Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 47(17): 4674-4681, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-36164874

RESUMO

This study aims to decipher the mechanism underlying the effect of Shaofu Zhuyu Decoction on endometriosis(EMT)-associated dysmenorrhea in rats with the syndrome of cold coagulation and blood stasis based on mitogen-and stress-activated protein kinase 1/2(MSK1/2).We employed a random number table to randomly assign SPF female non-pregnant rats into the sham group, and treated the rest rats with autologous transplantation+refrigerator freezing for the modeling of the syndrome of cold coagulation and blood stasis.The modeled rats were then randomly assigned into the control group and high-, medium-and low-dose Shaofu Zhuyu Decoction groups.The rats in the low-, medium-, and high-dose decoction groups were respectively administrated with 9, 4.5, and 2.3 g·kg~(-1) decoction through gavage once a day for 2 consecutive weeks, and those in the control group were administrated with 0.24 mg·kg~(-1) gestrinone through gavage once every 3 days for 2 weeks.After that, the size of ectopic focus in each rat was measured via laparotomy.Enzyme-linked immunosorbent assay(ELISA) was adopted to determine the expression of interleukin(IL)-6, IL-10, prostaglandin E2(PGE2), tumor necrosis factor-α(TNF-α).Western blot was employed to determine the protein levels of MSK1/2 and dual-specificity phosphatase 1(DUSP1) and real-time quantitative polymerase chain reaction(RT-PCR) to determine the mRNA levels of the two genes in rat eutopic endometrial tissue.Compared with the sham group, the model group showed increased levels of IL-6, PGE2, and TNF-α while decrease level of IL-10 in the serum(P<0.01).Compared with the model group, the high-and medium-dose decoction groups and the gestrinone group had declined levels of IL-6, PGE2, and TNF-α while risen level of IL-10 in the serum(P<0.01).The model group had lower protein levels and mRNA levels of MSK1/2 and DUSP1 in the eutopic endometrial tissue than the sham group(P<0.01). The high-and medium-dose decoction groups and the gestrinone group had higher protein and mRNA levels of MSK1/2 and DUSP1 in the eutopic endometrial tissue than the model group(P<0.01).The results indicated that Shaofu Zhuyu Decoction can regulate the abnormal expression of pro-inflammatory cytokines TNF-α, IL-6, and PGE2 and anti-inflammatory cytokines IL-10 and DUSP1 via MSK1/2 to alleviate EMT-associated dysmenorrhea in rats with the syndrome of cold coagulation and blood stasis.


Assuntos
Medicamentos de Ervas Chinesas , Endometriose , Animais , Feminino , Ratos , Anti-Inflamatórios/uso terapêutico , Citocinas , Dinoprostona , Medicamentos de Ervas Chinesas/uso terapêutico , Fosfatases de Especificidade Dupla , Dismenorreia/tratamento farmacológico , Dismenorreia/genética , Endometriose/complicações , Endometriose/tratamento farmacológico , Endometriose/genética , Gestrinone/uso terapêutico , Interleucina-10 , Interleucina-6 , Proteína Quinase 8 Ativada por Mitógeno/uso terapêutico , Mitógenos/uso terapêutico , RNA Mensageiro , Fator de Necrose Tumoral alfa/metabolismo
2.
J Cell Biochem ; 120(7): 11432-11440, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30756420

RESUMO

Patients with cervical cancer have abnormal cell proliferation and invasion after many years of latency. However, the precise mechanisms remain unclear. Mitogen- and stress-activated kinase 2 (MSK2) is a serine/threonine kinase which displays a phenotype that promotes tumor growth and metastasis in many different types of tumors. The aim of the present study was to determine the effects of MSK2 on the proliferation of cervical cancer cells and elucidate the signaling pathways through which MSK2 exerts its effects in the pathogenesis of squamous cell carcinoma (SCC). Our results confirmed that MSK2 expression was significantly upregulated in cervical cancer cells both in vivo and in vitro. We further found that the expression patterns of paired-box gene 8 (PAX8) and MSK2 were positively correlated in cervical cancer specimens. Moreover, MSK2 knockdown inhibited the phosphorylation of PAX8 and retinoblastoma protein (RB), and suppressed the sequential expressions of cell proliferation factors E2F1 and cyclin A2, resulting in the inhibition of SCC cell proliferation and tumor formation. Thus, this study demonstrates that MSK2 has oncogenic effects in the formation and development of SCC via the PAX8/RB-E2F1/cyclin A2 axis.

3.
Cancer Cell Int ; 19: 342, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31889894

RESUMO

BACKGROUND: As a novel type of isothiocyanate derived from radish seeds from cruciferous vegetables, sulforaphene (SFE, 4-methylsufinyl-3-butenyl isothiocyanate) has various important biological effects, such as anti-oxidative and anti-bacterial effects. Recently, sulforaphene has attracted increasing attention for its anti-tumor effects and its ability to suppress the development of multiple tumors through different regulatory mechanisms. However, it has not yet been widely investigated for the treatment of esophageal cancer. METHODS: We observed an increased apoptosis in esophageal cancer cells on sulforaphene treatment through flow cytometry (FCM) analysis and transmission electron microscopy (TEM). Through mass spectrometry (MS) analysis, we further detected global changes in the proteomes and phosphoproteomes of esophageal cancer cells on sulforaphene treatment. The molecular mechanism of sulforaphene was verified by western blot,the effect and mechanism of SFE on esophageal cancer was further verified by patient-derived xenograft mouse model. RESULTS: We identified multiple cellular processes that were changed after sulforaphene treatment by proteomics. We found that sulforaphene could repress the phosphorylation of CREB through MSK2, leading to suppression of Bcl-2 and further promoted cell apoptosis. Additionally, we confirmed that sulforaphene induces tumor cell apoptosis in mice. Interestingly, we also observed the obvious inhibition of cell migration and invasion caused by sulforaphene treatment by inhibiting the expression of cadherin, indicating the complex effects of sulforaphene on the development of esophageal cancer. CONCLUSIONS: Our data demonstrated that sulforaphene induced cell apoptosis and inhibits the invasion of esophageal cancer through a mechanism involving the inhibition of the MSK2-CREB-Bcl2 and cadherin pathway. Sulforaphene could therefore serve as a promising anti-tumor drug for the treatment of esophageal cancer.

4.
Am J Cancer Res ; 13(10): 4708-4720, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37970356

RESUMO

BACKGROUND: Although sulforaphene has potential anticancer effects, little is known about its effect on oesophageal squamous cell carcinoma (ESCC) invasiveness. METHODS: To investigate whether sulforaphene inhibits the growth of oesophageal cancer cells, MTT and anchorage-independent cell growth assays were performed. Global changes in the proteome and phosphoproteome of oesophageal cancer cells after sulforaphene treatment were analysed by mass spectrometry (MS), and the underlying molecular mechanism was further verified by in vivo and in vitro experiments. RESULTS: Sulforaphene treatment markedly affected proteins that regulate several cellular processes in oesophageal cancer cells, and mitogen- and stress-activated kinase 2 (MSK2) was the main genetic target of sulforaphene in reducing the growth of oesophageal cancer cells. Sulforaphene significantly suppressed ESCC cell proliferation in vitro and reduced the tumour size in an oesophageal patient-derived xenograft (PDX) SCID mouse model. Furthermore, the binding of sulforaphane to MSK2 in vitro was verified using a cellular thermal dhift assay, and the effect of MSK2 knockdown on the ESCC phenotype was observed using a shMSK2 model. CONCLUSION: The results showed that sulforaphene suppresses ESCC growth in both human oesophageal squamous cells and PDX mouse model by inhibiting MSK2 expression, implicating sulforaphene as a promising candidate for ESCC treatment.

5.
Mol Cell Biol ; 37(1)2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27795299

RESUMO

Autocrine or paracrine signaling by beta interferon (IFN-ß) is essential for many of the responses of macrophages to pathogen-associated molecular patterns. This feedback loop contributes to pathological responses to infectious agents and is therefore tightly regulated. We demonstrate here that macrophage expression of IFN-ß is negatively regulated by mitogen- and stress-activated kinases 1 and 2 (MSK1/2). Lipopolysaccharide (LPS)-induced expression of IFN-ß was elevated in both MSK1/2 knockout mice and macrophages. Although MSK1 and -2 promote the expression of the anti-inflammatory cytokine interleukin 10, it did not strongly contribute to the ability of MSKs to regulate IFN-ß expression. Instead, MSK1 and -2 inhibit IFN-ß expression via the induction of dual-specificity phosphatase 1 (DUSP1), which dephosphorylates and inactivates the mitogen-activated protein kinases p38 and Jun N-terminal protein kinase (JNK). Prolonged LPS-induced activation of p38 and JNK, phosphorylation of downstream transcription factors, and overexpression of IFN-ß mRNA and protein were similar in MSK1/2 and DUSP1 knockout macrophages. Two distinct mechanisms were implicated in the overexpression of IFN-ß: first, JNK-mediated activation of c-jun, which binds to the IFN-ß promoter, and second, p38-mediated inactivation of the mRNA-destabilizing factor tristetraprolin, which we show is able to target the IFN-ß mRNA.


Assuntos
Interferon beta/metabolismo , Macrófagos/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Tristetraprolina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Comunicação Celular , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-10/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Fosforilação , Transdução de Sinais/efeitos dos fármacos
6.
Front Cell Dev Biol ; 4: 56, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27376065

RESUMO

Mitogen- and stress-activated kinases (MSK) 1 and 2 are nuclear proteins activated downstream of the ERK1/2 or p38 MAPK pathways. MSKs phosphorylate multiple substrates, including CREB and Histone H3, and their major role is the regulation of specific subsets of Immediate Early genes (IEG). While MSKs are expressed in multiple tissues, their levels are high in immune and neuronal cells and it is in these systems most is known about their function. In immunity, MSKs have predominantly anti-inflammatory roles and help regulate production of the anti-inflammatory cytokine IL-10. In the CNS they are implicated in neuronal proliferation and synaptic plasticity. In this review we will focus on recent advances in understanding the roles of MSKs in the innate immune system and neuronal function.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa