Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(22): 4898-4919.e25, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37827155

RESUMO

Expansions of repeat DNA tracts cause >70 diseases, and ongoing expansions in brains exacerbate disease. During expansion mutations, single-stranded DNAs (ssDNAs) form slipped-DNAs. We find the ssDNA-binding complexes canonical replication protein A (RPA1, RPA2, and RPA3) and Alternative-RPA (RPA1, RPA3, and primate-specific RPA4) are upregulated in Huntington disease and spinocerebellar ataxia type 1 (SCA1) patient brains. Protein interactomes of RPA and Alt-RPA reveal unique and shared partners, including modifiers of CAG instability and disease presentation. RPA enhances in vitro melting, FAN1 excision, and repair of slipped-CAGs and protects against CAG expansions in human cells. RPA overexpression in SCA1 mouse brains ablates expansions, coincident with decreased ATXN1 aggregation, reduced brain DNA damage, improved neuron morphology, and rescued motor phenotypes. In contrast, Alt-RPA inhibits melting, FAN1 excision, and repair of slipped-CAGs and promotes CAG expansions. These findings suggest a functional interplay between the two RPAs where Alt-RPA may antagonistically offset RPA's suppression of disease-associated repeat expansions, which may extend to other DNA processes.


Assuntos
Proteína de Replicação A , Expansão das Repetições de Trinucleotídeos , Animais , Humanos , Camundongos , DNA/genética , Reparo de Erro de Pareamento de DNA , Doença de Huntington/genética , Proteínas/genética , Ataxias Espinocerebelares/genética , Proteína de Replicação A/metabolismo
2.
Mol Cell ; 83(16): 2941-2958.e7, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37595556

RESUMO

Crossovers (COs), the exchange of homolog arms, are required for accurate chromosome segregation during meiosis. Studies in yeast have described the single-end invasion (SEI) intermediate: a stabilized 3' end annealed with the homolog as the first detectible CO precursor. SEIs are thought to differentiate into double Holliday junctions (dHJs) that are resolved by MutLgamma (MLH1/MLH3) into COs. Currently, we lack knowledge of early steps of mammalian CO recombination or how intermediates are differentiated in any organism. Using comprehensive analysis of recombination in thirteen different genetic conditions with varying levels of compromised CO resolution, we infer CO precursors include asymmetric SEI-like intermediates and dHJs in mouse. In contrast to yeast, MLH3 is structurally required to differentiate CO precursors into dHJs. We verify conservation of aspects of meiotic recombination and show unique features in mouse, providing mechanistic insight into CO formation.


Assuntos
Meiose , Saccharomyces cerevisiae , Animais , Camundongos , Saccharomyces cerevisiae/genética , Meiose/genética , Segregação de Cromossomos/genética , DNA Cruciforme/genética , Mamíferos
3.
Am J Hum Genet ; 111(6): 1165-1183, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38749429

RESUMO

The pathological huntingtin (HTT) trinucleotide repeat underlying Huntington disease (HD) continues to expand throughout life. Repeat length correlates both with earlier age at onset (AaO) and faster progression, making slowing its expansion an attractive therapeutic approach. Genome-wide association studies have identified candidate variants associated with altered AaO and progression, with many found in DNA mismatch repair (MMR)-associated genes. We examine whether lowering expression of these genes affects the rate of repeat expansion in human ex vivo models using HD iPSCs and HD iPSC-derived striatal medium spiny neuron-enriched cultures. We have generated a stable CRISPR interference HD iPSC line in which we can specifically and efficiently lower gene expression from a donor carrying over 125 CAG repeats. Lowering expression of each member of the MMR complexes MutS (MSH2, MSH3, and MSH6), MutL (MLH1, PMS1, PMS2, and MLH3), and LIG1 resulted in characteristic MMR deficiencies. Reduced MSH2, MSH3, and MLH1 slowed repeat expansion to the largest degree, while lowering either PMS1, PMS2, or MLH3 slowed it to a lesser degree. These effects were recapitulated in iPSC-derived striatal cultures where MutL factor expression was lowered. CRISPRi-mediated lowering of key MMR factor expression to levels feasibly achievable by current therapeutic approaches was able to effectively slow the expansion of the HTT CAG tract. We highlight members of the MutL family as potential targets to slow pathogenic repeat expansion with the aim to delay onset and progression of HD and potentially other repeat expansion disorders exhibiting somatic instability.


Assuntos
Reparo de Erro de Pareamento de DNA , Proteína Huntingtina , Doença de Huntington , Células-Tronco Pluripotentes Induzidas , Expansão das Repetições de Trinucleotídeos , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Reparo de Erro de Pareamento de DNA/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteína 1 Homóloga a MutL/genética , Proteína 1 Homóloga a MutL/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Genes Modificadores , Proteína 3 Homóloga a MutS/genética , Proteína 3 Homóloga a MutS/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas MutL/genética , Proteínas MutL/metabolismo , Sistemas CRISPR-Cas , Estudo de Associação Genômica Ampla
4.
Am J Hum Genet ; 111(6): 1140-1164, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38776926

RESUMO

Detection of structural variants (SVs) is currently biased toward those that alter copy number. The relative contribution of inversions toward genetic disease is unclear. In this study, we analyzed genome sequencing data for 33,924 families with rare disease from the 100,000 Genomes Project. From a database hosting >500 million SVs, we focused on 351 genes where haploinsufficiency is a confirmed disease mechanism and identified 47 ultra-rare rearrangements that included an inversion (24 bp to 36.4 Mb, 20/47 de novo). Validation utilized a number of orthogonal approaches, including retrospective exome analysis. RNA-seq data supported the respective diagnoses for six participants. Phenotypic blending was apparent in four probands. Diagnostic odysseys were a common theme (>50 years for one individual), and targeted analysis for the specific gene had already been performed for 30% of these individuals but with no findings. We provide formal confirmation of a European founder origin for an intragenic MSH2 inversion. For two individuals with complex SVs involving the MECP2 mutational hotspot, ambiguous SV structures were resolved using long-read sequencing, influencing clinical interpretation. A de novo inversion of HOXD11-13 was uncovered in a family with Kantaputra-type mesomelic dysplasia. Lastly, a complex translocation disrupting APC and involving nine rearranged segments confirmed a clinical diagnosis for three family members and resolved a conundrum for a sibling with a single polyp. Overall, inversions play a small but notable role in rare disease, likely explaining the etiology in around 1/750 families across heterogeneous clinical cohorts.


Assuntos
Inversão Cromossômica , Doenças Raras , Humanos , Doenças Raras/genética , Masculino , Feminino , Inversão Cromossômica/genética , Linhagem , Genoma Humano , Sequenciamento Completo do Genoma , Proteína 2 de Ligação a Metil-CpG/genética , Mutação , Proteínas de Homeodomínio/genética , Pessoa de Meia-Idade
5.
Genes Dev ; 32(7-8): 524-536, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29636371

RESUMO

Chromosomal deletion rearrangements mediated by repetitive elements often involve repeats separated by several kilobases and sequences that are divergent. While such rearrangements are likely induced by DNA double-strand breaks (DSBs), it has been unclear how the proximity of DSBs relative to repeat sequences affects the frequency of such events. We generated a reporter assay in mouse cells for a deletion rearrangement involving repeats separated by 0.4 Mb. We induced this repeat-mediated deletion (RMD) rearrangement with two DSBs: the 5' DSB that is just downstream from the first repeat and the 3' DSB that is varying distances upstream of the second repeat. Strikingly, we found that increasing the 3' DSB/repeat distance from 3.3 kb to 28.4 kb causes only a modest decrease in rearrangement frequency. We also found that RMDs are suppressed by KU70 and RAD51 and promoted by RAD52, CtIP, and BRCA1. In addition, we found that 1%-3% sequence divergence substantially suppresses these rearrangements in a manner dependent on the mismatch repair factor MSH2, which is dominant over the suppressive role of KU70. We suggest that a DSB far from a repeat can stimulate repeat-mediated rearrangements, but multiple pathways suppress these events.


Assuntos
Quebra Cromossômica , Deleção Cromossômica , Sequências Repetitivas de Ácido Nucleico , Animais , DNA/química , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/fisiologia , Autoantígeno Ku/fisiologia , Camundongos , Proteína 2 Homóloga a MutS/fisiologia , Rad51 Recombinase/fisiologia , Proteína Rad52 de Recombinação e Reparo de DNA/fisiologia , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/fisiologia
6.
J Biol Chem ; 300(6): 107406, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38782208

RESUMO

The DNA mismatch repair (MMR) system promotes genome stability and protects humans from certain types of cancer. Its primary function is the correction of DNA polymerase errors. MutLα is an important eukaryotic MMR factor. We have examined the contributions of MutLα to maintaining genome stability. We show here that loss of MutLα in yeast increases the genome-wide mutation rate by ∼130-fold and generates a genome-wide mutation spectrum that consists of small indels and base substitutions. We also show that loss of yeast MutLα leads to error-prone MMR that produces T > C base substitutions in 5'-ATA-3' sequences. In agreement with this finding, our examination of human whole-genome DNA sequencing data has revealed that loss of MutLα in induced pluripotent stem cells triggers error-prone MMR that leads to the formation of T > C mutations in 5'-NTN-3' sequences. Our further analysis has shown that MutLα-independent MMR plays a role in suppressing base substitutions in N3 homopolymeric runs. In addition, we describe that MutLα preferentially protects noncoding DNA from mutations. Our study defines the contributions of MutLα-dependent and independent mechanisms to genome-wide MMR.


Assuntos
Reparo de Erro de Pareamento de DNA , Proteínas MutL , Mutação , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas MutL/metabolismo , Proteínas MutL/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Instabilidade Genômica , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia
7.
Proc Natl Acad Sci U S A ; 119(42): e2212870119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215471

RESUMO

Eukaryotic DNA mismatch repair (MMR) depends on recruitment of the Mlh1-Pms1 endonuclease (human MLH1-PMS2) to mispaired DNA. Both Mlh1 and Pms1 contain a long unstructured linker that connects the N- and carboxyl-terminal domains. Here, we demonstrated the Mlh1 linker contains a conserved motif (Saccharomyces cerevisiae residues 391-415) required for MMR. The Mlh1-R401A,D403A-Pms1 linker motif mutant protein was defective for MMR and endonuclease activity in vitro, even though the conserved motif could be >750 Å from the carboxyl-terminal endonuclease active site or the N-terminal adenosine triphosphate (ATP)-binding site. Peptides encoding this motif inhibited wild-type Mlh1-Pms1 endonuclease activity. The motif functioned in vivo at different sites within the Mlh1 linker and within the Pms1 linker. Motif mutations in human cancers caused a loss-of-function phenotype when modeled in S. cerevisiae. These results suggest that the Mlh1 motif promotes the PCNA-activated endonuclease activity of Mlh1-Pms1 via interactions with DNA, PCNA, RFC, or other domains of the Mlh1-Pms1 complex.


Assuntos
Neoplasias , Proteínas de Saccharomyces cerevisiae , Trifosfato de Adenosina/metabolismo , DNA/metabolismo , Reparo de Erro de Pareamento de DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Humanos , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Proteína 1 Homóloga a MutL/genética , Proteína 1 Homóloga a MutL/metabolismo , Proteínas MutL , Proteína 2 Homóloga a MutS/metabolismo , Proteínas Mutantes/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
EMBO J ; 39(21): e104858, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32935357

RESUMO

During meiosis, DNA double-strand breaks undergo interhomolog repair to yield crossovers between homologous chromosomes. To investigate how interhomolog sequence polymorphism affects crossovers, we sequenced multiple recombinant populations of the model plant Arabidopsis thaliana. Crossovers were elevated in the diverse pericentromeric regions, showing a local preference for polymorphic regions. We provide evidence that crossover association with elevated diversity is mediated via the Class I crossover formation pathway, although very high levels of diversity suppress crossovers. Interhomolog polymorphism causes mismatches in recombining molecules, which can be detected by MutS homolog (MSH) mismatch repair protein heterodimers. Therefore, we mapped crossovers in a msh2 mutant, defective in mismatch recognition, using multiple hybrid backgrounds. Although total crossover numbers were unchanged in msh2 mutants, recombination was remodelled from the diverse pericentromeres towards the less-polymorphic sub-telomeric regions. Juxtaposition of megabase heterozygous and homozygous regions causes crossover remodelling towards the heterozygous regions in wild type Arabidopsis, but not in msh2 mutants. Immunostaining showed that MSH2 protein accumulates on meiotic chromosomes during prophase I, consistent with MSH2 regulating meiotic recombination. Our results reveal a pro-crossover role for MSH2 in regions of higher sequence diversity in A. thaliana.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Polimorfismo Genético , Ciclo Celular , Cromatina , Cromossomos , Troca Genética , Reparo do DNA , Replicação do DNA , Recombinação Homóloga , Meiose , Mutagênese , Polimorfismo de Nucleotídeo Único
9.
Am J Hum Genet ; 108(1): 163-175, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33357406

RESUMO

The lack of functional evidence for the majority of missense variants limits their clinical interpretability and poses a key barrier to the broad utility of carrier screening. In Lynch syndrome (LS), one of the most highly prevalent cancer syndromes, nearly 90% of clinically observed missense variants are deemed "variants of uncertain significance" (VUS). To systematically resolve their functional status, we performed a massively parallel screen in human cells to identify loss-of-function missense variants in the key DNA mismatch repair factor MSH2. The resulting functional effect map is substantially complete, covering 94% of the 17,746 possible variants, and is highly concordant (96%) with existing functional data and expert clinicians' interpretations. The large majority (89%) of missense variants were functionally neutral, perhaps unexpectedly in light of its evolutionary conservation. These data provide ready-to-use functional evidence to resolve the ∼1,300 extant missense VUSs in MSH2 and may facilitate the prospective classification of newly discovered variants in the clinic.


Assuntos
Predisposição Genética para Doença/genética , Proteína 2 Homóloga a MutS/genética , Mutação de Sentido Incorreto/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA/genética , Células HEK293 , Humanos
10.
BMC Gastroenterol ; 24(1): 82, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395750

RESUMO

BACKGROUND: Deficient DNA mismatch repair (MMR) can cause microsatellite instability (MSI) and is more common in colorectal cancer (CRC) patients. Understanding the carcinogenic mechanism of bacteria and their impact on cancer cells is crucial. Bacteroides fragilis (B. fragilis) has been identified as a potential promoter of tumorigenesis through the alteration of signaling pathways. This study aims to assess the expression levels of msh2, msh6, mlh1, and the relative frequency of B. fragilis in biopsy samples from CRC patients. MATERIALS AND METHODS: Based on the sequence of mlh1, msh2, and msh6 genes, B. fragilis specific 16srRNA and bacterial universal 16srRNA specific primers were selected, and the expression levels of the target genes were analyzed using the Real-Time PCR method. RESULTS: Significant increases in the expression levels of mlh1, msh2, and msh6 genes were observed in the cancer group. Additionally, the expression of these MMR genes showed a significant elevation in samples positive for B. fragilis presence. The relative frequency of B. fragilis in the cancer group demonstrated a significant rise compared to the control group. CONCLUSION: The findings suggest a potential correlation between the abundance of B. fragilis and alterations in the expression of MMR genes. Since these genes can play a role in modifying colon cancer, investigating microbial characteristics and gene expression changes in CRC could offer a viable solution for CRC diagnosis.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Colorretais , Humanos , Reparo de Erro de Pareamento de DNA/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Bacteroides fragilis/genética , Bacteroides fragilis/metabolismo , Irã (Geográfico) , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Instabilidade de Microssatélites , Proteínas de Ligação a DNA/genética , Proteína 1 Homóloga a MutL/genética , Proteína 1 Homóloga a MutL/metabolismo , Biópsia
11.
Hered Cancer Clin Pract ; 22(1): 6, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741120

RESUMO

BACKGROUND: Colorectal cancers (CRCs) in the Lynch syndromes have been assumed to emerge through an accelerated adenoma-carcinoma pathway. In this model adenomas with deficient mismatch repair have an increased probability of acquiring additional cancer driver mutation(s) resulting in more rapid progression to malignancy. If this model was accurate, the success of colonoscopy in preventing CRC would be a function of the intervals between colonoscopies and mean sojourn time of detectable adenomas. Contrary to expectations, colonoscopy did not decrease incidence of CRC in the Lynch syndromes and shorter colonoscopy intervals have not been effective in reducing CRC incidence. The prospective Lynch Syndrome Database (PLSD) was designed to examine these issues in carriers of pathogenic variants of the mis-match repair (path_MMR) genes. MATERIALS AND METHODS: We examined the CRC and colorectal adenoma incidences in 3,574 path_MLH1, path_MSH2, path_MSH6 and path_PMS2 carriers subjected to regular colonoscopy with polypectomy, and considered the results based on sojourn times and stochastic probability paradigms. RESULTS: Most of the path_MMR carriers in each genetic group had no adenomas. There was no association between incidences of CRC and the presence of adenomas. There was no CRC observed in path_PMS2 carriers. CONCLUSIONS: Colonoscopy prevented CRC in path_PMS2 carriers but not in the others. Our findings are consistent with colonoscopy surveillance blocking the adenoma-carcinoma pathway by removing identified adenomas which might otherwise become CRCs. However, in the other carriers most CRCs likely arised from dMMR cells in the crypts that have an increased mutation rate with increased stochastic chaotic probabilities for mutations. Therefore, this mechanism, that may be associated with no or only a short sojourn time of MSI tumours as adenomas, could explain the findings in our previous and current reports.

12.
Mol Cell Biochem ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37642881

RESUMO

The significance of long non-coding RNA (ncRNAs) in the initiation and progression of diabetic nephropathy (DN) has attracted much interest. The purpose of this work was to ascertain the role of LINC01232 in cell models and animal models of DN. C57BL/6 J mice were administered with streptozotocin (STZ) to develop animal models of DN, and mouse glomerular mesangial cells (MCs) were exposed to high glucose (HG) to establish cell models of DN. Expression levels of LINC01232, miR-1250-3p and MSH2 were identified by quantitative real-time PCR (qPCR) or western blotting. Fibrosis-related proteins were quantified by western blotting. MC proliferative capacity was checked by EdU assay. DN progression and fibrosis level in animal models were assessed by hematoxylin and eosin (HE) and Masson staining. The potential binding sites between miR-1250-3p and LINC01232 or MSH2 were examined by dual-luciferase reporter assay. LINC01232 expression was heightened in kidney tissues of DN patients. Its overexpression in HG-treated MCs alleviated MC proliferation and fibrosis. Overexpression of LINC01232 alleviated the pathological state of glomerular hypertrophy, MC hyperplasia, basement membrane thickening, and fibrosis in the DN models. LINC01232 bound to miR-1250-3p and competed for miR-1250-3p binding sites with MSH2. LINC01232 overexpression decoyed miR-1250-3p to increase MSH2 expression, and MSH2 depletion restored LINC01232 overexpression-inhibited MC proliferation and fibrosis. LINC01232 alleviated the mesangial cell proliferation and fibrosis in the progression of DN by targeting miR-1250-3p/MSH2 pathway.

13.
Gynecol Oncol ; 173: 1-7, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37030072

RESUMO

OBJECTIVES: Guidelines recommend risk-reducing bilateral salpingo-oophorectomy (RRSO) for women with pathogenic variants of non-BRCA and Lynch syndrome-associated ovarian cancer susceptibility genes. Optimal timing and findings at the time of RRSO for these women remains unclear. We sought to characterize practice patterns and frequency of occult gynecologic cancers for these women at our two institutions. METHODS: Women with germline ovarian cancer susceptibility gene pathogenic variants who underwent RRSO between 1/2000-9/2019 were reviewed in an IRB-approved study. All patients were asymptomatic with no suspicion for malignancy at time of RRSO. Clinico-pathologic characteristics were extracted from the medical records. RESULTS: 26 Non-BRCA (9 BRIP1, 9 RAD51C, and 8 RAD51D) and 75 Lynch (36 MLH1, 18 MSH2, 21 MSH6) pathogenic variants carriers were identified. Median age at time of RRSO was 47. There were no occurrences of occult ovarian or fallopian tube cancer in either group. Two patients (3%) in the Lynch group had occult endometrial cancer. Median follow up was 18 and 35 months for non-BRCA and Lynch patients, respectively. No patient developed primary peritoneal cancer upon follow up. Post-surgical complications occurred in 9/101 (9%) of patients. Hormone replacement therapy (HRT) was rarely used despite reported post-menopausal symptoms in 6/25 (23%) and 7/75 (37%) patients, respectively. CONCLUSIONS: No occult ovarian or tubal cancers were observed in either group. No recurrent or primary gynecologic-related cancers occurred upon follow-up. Despite frequent menopausal symptoms, HRT use was rare. Both groups experienced surgical complications when hysterectomy and/or concurrent colon surgery was performed suggesting concurrent surgeries should only be performed when indicated.


Assuntos
Neoplasias da Mama , Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Primárias Desconhecidas , Neoplasias Ovarianas , Feminino , Humanos , Ovariectomia , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/cirurgia , Genes BRCA2 , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/cirurgia , Neoplasias Ovarianas/patologia , Genes BRCA1 , Mutação , Fatores de Risco , Neoplasias Primárias Desconhecidas/genética , Neoplasias da Mama/genética , Predisposição Genética para Doença
14.
Cell Biol Int ; 47(1): 201-215, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36208091

RESUMO

Several studies have shown that MutS homolog 2 (MSH2) is highly expressed in many cancer tissues. Transcriptome expression data were collected from the Cancer Genome Atlas (TCGA) database. We analyzed the expression of MSH2 in normal and tumor tissues, the relationship between MSH2 expression and various prognostic factors, and the relationship between MSH2 expression and overall survival, disease specific survival, and progression free interval. We also examined MSH2 promoter methylation between endometrial cancer and normal endometrial tissues, and identified the prognostic value of MSH2 methylation in endometrial cancer. MSH2 was highly expressed in endometrial cancer tumor tissues compared with normal tissues. High MSH2 expression might be an independent prognostic factor for OS, DSS, and PFI. Further, high MSH2 expression was correlated with age and histological type, but not with BMI, clinical stage, tumor invasion, or other clinical features. MSH2 promoter methylation in endometrial cancer was significantly lower than in normal tissues. Additionally, MSH2 levels, OS, DSS, and PFI were associated with BMI, age, tumor invasion, and histological type. ssGSEA showed that MSH2 expression was positively correlated with the infiltration of Th2 cells, Tcm cells, T helper cells, and Tgd cells, whereas it was negatively correlated with NK CD56 bright cells, pDC cells, iDC cells, cytotoxic cells, and neutrophils. Increased MSH2 expression and reduced MSH2 methylation in endometrial cancer predicts poor prognosis. MSH2 may be used as a biomarker for the diagnosis and prognosis of endometrial cancer and as an immunotherapy target.


Assuntos
Biomarcadores Tumorais , Neoplasias do Endométrio , Proteína 2 Homóloga a MutS , Feminino , Humanos , Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/patologia , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Regiões Promotoras Genéticas , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
15.
Jpn J Clin Oncol ; 53(3): 270-274, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36484308

RESUMO

We report the sensitivity of immune checkpoint inhibitors for tumors developing in a patient bearing the MSH2 c.1808A > T (Asp603Val) variant belonging to a pedigree of Lynch syndrome. This variant was previously thought to be of unknown significance, but we recently found that this missense mutation was likely pathogenic. At that time, there were no active members with malignancies that could be treated with chemotherapy. Thereafter, an 81-year-old woman bearing this variant, who was a cousin of the proband of this family, had multiple lymph node metastases from her resected gastric cancer. An immune checkpoint inhibitor, pembrolizumab, an anti-PD-1 antibody, was used to treat these tumors. After 3 months of treatment, almost all tumors disappeared, and elevated CA19-9 levels normalized. She survives over 15 months safely. It was indicated that the tumors bearing this germline variant were sensitive to pembrolizumab. This observation suggests that an MSH2 c.1808A > T (Asp603Val) variant induces mismatch repair deficiency, resulting in sensitization to immune checkpoint inhibition.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Feminino , Humanos , Idoso de 80 Anos ou mais , Inibidores de Checkpoint Imunológico , Proteína 2 Homóloga a MutS/genética , Metástase Linfática , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Mutação em Linhagem Germinativa , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Células Germinativas
16.
BMC Cancer ; 22(1): 168, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35164713

RESUMO

BACKGROUND: Upper urinary tract urothelial carcinoma (UTUC) accounts for only about 5-10% of all urothelial cancers and is characterized by an aggressive and frequently rapidly fatal behavior. However, detailed knowledge of its molecular profile is still lacking. MATERIALS AND METHODS: We identified, by chart analysis, patients who underwent radical nephroureterectomy or diagnostic biopsy for UTUC between January 2015 and August 2020 at the Santa Maria Hospital of Terni, in Italy. Eligible patients were required to have also adequate clinical informations and follow-up details. The primary objective of the study was to evaluate DNA mismatch repair (MMR) proteins and Nectin-4 immunohistochemical expression in UTUC, looking also for an eventual correlation between these molecular features. The secondary objective was to investigate genomic instability in the case of a MMR protein loss. Expression of proteins was assessed by using immunohistochemistry and microsatellite instability (MSI) performed by next generation sequencing. Nectin-4 expression was reported using an intensity scoring system (score, 0-3+), instead the expression of DNA MMR proteins was indicated as present (no loss) or not present (loss). RESULTS: Thirty four cases have been evaluated and 27 considered eligible for the study with their tumor samples analyzed. Nectin-4 was found to be expressed in 44% of cases and 18.5% of patients showed defective-MMR phenotype. We found a significant correlation between Nectin-4 expression and MSH2/MSH6 protein loss. Out of 7 patients with DNA MMR proteins loss or equivocal phenotype, 3 showed MSI. CONCLUSIONS: Our pilot study suggest a possible relationship between Nectin-4 and DNA MMR protein expression in UTUC and a clinically significant correlation between defective MMR phenotype and genomic instability. Because of the possible implications of these data for innovative treatment approaches, the need for further studies in this area is warranted.


Assuntos
Carcinoma/genética , Moléculas de Adesão Celular/metabolismo , Reparo de Erro de Pareamento de DNA/genética , Neoplasias Urológicas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Carcinoma/cirurgia , Feminino , Humanos , Imuno-Histoquímica , Itália , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Nefroureterectomia , Fenótipo , Projetos Piloto , Estudos Retrospectivos , Neoplasias Urológicas/cirurgia , Urotélio/metabolismo
17.
J Pathol ; 255(4): 464-474, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34543445

RESUMO

Lynch syndrome (LS) confers inherited cancer predisposition due to germline mutations in a DNA mismatch repair (MMR) gene, e.g. MSH2. MMR is a repair pathway for removal of base mismatches and insertion/deletion loops caused by endogenous and exogenous factors. Loss of MMR through somatic alteration of the wild-type allele in LS results in defective MMR (dMMR). Lifestyle/environmental factors can modify colorectal cancer risk in sporadic and LS patients. Ethanol and its metabolite acetaldehyde are classified as group one carcinogens, and acetaldehyde causes a range of DNA lesions. However, DNA repair pathways responsible for correcting most of such DNA lesions remain uncharacterised. We hypothesised that MMR plays a role in protecting colorectal epithelium from ethanol/acetaldehyde-induced DNA damage. Here, an LS mouse model (intestinal epithelial conditional-knockout for Msh2) was used to determine if there is a gene-environment interaction between dMMR and ethanol/acetaldehyde that accelerates colorectal tumourigenesis in LS. Mice underwent either long-term ethanol treatment or water treatment. Most ethanol-treated mice demonstrated colonic hyperproliferation and adenoma formation (with some invasive adenocarcinomas) within 6 months (15/23, 65%), compared with one colonic tumour after 15 months in water-treated mice (1/23, 4%) (p < 0.0001, Fisher's exact test). A significantly greater number of dMMR colonic crypt foci precursors were observed in ethanol-treated compared with water-treated mice (p = 0.0029, Student's t-test). Moreover, increased plasma acetaldehyde levels were detected in ethanol-treated compared with water-treated mice (p = 0.0019, Mann-Whitney U-test), along with significantly increased DNA damage response in the colonic epithelium. Long-term ethanol treatment was associated with significantly increased colonic epithelial proliferation and markedly reduced apoptosis in dMMR adenomas, consistent with enhanced survival of aberrant dMMR relative to MMR-proficient colonic epithelium. In conclusion, there is strong evidence for a gene-environment interaction between dMMR and acetaldehyde, causing acceleration of dMMR-driven colonic tumour formation in this LS model, indicating that advice to limit alcohol consumption should be considered for LS patients. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/patologia , Etanol/toxicidade , Interação Gene-Ambiente , Lesões Pré-Cancerosas/patologia , Animais , Carcinógenos/toxicidade , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Lesões Pré-Cancerosas/induzido quimicamente
18.
J Biochem Mol Toxicol ; 36(11): e23183, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35924411

RESUMO

The present study investigated the relationship between MLH1, MSH2, MSH3, and MSH6 polymorphisms and toxicity due to platinum-based doublet chemotherapy for North Indian lung cancer patients. Polymerase chain reaction-restriction fragment length polymorphism technique was used to assess the polymorphism. For MSH2 IVS1 + 9G > C polymorphism variant type genotype reported a 1.4-fold increased risk of anemia (AOR = 1.4; 95% CI = 0.98-1.99; p = 0.04) and decreased risk of developing gastrointestinal toxicity (diarrhea) (AOR = 0.53; 95% CI = 0.28-1.01; p = 0.04). Further, we also reported a 10-fold increased risk of developing severe grade anorexia in combined genotype (GC + CC) (AOR = 9.18; 95% CI = 0.98-86.1; p = 0.05). For MSH2 T > C/-6 polymorphism, variant type reported a 3-fold and 2-fold increased risk of developing severe grade leukopenia (AOR = 3.37; 95% CI = 1.44-7.88; p = 0.005) and neutropenia respectively (AOR = 2.23; 95% CI = 1.07-4.66; p = 0.03). For MSH3 G > A polymorphism, heterozygous (GA) and combined genotype (GA + AA) reported a 7-fold and 6-fold increased risk of developing anemia (AOR = 7.23; 95% CI = 1.51-34.6; p = 0.01, AOR = 6.39; 95% CI = 1.53-26.6; p = 0.01). Our results suggest that polymorphisms in DNA mismatch repair genes are associated with hematological, and gastrointestinal toxicities and might be considered a predictor for pretreatment evaluation in lung cancer patients.


Assuntos
Antineoplásicos , Reparo de Erro de Pareamento de DNA , Neoplasias Pulmonares , Proteína 2 Homóloga a MutS , Compostos de Platina , Humanos , Reparo de Erro de Pareamento de DNA/genética , Proteínas de Ligação a DNA/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteína 2 Homóloga a MutS/genética , Polimorfismo de Nucleotídeo Único , Compostos de Platina/efeitos adversos , Compostos de Platina/uso terapêutico , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Doenças Hematológicas/induzido quimicamente , Gastroenteropatias/induzido quimicamente
19.
Jpn J Clin Oncol ; 52(1): 81-85, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34761252

RESUMO

We report the first pedigree of Lynch syndrome bearing a germ-line MSH2 missense mutation c.1808A>T (Asp603Val). Until now, this missense mutation, in exon 12 of MSH2, was identified as a variant of unknown significance in the International Society for Gastrointestinal Hereditary Tumours database. In vitro induction mutagenesis experiments indicated that the MSH2 mutant protein (Asp603Val) is easily degraded in embryonic stem cells, albeit there is no clinical information concerning this mutant. Our pedigree includes four patients with Lynch syndrome-associated malignancies and clinically matches the Amsterdam II criteria. The proband, a female, first had an endometrial cancer at the age of 49 and then mantle cell lymphoma, colonic and gastric adenocarcinomas and neuroendocrine carcinoma, successively. Her mother also had Lynch syndrome-associated malignancies, including colonic, uterine and gastric cancers, and her elder son had rectal cancer. In the germline of the proband and her son, an MSH2 missense mutation c.1808A>T was discovered. Immunohistochemical analyses indicated that the expression of the MSH2 protein was decreased in the tumors, such as gastric cancer and neuroendocrine carcinoma, due to the missense mutation c.1808A>T. This study showed that the MSH2 missense mutation c.1808A>T (Asp603Val) is a likely pathogenic mutation and is responsible for typical Lynch syndrome-associated malignancies, including neuroendocrine carcinoma.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Colorretais Hereditárias sem Polipose/genética , Feminino , Células Germinativas , Mutação em Linhagem Germinativa , Humanos , Masculino , Pessoa de Meia-Idade , Proteína 1 Homóloga a MutL , Proteína 2 Homóloga a MutS/genética , Mutação de Sentido Incorreto , Linhagem
20.
Hered Cancer Clin Pract ; 20(1): 35, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088367

RESUMO

Lynch Syndrome (LS) is a highly variable entity with some patients presenting at very young ages with malignancy whereas others may never develop a malignancy yet carry an unequivocal genetic predisposition to disease. The most frequent LS malignancy remains colorectal cancer, a disease that is thought to involve genetic as well as environmental factors in its aetiology. Environmental insults are undeniably associated with cancer risk, especially those imparted by such activities as smoking and excessive alcohol consumption. Notwithstanding, in an inherited predisposition the expected exposures to an environmental insult are considered to be complex and require knowledge about the respective exposure and how it might interact with a genetic predisposition. Typically, smoking is one of the major confounders when considering environmental factors that can influence disease expression on a background of significant genetic risk. In addition to environmental triggers, the risk of developing a malignancy for people carrying an inherited predisposition to disease can be influenced by additional genetic factors that do not necessarily segregate with a disease predisposition allele. The purpose of this review is to examine the current state of modifier gene detection in people with a genetic predisposition to develop LS and present some data that supports the notion that modifier genes are gene specific thus explaining why some modifier gene studies have failed to identify associations when this is not taken into account.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa