Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 24(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37511294

RESUMO

An open research field in cellular regulation is the assumed crosstalk between RNAs, metabolic enzymes, and metabolites, also known as the REM hypothesis. High-throughput assays have produced extensive interactome data with metabolic enzymes frequently found as hits, but only a few examples have been biochemically validated, with deficits especially in prokaryotes. Therefore, we rationally selected nineteen Escherichia coli enzymes from such datasets and examined their ability to bind RNAs using two complementary methods, iCLIP and SELEX. Found interactions were validated by EMSA and other methods. For most of the candidates, we observed no RNA binding (12/19) or a rather unspecific binding (5/19). Two of the candidates, namely glutamate-5-kinase (ProB) and quinone oxidoreductase (QorA), displayed specific and previously unknown binding to distinct RNAs. We concentrated on the interaction of QorA to the mRNA of yffO, a grounded prophage gene, which could be validated by EMSA and MST. Because the physiological function of both partners is not known, the biological relevance of this interaction remains elusive. Furthermore, we found novel RNA targets for the MS2 phage coat protein that served us as control. Our results indicate that RNA binding of metabolic enzymes in procaryotes is less frequent than suggested by the results of high-throughput studies, but does occur.


Assuntos
Escherichia coli , Escherichia coli/genética , Prevalência
2.
Molecules ; 24(11)2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31212699

RESUMO

BACKGROUND: Solar water disinfection (SODIS) is an appropriate technology for household treatment of drinking water in low-to-middle-income communities, as it is effective, low cost and easy to use. Nevertheless, uptake is low due partially to the burden of using small volume polyethylene terephthalate bottles (1.5-2 L). A major challenge is to develop a low-cost transparent container for disinfecting larger volumes of water. (2) Methods: This study examines the capability of transparent polypropylene (PP) buckets of 5 L- and 20 L- volume as SODIS containers using three waterborne pathogen indicators: Escherichia coli, MS2-phage and Cryptosporidium parvum. (3) Results: Similar inactivation kinetics were observed under natural sunlight for the inactivation of all three organisms in well water using 5 L- and 20 L-buckets compared to 1.5 L-polyethylene-terephthalate (PET) bottles. The PP materials were exposed to natural and accelerated solar ageing (ISO-16474). UV transmission of the 20 L-buckets remained stable and with physical integrity even after the longest ageing periods (9 months or 900 h of natural or artificial solar UV exposure, respectively). The 5 L-buckets were physically degraded and lost significant UV-transmission, due to the thinner wall compared to the 20 L-bucket. (4) Conclusion: This work demonstrates that the 20 L SODIS bucket technology produces excellent bacterial, viral and protozoan inactivation and is obtained using a simple transparent polypropylene bucket fabricated locally at very low cost ($2.90 USD per unit). The increased bucket volume of 20 L allows for a ten-fold increase in treatment batch volume and can thus more easily provide for the drinking water requirements of most households. The use of buckets in households across low to middle income countries is an already accepted practice.


Assuntos
Desinfecção/métodos , Polipropilenos , Luz Solar , Microbiologia da Água , Água Potável/microbiologia , Água Potável/normas , Humanos , Temperatura , Condutividade Térmica
3.
Biochem Biophys Res Commun ; 483(1): 403-408, 2017 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-28017721

RESUMO

MazFbs is an mRNA interferase from Bacillus subtilis specifically recognizing UACAU. The X-ray structure of its complex with an RNA substrate has been also solved. When its amino acid sequence is compared with that of MazFhw, an mRNA interferase from a highly halophilic archaeon, recognizing UUACUCA, the 9-residue loop-1 region is highly homologous except that the V16V17 sequence in MazFbs is replaced with TK in MazFhw. Thus, we examined the role of the VV sequence in RNA substrate recognition by replacing it with TK, GG, AA or LL. The substitution mutants thus constructed showed significant differences in cleavage specificity using MS2 phage RNA. The primer extension analysis of the cleavage sites revealed that the VV sequence plays an important role in the recognition of the 3'-end base of the RNA substrate.


Assuntos
Bacillus subtilis/enzimologia , Endorribonucleases/química , Endorribonucleases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Endorribonucleases/genética , Escherichia coli/genética , Levivirus/genética , Levivirus/metabolismo , Mutação , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Especificidade por Substrato
4.
Environ Technol ; 36(9-12): 1464-75, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25495554

RESUMO

A new concept of Virus Sensitivity Index (VSI) is defined as the ratio between the first-order inactivation rate constant of a virus, ki, and that of MS2-phage during UV disinfection, kr. MS2-phage is chosen as the reference virus because it is recommended as a virus indicator during UV reactor design and validation by the US Environmental Protection Agency. VSI has wide applications in research, design, and validation of UV disinfection systems. For example, it can be used to rank the UV disinfection sensitivity of viruses in reference to MS2-phage. There are four major steps in deriving the equation between Hi/Hr and 1/VSI. First, the first-order inactivation rate constants are determined by regression analysis between Log I and fluence required. Second, the inactivation rate constants of MS2-phage are statistically analysed at 3, 4, 5, and 6 Log I levels. Third, different VSI values are obtained from the ki of different viruses dividing by the kr of MS2-phage. Fourth, correlation between Hi/Hr and 1/VSI is analysed by using linear, quadratic, and cubic models. As expected from the theoretical analysis, a linear relationship adequately correlates Hi/Hr and 1/VSI without an intercept. VSI is used to quantitatively predict the UV fluence required for any virus at any log inactivation (Log I). Four equations were developed at 3, 4, 5, and 6 Log I. These equations have been validated using external data which are not used for the virus development. At Log I less than 3, the equation tends to under-predict the required fluence at both low Log I such as 1 and 2 Log I. At Log I greater than 3 Log I, the equation tends to over-predict the fluence required. The reasons for these may very likely be due to the shoulder at the beginning and the tailing at the end of the collimated beam test experiments. At 3 Log I, the error percentage is less than 6%. The VSI is also used to predict inactivation rate constants under two different UV disinfection scenarios such as under sunlight and different virus aggregates. The correlation analysis shows that viruses will be about 40% more sensitive to sunlight than to UV254. On the other hand, virus size of 500 nm will reduce their VSI by 10%. This is the first attempt to use VSI to predict the required fluence at any given Log I. The equation can be used to quantitatively evaluate other parameters influencing UV disinfection. These factors include environmental species, antibiotic-resistant bacteria or genes, photo and dark repair, water quality such as suspended solids, and UV transmittance.


Assuntos
Desinfecção/normas , Inativação de Vírus , Vírus/efeitos da radiação , Levivirus , Análise de Regressão , Terminologia como Assunto , Raios Ultravioleta
5.
Front Insect Sci ; 2: 959077, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38468767

RESUMO

The baculovirus expression vector system (BEVS) has become an important platform for the expression of recombinant proteins and is especially useful for the production of large protein complexes such as virus-like particles (VLPs). An important application for VLPs is their use as vehicles for targeted delivery of drugs or toxins which requires the development of methods for efficient loading with the intended cargo. Our research intends to employ the BEVS for the production of VLPs for the delivery of insecticidal dsRNA molecules to targeted insect pests (as "dsRNA-VLPs"). A convenient strategy would be the co-expression of long dsRNAs with viral capsid proteins and their simultaneous encapsulation during VLP assembly but the capacity of the BEVS for the production of long dsRNA has not been assessed so far. In this study, the efficiency of production of long RNA hairpins targeting the luciferase gene ("dsLuc") by the polyhedrin promoter during baculovirus infection was evaluated. However, RNAi reporter assays could not detect significant amounts of dsLuc in Hi5 cells infected with recombinant baculovirus, even in the presence of co-expressed dsRNA-binding protein B2-GFP or the employment of the MS2-MCP system. Nevertheless, dot blot analyses using anti-dsRNA antibody revealed that baculovirus-mediated expression of B2-GFP resulted in significant increases in dsRNA levels in infected cells that may correspond to hybridized complementary viral transcripts. Using B2-GFP as a genetically encoded sensor, dsRNA foci were detected in the nuclei that partially co-localized with DAPI staining, consistent with their localization at the virogenic stroma. Co-localization experiments with the baculovirus proteins vp39, Ac93, ODV-E25 and gp64 indicated limited overlap between B2-GFP and the ring zone compartment where assembly of nucleocapsids and virions occurs. Stability experiments showed that exogenous dsRNA is resistant to degradation in extracts of non-infected and infected Hi5 cells and it is proposed that strong unwinding activity at the virogenic stroma in the infected nuclei may neutralize the annealing of complementary RNA strands and block the production of long dsRNAs. Because the strong stability of exogenous dsRNA, transfection can be explored as an alternative method for delivery of cargo for dsRNA-VLPs during their assembly in baculovirus-infected Hi5 cells.

6.
Viruses ; 13(7)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34372580

RESUMO

Most of the defective/non-infectious enteric phages and viruses that end up in wastewater originate in human feces. Some of the causes of this high level of inactivity at the host stage are unknown. There is a significant gap between how enteric phages are environmentally transmitted and how we might design molecular tools that would only detect infectious ones. Thus, there is a need to explain the low proportion of infectious viral particles once replicated. By analyzing lysis plaque content, we were able to confirm that, under aerobic conditions, Escherichia coli produce low numbers of infectious MS2 phages (I) than the total number of phages indicated by the genome copies (G) with an I/G ratio of around 2%. Anaerobic conditions of replication and ROS inhibition increase the I/G ratio to 8 and 25%, respectively. These data cannot only be explained by variations in the total numbers of MS2 phages produced or in the metabolism of E. coli. We therefore suggest that oxidative damage impacts the molecular replication and assembly of MS2 phages.


Assuntos
Anaerobiose/fisiologia , Levivirus/metabolismo , Replicação Viral/fisiologia , Aerobiose/fisiologia , Colífagos/genética , Escherichia coli/metabolismo , Escherichia coli/virologia , Proteínas de Escherichia coli/metabolismo , Fezes/virologia , Humanos , Levivirus/patogenicidade , Espécies Reativas de Oxigênio/metabolismo , Virulência
7.
mBio ; 11(3)2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32587063

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused a severe, international shortage of N95 respirators, which are essential to protect health care providers from infection. Given the contemporary limitations of the supply chain, it is imperative to identify effective means of decontaminating, reusing, and thereby conserving N95 respirator stockpiles. To be effective, decontamination must result in sterilization of the N95 respirator without impairment of respirator filtration or user fit. Although numerous methods of N95 decontamination exist, none are universally accessible. In this work, we describe a microwave-generated steam decontamination protocol for N95 respirators for use in health care systems of all sizes, geographies, and means. Using widely available glass containers, mesh from commercial produce bags, a rubber band, and a 1,100-W commercially available microwave, we constructed an effective, standardized, and reproducible means of decontaminating N95 respirators. Employing this methodology against MS2 phage, a highly conservative surrogate for SARS-CoV-2 contamination, we report an average 6-log10 plaque-forming unit (PFU) (99.9999%) and a minimum 5-log10 PFU (99.999%) reduction after a single 3-min microwave treatment. Notably, quantified respirator fit and function were preserved, even after 20 sequential cycles of microwave steam decontamination. This method provides a valuable means of effective decontamination and reuse of N95 respirators by frontline providers facing urgent need.IMPORTANCE Due to the rapid spread of coronavirus disease 2019 (COVID-19), there is an increasing shortage of protective gear necessary to keep health care providers safe from infection. As of 9 April 2020, the CDC reported 9,282 cumulative cases of COVID-19 among U.S. health care workers (CDC COVID-19 Response Team, MMWR Morb Mortal Wkly Rep 69:477-481, 2020, https://doi.org/10.15585/mmwr.mm6915e6). N95 respirators are recommended by the CDC as the ideal method of protection from COVID-19. Although N95 respirators are traditionally single use, the shortages have necessitated the need for reuse. Effective methods of N95 decontamination that do not affect the fit or filtration ability of N95 respirators are essential. Numerous methods of N95 decontamination exist; however, none are universally accessible. In this study, we describe an effective, standardized, and reproducible means of decontaminating N95 respirators using widely available materials. The N95 decontamination method described in this work will provide a valuable resource for hospitals, health care centers, and outpatient practices that are experiencing increasing shortages of N95 respirators due to the COVID-19 pandemic.


Assuntos
Betacoronavirus/efeitos da radiação , Infecções por Coronavirus/prevenção & controle , Descontaminação/instrumentação , Descontaminação/métodos , Máscaras , Vapor , Betacoronavirus/fisiologia , COVID-19 , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Descontaminação/normas , Transmissão de Doença Infecciosa/prevenção & controle , Desinfecção/instrumentação , Desinfecção/métodos , Reutilização de Equipamento/normas , Filtração , Humanos , Micro-Ondas , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Pneumonia Viral/transmissão , Reprodutibilidade dos Testes , SARS-CoV-2 , Esterilização , Estados Unidos
8.
J Biosci Bioeng ; 122(2): 252-6, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26868517

RESUMO

The concentration of MS2 phage as a model RNA virus in river water using a combined ferric colloid adsorption and foam separation-based method was examined. The MS2 phage concentrations were determined by the plaque-forming unit (PFU) method and reverse transcription quantitative PCR (RT-qPCR) analysis. When ferric colloid adsorption was performed prior to foam separation, MS2 phage was effectively removed from river water and concentrated in the generated foam within 7 min. The removal efficiency was >99% at the optimum iron and casein concentrations of 5 mg-Fe/L and 10 mg/L, respectively. Furthermore, based on the analysis of the collected ferric colloid dissolved using deferoxamine, the MS2 concentration in the colloid-dissolved solution was 190-fold higher than that found in raw water according to RT-qPCR analysis. This is a novel method for concentrating RNA viruses to facilitate their detection in river water using coagulation and foam separation combined with chelate dissolution of ferric flocs.


Assuntos
Coloides/química , Compostos Férricos/química , Levivirus/isolamento & purificação , Rios/virologia , Adsorção , Caseínas/química , Desferroxamina/química , Levivirus/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Front Microbiol ; 7: 1911, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28133456

RESUMO

The detection and quantification of enteric RNA viruses is based on isolation of viral RNA from the sample followed by quantitative reverse transcription polymerase chain reaction (RT-qPCR). To control the whole process of analysis and in order to guarantee the validity and reliability of results, process control viruses (PCV) are used. The present article describes the process of preparation and use of such PCV- MS2 phage-like particles (MS2 PLP) - in RT-qPCR detection and quantification of enteric RNA viruses. The MS2 PLP were derived from bacteriophage MS2 carrying a unique and specific de novo-constructed RNA target sequence originating from the DNA of two extinct species. The amount of prepared MS2 particles was quantified using four independent methods - UV spectrophotometry, fluorimetry, transmission electron microscopy and a specifically developed duplex RT-qPCR. To evaluate the usefulness of MS2 PLP in routine diagnostics different matrices known to harbor enteric RNA viruses (swab samples, liver tissue, serum, feces, and vegetables) were artificially contaminated with specific amounts of MS2 PLP. The extraction efficiencies were calculated for each individual matrix. The prepared particles fulfill all requirements for PCV - they are very stable, non-infectious, and are genetically distinct from the target RNA viruses. Due to these properties they represent a good morphological and physiochemical model. The use of MS2 PLP as a PCV in detection and quantification of enteric RNA viruses was evaluated in different types of matrices.

10.
Artigo em Coreano | WPRIM | ID: wpr-715378

RESUMO

We have examined isolation and identification protocols for three virus simulant candidates to biological warfare agents. MS2 phage, a simulant for yellow fever virus and Hantaan virus, was propagated using as a host an E. coli strain with F pilus. MS2 phage genome was examined by reverse transcription and polymerase chain reaction (RT-PCR). Coat protein of the phage preparation was examined by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometric analysis. Cydia pomonella granulosis virus (CpGV) is a virus simulant candidate to smallpox virus. CpGV was isolated from a commercialized CpGV pellet. In this study, we developed new isolation and identification protocols for CpGV. One disadvantage of using CpGV is that it is not easy to determine viability of the virus. Here, we have included T4 phage as an alternative. We established a high titer production protocol and developed an easy genome identification protocol that does not require purified phage DNA. Stability of these virus preparations was also examined under various storage conditions. When the virus preparations were not subjected to freeze drying, MS2 phage was most stable when it was stored in liquid nitrogen but unstable at 4℃. In contrast, T4 phage was most stable when it was stored at 4℃. CpGV was stable at −20℃ but not at 4℃. Stability during or after freeze drying was also investigated. The result showed that 70~80% MS2 survived the freeze drying process. In contrast, only about 15% of T4 phage survived during the freeze drying. CpGV was found to be degraded during freeze drying.


Assuntos
Bacteriófago T4 , Bacteriófagos , Armas Biológicas , DNA , Eletroforese , Liofilização , Genoma , Granulovirus , Vírus Hantaan , Levivirus , Nitrogênio , Reação em Cadeia da Polimerase , Transcrição Reversa , Vírus da Varíola , Vírus da Febre Amarela
11.
Water Res ; 47(15): 5607-13, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23871257

RESUMO

Germicidal ultraviolet, such as 254-nm UV-C, is a common method of disinfection of pathogenic enteric viruses. However, the disinfection efficacies of UV-A or -B in terms of inactivating waterborne viruses such as norovirus have not been characterized. We evaluated the inactivation kinetics of MS2 bacteriophage and murine norovirus (MNV), a surrogate of human norovirus (NoV), by UV-A and -B. In addition to UV disinfection, we further investigated whether the presence of TiO2 could enhance the virus inactivation kinetics of UV-A and -B. Both MS2 and MNV were highly resistant to UV-A. However, the addition of TiO2 enhanced the efficacy of UV-A for inactivating these viruses. UV-A dose of 1379 mJ/cm(2) resulted in a 4 log10 reduction. In comparison, UV-B alone effectively inactivated both MS2 and MNV, as evidenced by the 4 log10 reduction by 367 mJ/cm(2) of UV-B. The addition of TiO2 increased the inactivation of MS2; however, it did not significantly increase the efficacy of UV-B disinfection for inactivating MNV. When these treatments were applied to field water such as groundwater, the results were generally consistent with the laboratory findings. Our results clearly indicated that UV-B is useful for the disinfection of waterborne norovirus. However, MNV was quite resistant to UV-A, and UV-A effectively inactivated the tested viruses only when used in combination with TiO2.


Assuntos
Norovirus/efeitos da radiação , Titânio/farmacologia , Raios Ultravioleta , Bacteriófagos/efeitos dos fármacos , Bacteriófagos/efeitos da radiação , Desinfecção , Cinética , Norovirus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa