occurrence of DNA double-strand breaks (DSBs) induced by ionizing radiation has been extensively studied by biochemical or cell imaging techniques. Cell imaging development relies on technical advances as well as our knowledge of the cell DNA damage response (DDR) process. The DDR involves a complex network of proteins that initiate and coordinate DNA damage signaling and repair activities. As some DDR proteins assemble at DSBs in an established spatio-temporal pattern, visible nuclear foci are produced. In addition, post-translational modifications are important for the signaling and the recruitment of specific partners at damaged chromatin foci. We briefly review here the most widely used methods to study DSBs. We also discuss the development of indirect methods, using reporter expression or intra-nuclear antibodies, to follow the production of DSBs in real time and in living cells.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos da radiação , Radiação Ionizante , Reparo do DNA , Humanos
17.
Mech Ageing Dev ; 134(10): 496-505, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23583690

RESUMO

The cerebellum is exquisitely sensitive to deficiencies in the cellular response to specific DNA lesions. Genetic disorders caused by such deficiencies involve relentless, progressive cerebellar atrophy with striking loss of Purkinje and granule neurons. The reason for the extreme sensitivity of these cells to defective response to certain DNA lesions is unclear. This is particularly true for ataxia-telangiectasia (A-T) - a genomic instability syndrome whose major symptom is cerebellar atrophy. It is important to understand whether the DNA damage response in the cerebellum, particularly in Purkinje neurons, has special characteristics that stem from the unique features of these cells. Murine cerebellar organotypic cultures provide a valuable experimental system for this purpose since they retain the tissue organization for several weeks in culture and appear to provide the delicate Purkinje neurons with a physiological environment close to that in vivo. We have optimized this system and are using it to examine the Atm-mediated DNA damage response (DDR) in the cerebellum, with special emphasis on Purkinje cells. Our results to date, which indicate special chromatin organization in Purkinje cells that affects certain pathways of the DDR, demonstrate the usefulness of cerebellar organotypic cultures for addressing the above questions.


Assuntos
Cromatina/metabolismo , Dano ao DNA , Instabilidade Genômica , Células de Purkinje/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Cromatina/genética , Cromatina/patologia , Homólogo 5 da Proteína Cromobox , Humanos , Camundongos , Camundongos Knockout , Células de Purkinje/patologia , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa