Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37298571

RESUMO

Protein tyrosine phosphatase 1B (PTP1B) is an enzyme crucially implicated in aberrations of various signaling pathways that underlie the development of different human pathologies, such as obesity, diabetes, cancer, and neurodegenerative disorders. Its inhibition can prevent these pathogenetic events, thus providing a useful tool for the discovery of novel therapeutic agents. The search for allosteric PTP1B inhibitors can represent a successful strategy to identify drug-like candidates by offering the opportunity to overcome some issues related to catalytic site-directed inhibitors, which have so far hampered the development of drugs targeting this enzyme. In this context, trodusquemine (MSI-1436), a natural aminosterol that acts as a non-competitive PTP1B inhibitor, appears to be a milestone. Initially discovered as a broad-spectrum antimicrobial agent, trodusquemine exhibited a variety of unexpected properties, ranging from antidiabetic and anti-obesity activities to effects useful to counteract cancer and neurodegeneration, which prompted its evaluation in several preclinical and clinical studies. In this review article, we provide an overview of the main findings regarding the activities and therapeutic potential of trodusquemine and their correlation with PTP1B inhibition. We also included some aminosterol analogues and related structure-activity relationships that could be useful for further studies aimed at the discovery of new allosteric PTP1B inhibitors.


Assuntos
Neoplasias , Monoéster Fosfórico Hidrolases , Humanos , Hipoglicemiantes/farmacologia , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Descoberta de Drogas , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Inibidores Enzimáticos/farmacologia
2.
Pharmacol Res ; 144: 73-78, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30959160

RESUMO

Protein tyrosine phosphatases (PTPs), which are ubiquitously expressed in hematopoietic and non-hematopoietic cells, are critical for regulating cell proliferation as well as differentiation in the physiology of multicellular organisms. PTPs regulate the intracellular signaling mechanism of immune cells via dephosphorylation of multiple targets and are associated with the onset of various autoimmune diseases through genomic alterations. PTPs also affect disease through their role in innate and/or acquired immunity. By modulating multiple substrates, PTPN12, a member of the proline-, glutamic acid-, serine- and threonine-rich (PEST) family of PTPs, is an important regulator of cell migration and adhesion. According to its newly identified roles and functions, PTPN12 is considered a promising therapeutic target against critical diseases, including cancer, diabetes, metabolic disease and autoimmune diseases. In this review, we provide an overview of PTPs and discuss the critical roles of PTPN12/PTP-PEST in tumor progression.


Assuntos
Neoplasias/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 12/imunologia , Animais , Progressão da Doença , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Humanos , Imunidade/efeitos dos fármacos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 12/análise , Proteína Tirosina Fosfatase não Receptora Tipo 12/antagonistas & inibidores
3.
Cells ; 13(2)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38247843

RESUMO

Equine metabolic syndrome (EMS) is a significant global health concern in veterinary medicine. There is increasing interest in utilizing molecular agents to modulate hepatocyte function for potential clinical applications. Recent studies have shown promising results in inhibiting protein tyrosine phosphatase (PTP1B) to maintain cell function in various models. In this study, we investigated the effects of the inhibitor Trodusquemine (MSI-1436) on equine hepatic progenitor cells (HPCs) under lipotoxic conditions. We examined proliferative activity, glucose uptake, and mitochondrial morphogenesis. Our study found that MSI-1436 promotes HPC entry into the cell cycle and protects them from palmitate-induced apoptosis by regulating mitochondrial dynamics and biogenesis. MSI-1436 also increases glucose uptake and protects HPCs from palmitate-induced stress by reorganizing the cells' morphological architecture. Furthermore, our findings suggest that MSI-1436 enhances 2-NBDG uptake by increasing the expression of SIRT1, which is associated with liver insulin sensitivity. It also promotes mitochondrial dynamics by modulating mitochondria quantity and morphotype as well as increasing the expression of PINK1, MFN1, and MFN2. Our study provides evidence that MSI-1436 has a positive impact on equine hepatic progenitor cells, indicating its potential therapeutic value in treating EMS and insulin dysregulation.


Assuntos
Colestanos , Resistência à Insulina , Síndrome Metabólica , Dinâmica Mitocondrial , Espermina , Animais , Glucose , Cavalos , Insulina/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Palmitatos , Espermina/análogos & derivados , Resistência à Insulina/fisiologia
4.
Front Endocrinol (Lausanne) ; 14: 1149610, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020593

RESUMO

Background: Equine metabolic syndrome (EMS) is a multifactorial pathology gathering insulin resistance, low-grade inflammation and past or chronic laminitis. Among the several molecular mechanisms underlying EMS pathogenesis, increased negative insulin signalling regulation mediated by protein tyrosine phosphatase 1 B (PTP1B) has emerged as a critical axis in the development of liver insulin resistance and general metabolic distress associated to increased ER stress, inflammation and disrupted autophagy. Thus, the use of PTP1B selective inhibitors such as MSI-1436 might be considered as a golden therapeutic tool for the proper management of EMS and associated conditions. Therefore, the present investigation aimed at verifying the clinical efficacy of MSI-1436 systemic administration on liver metabolic balance, insulin sensitivity and inflammatory status in EMS affected horses. Moreover, the impact of MSI-1436 treatment on liver autophagy machinery and associated ER stress in liver tissue has been analysed. Methods: Liver explants isolated from healthy and EMS horses have been treated with MSI-1436 prior to gene and protein expression analysis of main markers mediating ER stress, mitophagy and autophagy. Furthermore, EMS horses have been intravenously treated with a single dose of MSI-1436, and evaluated for their metabolic and inflammatory status. Results: Clinical application of MSI-1436 to EMS horses restored proper adiponectin levels and attenuated the typical hyperinsulinemia and hyperglycemia. Moreover, administration of MSI-1436 further reduced the circulating levels of key pro-inflammatory mediators including IL-1ß, TNF-α and TGF-ß and triggered the Tregs cells activation. At the molecular level, PTP1B inhibition resulted in a noticeable mitigation of liver ER stress, improvement of mitochondrial dynamics and consequently, a regulation of autophagic response. Similarly, short-term ex vivo treatment of EMS liver explants with trodusquemine (MSI-1436) substantially enhanced autophagy by upregulating the levels of HSC70 and Beclin-1 at both mRNA and protein level. Moreover, the PTP1B inhibitor potentiated mitophagy and associated expression of MFN2 and PINK1. Interestingly, inhibition of PTP1B resulted in potent attenuation of ER stress key mediators' expression namely, CHOP, ATF6, HSPA5 and XBP1. Conclusion: Presented findings shed for the first time promising new insights in the development of an MSI-1436-based therapy for proper equine metabolic syndrome intervention and may additionally find potential translational application to human metabolic syndrome treatment.


Assuntos
Resistência à Insulina , Síndrome Metabólica , Animais , Humanos , Autofagia , Inibidores Enzimáticos , Cavalos , Inflamação , Fígado/metabolismo , Síndrome Metabólica/metabolismo , Estresse do Retículo Endoplasmático
5.
Front Immunol ; 13: 1053856, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618415

RESUMO

Immune checkpoint inhibitors represented by PD-1 have greatly changed the way cancer is treated. In addition to PD-1, new immune checkpoints are constantly excavated to better treat cancer. Recently, protein tyrosine phosphatase 1B (PTP1B) was identified as a new immune checkpoint and played a critical role in the treatment of tumors by inhibiting the proliferation and cytotoxicity of T cells induced by tumor antigen. To explore the targeting role of PTP1B in precision tumor therapy, we deeply analyzed the expression and prognosis of PTP1B in all tumors. Survival analysis results indicated that PTP1B was highly expressed in most tumor tissues and indicated poor prognosis in acute-myeloid-leukemia (LAML), brain-lower-grade-glioma (LGG), kidney-renal clear-cell-carcinoma (KIRC) and uveal-melanoma (UVM). The methylation status of PTP1B in these four tumors exhibited hypomethylation and mutation landscape showed that PTP1B had its specific characteristics in genomic instability and heterogeneity. The homologous recombination deficiency (HRD) and loss of heterozygosity (LOH) were positive related to PTP1B expression in liver-hepatocellular-carcinoma (LIHC) and kidney-chromophobe (KICH), while the immunescore and immune infiltration displayed a significant positive correlation with PTP1B expression in LGG and UVM. Drug sensitivity tests showed that the PTP1B inhibitor MSI-1436 had a sensitivity effect suppressing tumor cell viability and suggested it enhanced the efficacy of PD-1 inhibitors in cancers.


Assuntos
Carcinoma Hepatocelular , Glioma , Neoplasias Hepáticas , Melanoma , Humanos , Proteínas de Checkpoint Imunológico/genética , Proteínas de Checkpoint Imunológico/metabolismo , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Multiômica , Melanoma/genética , Carcinoma Hepatocelular/patologia , Glioma/genética , Neoplasias Hepáticas/patologia , Encéfalo/metabolismo , Matriz Extracelular/metabolismo
6.
J Clin Med ; 9(5)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32369900

RESUMO

OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD) is considered a well-known pathology that is determined without using alcohol and has emerged as a growing public health problem. Lipotoxicity is known to promote hepatocyte death, which, in the context of NAFLD, is termed lipoapoptosis. The severity of NAFLD correlates with the degree of hepatocyte lipoapoptosis. Protein-tyrosine phosphatases (PTP) including PTP1B and Low molecular weight PTP (LMPTP), are negative regulators of the insulin signaling pathway and are considered a promising therapeutic target in the treatment of diabetes. In this study, we hypothesized that the inhibition of PTP1B and LMPTP may potentially prevent hepatocyte apoptosis, mitochondrial dysfunction and endoplasmic reticulum (ER) stress onset, following lipotoxicity induced using a free fatty acid (FFA) mixture. METHODS: HepG2 cells were cultured in the presence or absence of two PTP inhibitors, namely MSI-1436 and Compound 23, prior to palmitate/oleate overloading. Apoptosis, ER stress, oxidative stress, and mitochondrial dynamics were then evaluated by either MUSE or RT-qPCR analysis. RESULTS: The obtained data demonstrate that the inhibition of PTP1B and LMPTP prevents apoptosis induced by palmitate and oleate in the HepG2 cell line. Moreover, mitochondrial dynamics were positively improved following inhibition of the enzyme, with concomitant oxidative stress reduction and ER stress abrogation. CONCLUSION: In conclusion, PTP's inhibitory properties may be a promising therapeutic strategy for the treatment of FFA-induced lipotoxicity in the liver and ultimately in the management of the NAFLD condition.

7.
Trends Neurosci ; 38(8): 462-5, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26166619

RESUMO

Chronic stress can lead to the development of anxiety and mood disorders. Thus, novel therapies for preventing adverse effects of stress are vitally important. Recently, the protein tyrosine phosphatase PTP1B was identified as a novel regulator of stress-induced anxiety. This opens up exciting opportunities to exploit PTP1B inhibitors as anxiolytics.


Assuntos
Tonsila do Cerebelo/metabolismo , Ansiedade/metabolismo , Endocanabinoides/metabolismo , Transdução de Sinais , Estresse Psicológico/metabolismo , Animais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa