Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Am J Med Genet A ; 191(6): 1492-1501, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36883293

RESUMO

Although decreased citrulline is used as a newborn screening (NBS) marker to identify proximal urea cycle disorders (UCDs), it is also a feature of some mitochondrial diseases, including MT-ATP6 mitochondrial disease. Here we describe biochemical and clinical features of 11 children born to eight mothers from seven separate families who were identified with low citrulline by NBS (range 3-5 µM; screening cutoff >5) and ultimately diagnosed with MT-ATP6 mitochondrial disease. Follow-up testing revealed a pattern of hypocitrullinemia together with elevated propionyl-(C3) and 3-hydroxyisovaleryl-(C5-OH) acylcarnitines, and a homoplasmic pathogenic variant in MT-ATP6 in all cases. Single and multivariate analysis of NBS data from the 11 cases using Collaborative Laboratory Integrated Reports (CLIR; https://clir.mayo.edu) demonstrated citrulline <1st percentile, C3 > 50th percentile, and C5-OH >90th percentile when compared with reference data, as well as unequivocal separation from proximal UCD cases and false-positive low citrulline cases using dual scatter plots. Five of the eight mothers were symptomatic at the time of their child(ren)'s diagnosis, and all mothers and maternal grandmothers evaluated molecularly and biochemically had a homoplasmic pathogenic variant in MT-ATP6, low citrulline, elevated C3, and/or elevated C5-OH. All molecularly confirmed individuals (n = 17) with either no symptoms (n = 12), migraines (n = 1), or a neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP) phenotype (n = 3) were found to have an A or U mitochondrial haplogroup, while one child with infantile-lethal Leigh syndrome had a B haplogroup.


Assuntos
Doenças Mitocondriais , ATPases Mitocondriais Próton-Translocadoras , Triagem Neonatal , Humanos , Recém-Nascido , ATPases Mitocondriais Próton-Translocadoras/genética , Doenças Mitocondriais/sangue , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Citrulina/sangue , Linhagem , Distúrbios Congênitos do Ciclo da Ureia/diagnóstico
2.
Acta Neurol Scand ; 145(4): 414-422, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34877647

RESUMO

OBJECTIVES: Mitochondrial DNA (mtDNA)-associated Leigh syndrome (LS) is characterized by maternal inheritance, and the heteroplasmic mutant load of mtDNA pathogenic variants is known to affect clinical phenotypes. Among mtDNA pathogenic variants, variants of the MT-ATP6 gene account for most of reported cases. In this report, we aimed to describe the clinical and genetic findings of MT-ATP6-associated LS patients diagnosed at a single tertiary institution in Korea. METHODS: Thirteen patients with genetically confirmed MT-ATP6-associated LS were selected. We reviewed each patient's clinical findings, including general characteristics, biochemical parameters, brain MR images, muscle biopsy results, and heteroplasmic mutant load over a long-term follow-up period. RESULTS: MT-ATP6-associated LS was of predominantly early onset (age <2 years), although we identified 2 late-onset (>60 months) LS patients. The heteroplasmic mutant load estimated by next-generation sequencing was 96%-100% in all nucleotide change groups. Compared with other forms of MT-ATP6-associated LS, the m.8993T>G point mutation elicited a significantly higher rate of symptom onset before 2 years of age. Brain MRI showed bilateral basal ganglia involvement in all patients, followed by cerebral atrophy, brainstem and thalamus involvement, and cerebellar atrophy. After follow-up (median 7.2 years, range 1.4 to 11.5 years), LS with m.8993T>G point mutations had a slightly more severe clinical progression compared with other forms of MT-ATP6-associated LS. CONCLUSIONS: MT-ATP6-associated LS patients presented with a broad spectrum of clinical diagnoses and had a very high heteroplasmic mutant load. This study provides valuable data on MT-ATP6-associated LS that will inform subsequent studies on LS.


Assuntos
Doença de Leigh , Criança , Pré-Escolar , DNA Mitocondrial/genética , Genótipo , Humanos , Doença de Leigh/diagnóstico por imagem , Doença de Leigh/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Mutação/genética , Fenótipo
3.
J Formos Med Assoc ; 121(11): 2345-2350, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34953645

RESUMO

Episodic weakness is typically associated with a group of disorders so called periodic paralyses. Their major causes are mutation of ion channels, and have rarely been linked to mitochondrial disorders. We report a 20-year-old man with episodic weakness and axonal sensorimotor neuropathy since the age of 10 years. Analysis of the next generation sequencing data of the entire mitochondrial genome extracted from the blood revealed a homoplasmic m.9185T > C variant in MT-ATP6. Acetazolamide may be responsive for episodic weakness, and supplements with l-carnitine with coenzyme-Q10 seem to be beneficial as well. To the best of our knowledge, this is the first report in Taiwan which reveals episodic weakness and sensorimotor polyneuropathy as a unique phenotype of MT-ATP6 mutations.


Assuntos
ATPases Mitocondriais Próton-Translocadoras , Doenças do Sistema Nervoso Periférico , Humanos , Acetazolamida , Carnitina , Coenzimas/genética , DNA Mitocondrial/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Mutação , Masculino , Adulto Jovem
4.
Biochim Biophys Acta Bioenerg ; 1859(8): 602-611, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29778688

RESUMO

The ATP synthase which provides aerobic eukaryotes with ATP, organizes into a membrane-extrinsic catalytic domain, where ATP is generated, and a membrane-embedded FO domain that shuttles protons across the membrane. We previously identified a mutation in the mitochondrial MT-ATP6 gene (m.8969G>A) in a 14-year-old Chinese female who developed an isolated nephropathy followed by brain and muscle problems. This mutation replaces a highly conserved serine residue into asparagine at amino acid position 148 of the membrane-embedded subunit a of ATP synthase. We showed that an equivalent of this mutation in yeast (aS175N) prevents FO-mediated proton translocation. Herein we identified four first-site intragenic suppressors (aN175D, aN175K, aN175I, and aN175T), which, in light of a recently published atomic structure of yeast FO indicates that the detrimental consequences of the original mutation result from the establishment of hydrogen bonds between aN175 and a nearby glutamate residue (aE172) that was proposed to be critical for the exit of protons from the ATP synthase towards the mitochondrial matrix. Interestingly also, we found that the aS175N mutation can be suppressed by second-site suppressors (aP12S, aI171F, aI171N, aI239F, and aI200M), of which some are very distantly located (by 20-30 Å) from the original mutation. The possibility to compensate through long-range effects the aS175N mutation is an interesting observation that holds promise for the development of therapeutic molecules.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/patologia , Doenças Mitocondriais/patologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mutação , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Mitocôndrias/metabolismo , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/genética , Conformação Proteica , Subunidades Proteicas , Prótons , Saccharomyces cerevisiae/crescimento & desenvolvimento , Homologia de Sequência
5.
Mol Genet Metab ; 124(1): 71-81, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29602698

RESUMO

In this study, we report a novel perpective of metabolic consequences for the m.8993T>G variant using fibroblasts from a proband with clinical symptoms compatible with Maternally Inherited Leigh Syndrome (MILS). Definitive diagnosis was corroborated by mitochondrial DNA testing for the pathogenic variant m.8993T>G in MT-ATP6 subunit by Sanger sequencing. The long-range PCR followed by massively parallel sequencing method detected the near homoplasmic m.8993T>G variant at 83% in the proband's fibroblasts and at 0.4% in the mother's fibroblasts. Our results are compatible with very low levels of germline heteroplasmy or an apparent de novo mutation. Our mitochondrial morphometric analysis reveals severe defects in mitochondrial cristae structure in the proband's fibroblasts. Our live-cell mitochondrial respiratory analyses show impaired oxidative phosphorylation with decreased spare respiratory capacity in response to energy stress in the proband's fibroblasts. We detected a diminished glycolysis with a lessened glycolytic capacity and reserve, revealing a stunted ability to switch to glycolysis upon full inhibition of OXPHOS activities. This dysregulated energy reprogramming results in a defective interplay between OXPHOS and glycolysis during an energy crisis. Our study sheds light on the potential pathophysiologic mechanism leading to chronic energy crisis in this MILS patient harboring the m.8993T>G variant.


Assuntos
Fibroblastos/metabolismo , Doença de Leigh/genética , Doença de Leigh/fisiopatologia , ATPases Mitocondriais Próton-Translocadoras/genética , DNA Mitocondrial/genética , Metabolismo Energético , Feminino , Fibroblastos/citologia , Glicólise , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Doença de Leigh/diagnóstico , Masculino , Mitocôndrias/metabolismo , Mães , Mutação , Fosforilação Oxidativa , Linhagem , Adulto Jovem
6.
Biochem Biophys Res Commun ; 473(2): 578-85, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-27033601

RESUMO

Mitochondrial diseases are a heterogeneous group of disorders caused by the impairment of the mitochondrial oxidative phosphorylation system which have been associated with various mutations of the mitochondrial DNA (mtDNA) and nuclear gene mutations. The clinical phenotypes are very diverse and the spectrum is still expanding. As brain and muscle are highly dependent on OXPHOS, consequently, neurological disorders and myopathy are common features of mtDNA mutations. Mutations in mtDNA can be classified into three categories: large-scale rearrangements, point mutations in tRNA or rRNA genes and point mutations in protein coding genes. In the present report, we screened mitochondrial genes of complex I, III, IV and V in 2 patients with mitochondrial neuromuscular disorders. The results showed the presence the pathogenic heteroplasmic m.9157G>A variation (A211T) in the MT-ATP6 gene in the first patient. We also reported the first case of triplication of 9 bp in the mitochondrial NC7 region in Africa and Tunisia, in association with the novel m.14924T>C in the MT-CYB gene in the second patient with mitochondrial neuromuscular disorder.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Doenças Neuromusculares/genética , Sequência de Aminoácidos , Sequência de Bases , Criança , Citocromos b/química , Citocromos b/genética , Feminino , Genes Mitocondriais , Humanos , Masculino , Mitocôndrias/patologia , Doenças Mitocondriais/patologia , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/genética , Dados de Sequência Molecular , Mutação , Doenças Neuromusculares/patologia , Mutação Puntual
7.
Genomics ; 102(3): 148-56, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23631824

RESUMO

Mitochondrial diseases are notoriously difficult to diagnose due to extreme locus and allelic heterogeneity, with both nuclear and mitochondrial genomes potentially liable. Using exome sequencing we demonstrate the ability to rapidly and cost effectively evaluate both the nuclear and mitochondrial genomes to obtain a molecular diagnosis for four patients with three distinct mitochondrial disorders. One patient was found to have Leigh syndrome due to a mutation in MT-ATP6, two affected siblings were discovered to be compound heterozygous for mutations in the NDUFV1 gene, which causes mitochondrial complex I deficiency, and one patient was found to have coenzyme Q10 deficiency due to compound heterozygous mutations in COQ2. In all cases conventional diagnostic testing failed to identify a molecular diagnosis. We suggest that additional studies should be conducted to evaluate exome sequencing as a primary diagnostic test for mitochondrial diseases, including those due to mtDNA mutations.


Assuntos
Exoma , Genoma Mitocondrial , Doenças Mitocondriais/diagnóstico , Análise de Sequência de RNA , Ataxia/diagnóstico , Ataxia/genética , Pré-Escolar , Complexo I de Transporte de Elétrons/deficiência , Complexo I de Transporte de Elétrons/genética , Feminino , Variação Genética , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Doença de Leigh/diagnóstico , Doença de Leigh/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Técnicas de Diagnóstico Molecular , Debilidade Muscular/diagnóstico , Debilidade Muscular/genética , Linhagem , Análise de Sequência de DNA , Ubiquinona/deficiência , Ubiquinona/genética
8.
Am J Ophthalmol Case Rep ; 34: 102070, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38756953

RESUMO

Purpose: To describe a case with Leber's hereditary optic neuropathy (LHON) like optic atrophy in the presence of MT-ATP6 gene variant m.8969G > A. Observations: A 20-year-old patient with a history of mild developmental delay, mild cognitive impairment, and positional tremor presented with subacute painless visual loss over a few weeks. Mitochondrial genome sequencing revealed a variant in MT-ATP6, m.8969G > A (p.Ser148Asn). This variant was previously reported in association with mitochondrial myopathy, lactic acidosis, and sideroblastic anemia (MLASA) and with nephropathy, followed by brain atrophy, muscle weakness and arrhythmias, but not with optic atrophy. Conclusions and importance: Rare variants in MT-ATP6 can also cause LHON like optic atrophy. It is important to perform further genetic analysis of mitochondrial DNA in genetically unsolved cases suspected of Leber's hereditary optic neuropathy to confirm the clinical diagnosis.

9.
Front Cell Infect Microbiol ; 14: 1413103, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113822

RESUMO

Background: Sepsis represents a severe manifestation of infection often accompanied by metabolic disorders and mitochondrial dysfunction. Notably, mitochondrial DNA copy number (mtDNA-CN) and the expression of specific mitochondrial genes have emerged as sensitive indicators of mitochondrial function. To investigate the utility of mitochondrial gene expression in peripheral blood cells for distinguishing severe infections and predicting associated outcomes, we conducted a prospective cohort study. Methods: We established a prospective cohort comprising 74 patients with non-sepsis pneumonia and 67 cases of sepsis induced by respiratory infections, aging from 2 to 6 years old. We documented corresponding clinical data and laboratory information and collected blood samples upon initial hospital admission. Peripheral blood cells were promptly isolated, and both total DNA and RNA were extracted. We utilized absolute quantification PCR to assess mtDNA-CN, as well as the expression levels of mt-CO1, mt-ND1, and mt-ATP6. Subsequently, we extended these comparisons to include survivors and non-survivors among patients with sepsis using univariate and multivariate analyses. Receiver operating characteristic (ROC) curves were constructed to assess the diagnostic potential. Results: The mtDNA-CN in peripheral blood cells was significantly lower in the sepsis group. Univariate analysis revealed a significant reduction in the expression of mt-CO1, mt-ND1, and mt-ATP6 in patients with sepsis. However, multivariate analysis did not support the use of mitochondrial function in peripheral blood cells for sepsis diagnosis. In the comparison between pediatric sepsis survivors and non-survivors, univariate analysis indicated a substantial reduction in the expression of mt-CO1, mt-ND1, and mt-ATP6 among non-survivors. Notably, total bilirubin (TB), mt-CO1, mt-ND1, and mt-ATP6 levels were identified as independent risk factors for sepsis-induced mortality. ROC curves were then established for these independent risk factors, revealing areas under the curve (AUCs) of 0.753 for TB (95% CI 0.596-0.910), 0.870 for mt-CO1 (95% CI 0.775-0.965), 0.987 for mt-ND1 (95% CI 0.964-1.000), and 0.877 for mt-ATP6 (95% CI 0.793-0.962). Conclusion: MtDNA-CN and mitochondrial gene expression are closely linked to the severity and clinical outcomes of infectious diseases. Severe infections lead to impaired mitochondrial function in peripheral blood cells. Notably, when compared to other laboratory parameters, the expression levels of mt-CO1, mt-ND1, and mt-ATP6 demonstrate promising potential for assessing the prognosis of pediatric sepsis.


Assuntos
DNA Mitocondrial , Curva ROC , Sepse , Humanos , Sepse/sangue , Sepse/diagnóstico , Sepse/mortalidade , Pré-Escolar , Feminino , Masculino , DNA Mitocondrial/genética , Estudos Prospectivos , Prognóstico , Criança , Mitocôndrias/genética , Mitocôndrias/metabolismo , NADH Desidrogenase/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Células Sanguíneas/metabolismo , Genes Mitocondriais , Expressão Gênica , Pneumonia/diagnóstico , Pneumonia/sangue , Valor Preditivo dos Testes
10.
Orphanet J Rare Dis ; 19(1): 200, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755691

RESUMO

BACKGROUND: MT-ATP6 is a mitochondrial gene which encodes for the intramembrane subunit 6 (or A) of the mitochondrial ATP synthase, also known asl complex V, which is involved in the last step of oxidative phosphorylation to produce cellular ATP through aerobic metabolism. Although classically associated with the NARP syndrome, recent evidence highlights an important role of MT-ATP6 pathogenic variants in complicated adult-onset ataxias. METHODS: We describe two unrelated patients with adult-onset cerebellar ataxia associated with severe optic atrophy and mild cognitive impairment. Whole mitochondrial DNA sequencing was performed in both patients. We employed patients' primary fibroblasts and cytoplasmic hybrids (cybrids), generated from patients-derived cells, to assess the activity of respiratory chain complexes, oxygen consumption rate (OCR), ATP production and mitochondrial membrane potential. RESULTS: In both patients, we identified the same novel m.8777 T > C variant in MT-ATP6 with variable heteroplasmy level in different tissues. We identifed an additional heteroplasmic novel variant in MT-ATP6, m.8879G > T, in the patients with the most severe phenotype. A significant reduction in complex V activity, OCR and ATP production was observed in cybrid clones homoplasmic for the m.8777 T > C variant, while no functional defect was detected in m.8879G > T homoplasmic clones. In addition, fibroblasts with high heteroplasmic levelsof m.8777 T > C variant showed hyperpolarization of mitochondrial membranes. CONCLUSIONS: We describe a novel pathogenic mtDNA variant in MT-ATP6 associated with adult-onset ataxia, reinforcing the value of mtDNA screening within the diagnostic workflow of selected patients with late onset ataxias.


Assuntos
ATPases Mitocondriais Próton-Translocadoras , Humanos , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Ataxia/genética , Ataxia/patologia , Itália , DNA Mitocondrial/genética , Adulto , Fibroblastos/metabolismo , Fibroblastos/patologia
11.
J Mol Neurosci ; 73(4-5): 214-224, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36930427

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disability that causes social impairment, debilitated verbal or nonverbal conversation, and restricted/repeated behavior. Recent research reveals that mitochondrial dysfunction and oxidative stress might play a pivotal role in ASD condition. The goal of this case-control study was to investigate oxidative stress and related alterations in ASD patients. In addition, the impact of mitochondrial DNA (mtDNA) mutations, particularly MT-ATP6, and its link with oxidative stress in ASD was studied. We found that ASD patient's plasma had lower superoxide dismutase (SOD) and higher catalase (CAT) activity, resulting in lower SOD/CAT ratio. MT-ATP6 mutation analysis revealed that four variations, 8865 G>A, 8684 C>T, 8697 G>A, and 8836 A>G, have a frequency of more than 10% with missense and synonymous (silent) mutations. It was observed that abnormalities in mitochondrial complexes (I, III, V) are more common in ASD, and it may have resulted in MT-ATP6 changes or vice versa. In conclusion, our findings authenticate that oxidative stress and genetics both have an equal and potential role behind ASD and we recommend to conduct more such concurrent research to understand their unique mechanism for better diagnosis and therapeutic for ASD.


Assuntos
Transtorno do Espectro Autista , Humanos , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Estudos de Casos e Controles , Índia , DNA Mitocondrial/genética , Estresse Oxidativo , Antioxidantes , Superóxido Dismutase , ATPases Mitocondriais Próton-Translocadoras/genética
12.
Front Pediatr ; 11: 1046731, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814591

RESUMO

Background: Leigh syndrome (LS; OMIM: 256000) is a progressive neurodegenerative disease caused by genetic mutations resulting in mitochondrial oxidative phosphorylation defects. The prognosis is poor, with most children dying before the age of 2 years. MT-ATP6 variants are the most common mitochondrial DNA mutations in LS. MT-ATP6 variant-induced LS may trigger autoimmunity, and immunotherapy might be effective. Here, we present the first pediatric case of anti-aquaporin 4 (AQP4)-IgG-positive LS caused by an MT-ATP6 variant. Case: A 1-year-old boy was hospitalized due to recurrent fever, cough, and developmental regression. Two months previously, he had developed reduced responses to stimulation and psychomotor retardation. After admission, his condition deteriorated and respiratory failure ensued. Magnetic resonance imaging of the brain showed symmetrical small patchy abnormal signals around the third ventricle, pons, and dorsal periaqueductal gray matter in the dorsal medulla. Laboratory tests revealed anti-AQP4-IgG antibodies. Anti-infection, immunoglobulin, and glucocorticoid therapy were administered for symptomatic treatment. Genetic testing revealed a de novo homogeneous pathogenic variant of MT-ATP6 (m.9176T > C, mutation ratio: 99.97%). The patient was diagnosed with anti-AQP4-IgG-positive LS, treated with "cocktail therapy" (vitamins B1, B2, C, and E, l-carnitine, and coenzyme Q10), and discharged after his condition improved. A literature review revealed that LS-induced mitochondrial defects can impact the immune system; hence, immunotherapy and early mitochondrial cocktail therapy may improve outcomes. Conclusion: Anti-AQP4-IgG-positive LS is very rare. Patients with LS with the m.9176T > C variant of MT-ATP6 may be susceptible to autoimmune damage of the central nervous system. Early cocktail therapy combined with immunotherapy may improve their prognosis.

13.
Dis Model Mech ; 16(4)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37083953

RESUMO

The list of mitochondrial DNA (mtDNA) variants detected in individuals with neurodegenerative diseases is constantly growing. Evaluating their functional consequences and pathogenicity is not easy, especially when they are found in only a limited number of patients together with wild-type mtDNA (heteroplasmy). Owing to its amenability to mitochondrial genetic transformation and incapacity to stably maintain heteroplasmy, and the strong evolutionary conservation of the proteins encoded in mitochondria, Saccharomyces cerevisiae provides a convenient model to investigate the functional consequences of human mtDNA variants. We herein report the construction and energy-transducing properties of yeast models of eight MT-ATP6 gene variants identified in patients with various disorders: m.8843T>C, m.8950G>A, m.9016A>G, m.9025G>A, m.9029A>G, m.9058A>G, m.9139G>A and m.9160T>C. Significant defect in growth dependent on respiration and deficits in ATP production were observed in yeast models of m.8950G>A, m.9025G>A and m.9029A>G, providing evidence of pathogenicity for these variants. Yeast models of the five other variants showed very mild, if any, effect on mitochondrial function, suggesting that the variants do not have, at least alone, the potential to compromise human health.


Assuntos
Saccharomyces cerevisiae , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mutação/genética , Saccharomyces cerevisiae/metabolismo , Virulência
14.
Methods Mol Biol ; 2497: 221-242, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35771445

RESUMO

Numerous diseases in humans have been associated with mutations of the mitochondrial genome (mtDNA). This genome encodes 13 protein subunits of complexes involved in oxidative phosphorylation (OXPHOS), a process that provides aerobic eukaryotes with the energy-rich adenosine triphosphate molecule (ATP). Mutations of the mtDNA may therefore have dramatic consequences especially in tissues and organs with high energy demand. Evaluating the pathogenicity of these mutations may be difficult because they often affect only a fraction of the numerous copies of the mitochondrial genome (up to several thousands in a single cell), which is referred to as heteroplasmy. Furthermore, due to its exposure to reactive oxygen species (ROS) produced in mitochondria, the mtDNA is prone to mutations, and some may be simply neutral polymorphisms with no detrimental consequences on human health. Another difficulty is the absence of methods for genetically transforming human mitochondria. Face to these complexities, the yeast Saccharomyces cerevisiae provides a convenient model for investigating the consequences of human mtDNA mutations in a defined genetic background. Owing to its good fermentation capacity, it can survive the loss of OXPHOS, its mitochondrial genome can be manipulated, and genetic heterogeneity in its mitochondria is unstable. Taking advantage of these unique attributes, we herein describe a method we have developed for creating yeast models of mitochondrial ATP6 gene mutations detected in patients, to determine how they impact OXPHOS. Additionally, we describe how these models can be used to discover molecules with therapeutic potential.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Genes Mitocondriais , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Virulência
15.
Cells ; 11(3)2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-35159298

RESUMO

Human mitochondrial disease exhibits large variation of clinical phenotypes, even in patients with the same causative gene defect. We illustrate this heterogeneity by confronting clinical and biochemical data of two patients with the uncommon pathogenic homoplasmic NC_012920.1(MT-ATP6):m.9035T>C variant in MT-ATP6. Patient 1 presented as a toddler with severe motor and speech delay and spastic ataxia without extra-neurologic involvement. Patient 2 presented in adolescence with ataxia and ophthalmoplegia without cognitive or motor impairment. Respiratory chain complex activities were normal in cultured skin fibroblasts from both patients when calculated as ratios over citrate synthase activity. Native gels found presence of subcomplexes of complex V in fibroblast and/or skeletal muscle. Bioenergetic measurements in fibroblasts from both patients detected reduced spare respiratory capacities and altered extracellular acidification rates, revealing a switch from mitochondrial respiration to glycolysis to uphold ATP production. Thus, in contrast to the differing disease presentation, biochemical evidence of mitochondrial deficiency turned out quite similar. We conclude that biochemical analysis remains a valuable tool to confirm the genetic diagnosis of mitochondrial disease, especially in patients with new gene variants or atypical clinical presentation.


Assuntos
Doenças Mitocondriais , ATPases Mitocondriais Próton-Translocadoras , Adolescente , Ataxia/genética , Genótipo , Humanos , Lactente , Doenças Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Mutação/genética , Fenótipo
16.
Ann Clin Transl Neurol ; 8(3): 704-710, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33476484

RESUMO

The study aims to characterize the epilepsy phenotype of maternally inherited Leigh's syndrome (MILS) and neuropathy, ataxia, retinitis pigmentosa (NARP) due to mutations in the mitochondrial ATP6 gene and to correlate electroclinical features with mutant heteroplasmy load (HL). We investigated 17 individuals with different phenotype, from asymptomatic carriers to MILS: 11 carried the m.8993T> G mutation, 5 the m.8993T> C and one the novel, de novo m.8858G> A mutation. Seizures occurred in 37.5% of patients, EEG abnormalities in 73%. We ranked clinical and EEG abnormalities severity and performed quantitative EEG to estimate Abnormality Ratio (AR) and Spectral Relative Power (SRP). Spearman's rho and Kruskal-Wallis test were used for correlation with heteroplasmy load (HL). HL correlated with disease severity (Rho = 0.63, P = 0.012) and was significantly higher in patients with seizures or EEG abnormalities (P = 0.014). HL correlated with EEG severity score only for the m.8993T> G (Rho = 0.73, P = 0.040), showing a trend toward a positive correlation with AR and delta SPR, irrespective of the mutation.


Assuntos
Ondas Encefálicas/fisiologia , Heteroplasmia/genética , Doença de Leigh/genética , Doença de Leigh/fisiopatologia , Miopatias Mitocondriais/genética , Miopatias Mitocondriais/fisiopatologia , ATPases Mitocondriais Próton-Translocadoras/genética , Retinose Pigmentar/genética , Retinose Pigmentar/fisiopatologia , Adulto , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Índice de Gravidade de Doença
17.
J Neurol ; 268(12): 4866-4873, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34037856

RESUMO

Adult-onset ataxias are a genetically and clinically heterogeneous group of movement disorders. In addition to nuclear gene mutations, sequence changes have also been described in the mitochondrial genome. Here, we present findings of mutation analysis of the mitochondrial gene MT-ATP6. We analyzed 94 patients with adult-onset spinocerebellar ataxia (SCA), including 34 sporadic cases. In all patients, common sequence changes found in SCAs such as repeat expansions and point mutations had been excluded previously. We found pathogenic MT-ATP variants in five of these patients (5.32%), two of whom were sporadic. Four of the five mutations have not previously been described in ataxias. All but one of these mutations affect transmembrane helices of subunit-α of ATP synthase. Two mutations (p.G16S, and p.P18S) disrupt transmembrane helix 1 (TMH1), one mutation (p.G167D) affects TMH5, and another one (p.L217P) TMH6. The fifth mutation (p.T96A) describes an amino acid change in close proximity to transmembrane helix 3 (TMH3). The level of heteroplasmy was either complete or very high ranging from 87 to 99%. The high prevalence of pathogenic MT-ATP6 variants suggests that analysis of this gene should be included in the routine workup of both hereditary and sporadic ataxias.


Assuntos
ATPases Mitocondriais Próton-Translocadoras , Ataxias Espinocerebelares , Adulto , Ataxia , Análise Mutacional de DNA , Humanos , ATPases Mitocondriais Próton-Translocadoras/genética , Mutação/genética , Ataxias Espinocerebelares/genética
18.
Naunyn Schmiedebergs Arch Pharmacol ; 394(7): 1487-1495, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33683419

RESUMO

This study aims to evaluate the effect of melatonin supplementation on the outcomes of in vitro fertilization (IVF) and mitochondrial adenosine triphosphate production (MT-ATP6) gene expression in Iranian infertile couples. A single-blind nonrandomized controlled trial was conducted, recruiting 90 infertile couples who underwent IVF at an infertility center in Tehran, Iran. Patients who were assigned to the intervention group received melatonin as a supplementation to the standard controlled ovarian stimulation (COS). The control group received a COS protocol only. Primary outcome was the mRNA level of the MT-ATP6 gene in cumulus cells of ovarian follicles. Secondary outcomes were the mean number of mature oocytes retrieved, the embryo quality, and biochemical and clinical pregnancy rates. The mRNA level of the MT-ATP6 gene in cumulus cells between intervention and control groups was not statistically different (0.931 vs.1; P Ëƒ 0.05). The mean number of poor-quality embryos was significantly lower in the intervention group than that in the control group (0.27 vs. 0.80; P = 0.028). The biochemical and clinical pregnancy rates were higher in the intervention group (24% vs. 14%, P = 0.089, and 14% vs. 7%, P = 0.302, respectively); however, the difference was not significant. Melatonin supplementation did not increase the odds of clinical pregnancy and the number of mature oocytes retrieved, but significantly reduced the number of low-quality embryos. More extensive studies focusing on the level of MT-ATP6 gene expression in the oocyte or blastomere cells may further elucidate the effect of supplementation with melatonin in infertile couples who have poor clinical outcomes. Trial registration: Current Controlled Trials: IRCT2015042912307N4.


Assuntos
Fertilização in vitro/tendências , Infertilidade/metabolismo , Infertilidade/terapia , Melatonina/administração & dosagem , ATPases Mitocondriais Próton-Translocadoras/biossíntese , Taxa de Gravidez/tendências , Administração Oral , Adulto , Antioxidantes/administração & dosagem , Células do Cúmulo/efeitos dos fármacos , Células do Cúmulo/metabolismo , Feminino , Fertilização in vitro/métodos , Expressão Gênica , Humanos , Infertilidade/epidemiologia , Irã (Geográfico)/epidemiologia , Masculino , ATPases Mitocondriais Próton-Translocadoras/genética , Gravidez , Método Simples-Cego , Resultado do Tratamento
19.
Animals (Basel) ; 11(3)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801206

RESUMO

This study aimed to characterise the fibre composition of Triceps brachii (TB) and Semimembranosus (SM) muscles from 20 Maremmana (MA) and 20 Aubrac (AU) steers, and the effect of grazing activity in comparison with feedlot system. The histochemical method was performed with the m-ATPase method with an acid pre-incubation, thus allowing to distinguish type I, IIA, and IIB fibres. Additionally, on total RNA extracted from SM muscle, the expressions of atp1a1, mt-atp6, and capn1 genes were evaluated, in order to find potential associations with muscle fibre histochemical characteristics. In SM muscle, the MA steers had the greater frequency of oxidative fibres (type I and IIA) and the higher atp1a1 expression, in comparison to AU steers. Conversely, AU steers had a greater frequency of type IIB fibres, and the higher capn1 expression. A similar histochemical pattern was observed in TB muscle. The grazing activity was probably insufficient to determine differences both for fibre proportion and size, and gene expressions, except for mt-atp6 expression that was surprisingly highest in feedlot MA in comparison to other steers. These findings further the knowledge of muscle properties belonging to these breeds, and the effect of voluntary physical activity since few studies were available in this regard.

20.
Am J Ophthalmol Case Rep ; 22: 101073, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33869891

RESUMO

PURPOSE: To describe two patients with bilateral ptosis, ophthalmoplegia, cataracts and corneal endothelial disease requiring corneal transplantation. OBSERVATIONS: Histopathological analysis of muscle biopsy samples from both patients identified features consistent with a mitochondrial cytopathy. A single multigenic mitochondrial deoxyribonucleic acid (DNA) deletion was detected in the first patient. Pathogenic mutations in the POLG gene which codes for mitochondrial DNA polymerase, tasked with replicating the mitochondrial genome were identified in the second patient. CONCLUSION: The collection of clinical features present in both cases described can be explained by a diagnosis of mitochondrial disease. IMPORTANCE: Corneal endothelial disease, in addition to ptosis, ophthalmoplegia, cataract, pigmentary retinopathy and optic atrophy should be recognised as a feature of mitochondrial disease.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa