Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Cell Int ; 24(1): 309, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39252019

RESUMO

Colon adenocarcinoma (COAD) represents a significant health concern within the population. Advancing our understanding of COAD is imperative for early detection, enabling personalized treatment interventions, and facilitating the development of effective preventive measures. The coagulation system plays a role in tumor-related pathological processes; however, its specific involvement in COAD and potential contributors remain unclear. This study aimed to establish a novel risk stratification approach by analyzing coagulation related genes (CRGs) associated with COAD. Through a comprehensive bioinformatics analysis of data from public databases, we screened COAD associated CRGs and characterized the associated molecular subtypes. After a comprehensive analysis of the characteristics of each subtype, we applied differentially expressed genes in CRG subtypes to establish a new risk stratification method. Clinical subgroup analysis, immunoinfiltration analysis, therapeutic reactivity prediction and other analytical methods suggest the potential clinical value of the established risk stratification method. As one of the selected targets, the effect of MS4A4A on the proliferation and invasion of COAD was confirmed by in vitro experiments, which partially verified the reliability of bioinformatics results. Our findings delineate CRGs potentially implicated in COAD pathogenesis and offer fresh insights into the influence of the coagulation process on tumorigenesis and progression.

2.
Eur J Immunol ; 50(10): 1602-1605, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32589266

RESUMO

MS4A4A regulates the expression of arginase 1 in macrophages under IL4 stimulation. Also, MS4A4A regulates eosinophil infiltration during lung allergic inflammation induced by intranasal administration of house dust mite.


Assuntos
Arginase/metabolismo , Eosinófilos/imunologia , Hipersensibilidade/imunologia , Pulmão/imunologia , Macrófagos/fisiologia , Proteínas de Membrana/metabolismo , Pneumonia/imunologia , Animais , Antígenos de Dermatophagoides/imunologia , Arginase/genética , Diferenciação Celular , Ativação de Macrófagos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Pyroglyphidae , Regulação para Cima
3.
Neurobiol Dis ; 143: 104962, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32535152

RESUMO

Recent human genetic studies have challenged long standing hypotheses about the chain of events in Alzheimer's disease (AD), as the identification of genetic risk factors in microglial genes supports a causative role for microglia in the disease. Parallel transcriptome and histology studies at the single-cell level revealed a rich palette of microglial states affected by disease status and genetic risk factors. Taken together, those findings support microglia dysfunction as a central mechanism in AD etiology and thus the therapeutic potential of modulating microglial activity for AD treatment. Here we review how human genetic studies discovered microglial AD risk genes, such as TREM2, CD33, MS4A and APOE, and how experimental studies are beginning to decipher the cellular functions of some of these genes. Our review also focuses on recent transcriptomic studies of human microglia from postmortem tissue to critically assess areas of similarity and dissimilarity between human and mouse models currently in use in order to better understand the biology of innate immunity in AD.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Encéfalo/patologia , Microglia/patologia , Animais , Predisposição Genética para Doença , Humanos
4.
Mov Disord ; 35(5): 885-890, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32031293

RESUMO

BACKGROUND: The role of the microglia-related gene triggering receptor expressed in myeloid cells 2 (TREM2) in primary tauopathies, such as progressive supranuclear palsy (PSP), still remains unclear. OBJECTIVES: The objective of this study was to profile overall and transcript-specific TREM2 expression levels in the substantia nigra (SN) of PSP patients and controls. METHODS: SN samples from neuropathologically confirmed PSP cases (n = 24) and controls (n = 14) were used to measure TREM2 and TREM2-modulating gene Membrane-spanning 4-domains subfamily A member 4A (MS4A4A) mRNA levels by real-time quantitative polymerase chain reaction. Correlation with hyperphosphorylated tau protein burden was assessed. RESULTS: Overall TREM2 and each of the 3 TREM2 transcripts mRNA levels were significantly increased in the SN of PSP cases versus controls. TREM2 mRNA levels positively correlated with hyperphosphorylated tau burden in SN, specifically in neurons. The MS4A4A gene was also upregulated in PSP patients versus controls. CONCLUSIONS: These results add evidence to the involvement of microglia in the disease process of PSP. These findings support the idea that different tauopathies may share common patterns of deregulation in innate immune molecular pathways. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Paralisia Supranuclear Progressiva , Tauopatias , Humanos , Glicoproteínas de Membrana/genética , Microglia , Células Mieloides , Receptores Imunológicos/genética , Substância Negra , Paralisia Supranuclear Progressiva/genética
5.
Biomedicines ; 12(10)2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39457694

RESUMO

Background: Idiopathic pulmonary fibrosis (IPF) leads to excessive fibrous tissue in the lungs, increasing the risk of lung cancer (LC) due to heightened fibroblast activity. Advances in nucleotide point mutation studies offer insights into fibrosis-to-cancer transitions. Methods: A two-sample Mendelian randomization (TSMR) approach was used to explore the causal relationship between IPF and LC. A weighted gene co-expression network analysis (WGCNA) identified shared gene modules related to immunogenic cell death (ICD) from transcriptomic datasets. Machine learning selected key genes, and a multi-layer perceptron (MLP) model was developed for IPF prediction and diagnosis. SMR and PheWAS were used to assess the expression of key genes concerning IPF risk. The impact of core genes on immune cells in the IPF microenvironment was explored, and in vivo experiments were conducted to examine the progression from IPF to LC. Results: The TSMR approach indicated a genetic predisposition for IPF progressing to LC. The predictive model, which includes eight ICD key genes, demonstrated a strong predictive capability (AUC = 0.839). The SMR analysis revealed that the elevated expression of MS4A4A was associated with an increased risk of IPF (OR = 1.275, 95% CI: 1.029-1.579; p = 0.026). The PheWAS did not identify any significant traits linked to MS4A4A expression. The rs9265808 locus in MS4A4A was identified as a susceptibility site for the progression of IPF to LC, with mutations potentially reprogramming lung neutrophils and increasing the LC risk. In vivo studies suggested MS4A4A as a promising therapeutic target. Conclusions: A causal link between IPF and LC was established, an effective prediction model was developed, and MS4A4A was highlighted as a therapeutic target to prevent IPF from progressing to LC.

6.
CNS Neurosci Ther ; 30(7): e14791, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38997808

RESUMO

INTRODUCTION: Glioblastoma (GBM) remains a challenging brain tumor to treat, with limited response to PD-1 immunotherapy due to tumor-associated macrophages (TAMs), specifically the M2 phenotype. This study explores the potential of MS4A4A (membrane spanning four domains, subfamily A, member 4A) inhibition in driving M2 macrophage polarization toward the M1 phenotype via the ferroptosis pathway to enhance the effectiveness of immunotherapy in GBM. METHODS: Single-cell RNA sequencing and spatial transcriptomic analyses were employed to characterize M2 macrophages and MS4A4A expression in GBM. In vitro studies utilizing TAM cultures, flow cytometry, and western blot validations were conducted to assess the impact of MS4A4A on the tumor immune microenvironment and M2 macrophage polarization. In vivo models, including subcutaneous and orthotopic transplantation in mice, were utilized to evaluate the effects of MS4A4A knockout and combined immune checkpoint blockade (ICB) therapy on tumor growth and response to PD-1 immunotherapy. RESULTS: Distinct subsets of GBM-associated macrophages were identified, with spatial distribution in tumor tissue elucidated. In vivo experiments demonstrated that inhibiting MS4A4A and combining ICB therapy effectively inhibited tumor growth, reshaped the tumor immune microenvironment by reducing M2 TAM infiltration and enhancing CD8+ T-cell infiltration, ultimately leading to complete tumor eradication. CONCLUSION: MS4A4A inhibition shows promise in converting M2 macrophages to M1 phenotype via ferroptosis, decreasing M2-TAM infiltration, and enhancing GBM response to PD-1 immunotherapy. These findings offer a novel approach to developing more effective immunotherapeutic strategies for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Imunoterapia , Glioblastoma/imunologia , Glioblastoma/terapia , Glioblastoma/patologia , Animais , Imunoterapia/métodos , Camundongos , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Humanos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Microambiente Tumoral/fisiologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética
7.
J Leukoc Biol ; 111(4): 817-836, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34346525

RESUMO

The MS4A gene family encodes 18 tetraspanin-like proteins, most of which with unknown function. MS4A1 (CD20), MS4A2 (FcεRIß), MS4A3 (HTm4), and MS4A4A play important roles in immunity, whereas expression and function of other members of the family are unknown. The present investigation was designed to obtain an expression fingerprint of MS4A family members, using bioinformatics analysis of public databases, RT-PCR, and protein analysis when possible. MS4A3, MS4A4A, MS4A4E, MS4A6A, MS4A7, and MS4A14 were expressed by myeloid cells. MS4A6A and MS4A14 were expressed in circulating monocytes and decreased during monocyte-to-Mϕ differentiation in parallel with an increase in MS4A4A expression. Analysis of gene expression regulation revealed a strong induction of MS4A4A, MS4A6A, MS4A7, and MS4A4E by glucocorticoid hormones. Consistently with in vitro findings, MS4A4A and MS4A7 were expressed in tissue Mϕs from COVID-19 and rheumatoid arthritis patients. Interestingly, MS4A3, selectively expressed in myeloid precursors, was found to be a marker of immature circulating neutrophils, a cellular population associated to COVID-19 severe disease. The results reported here show that members of the MS4A family are differentially expressed and regulated during myelomonocytic differentiation, and call for assessment of their functional role and value as therapeutic targets.


Assuntos
COVID-19 , Proteínas de Membrana , Antígenos CD20 , Família , Humanos , Proteínas de Membrana/genética , Monócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa