Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 574
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 84(3): 522-537.e8, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38151017

RESUMO

The anti-cancer target hRpn13 is a proteasome substrate receptor. However, hRpn13-targeting molecules do not impair its interaction with proteasomes or ubiquitin, suggesting other critical cellular activities. We find that hRpn13 depletion causes correlated proteomic and transcriptomic changes, with pronounced effects in myeloma cells for cytoskeletal and immune response proteins and bone-marrow-specific arginine deiminase PADI4. Moreover, a PROTAC against hRpn13 co-depletes PADI4, histone deacetylase HDAC8, and DNA methyltransferase MGMT. PADI4 binds and citrullinates hRpn13 and proteasomes, and proteasomes from PADI4-inhibited myeloma cells exhibit reduced peptidase activity. When off proteasomes, hRpn13 can bind HDAC8, and this interaction inhibits HDAC8 activity. Further linking hRpn13 to transcription, its loss reduces nuclear factor κB (NF-κB) transcription factor p50, which proteasomes generate by cleaving its precursor protein. NF-κB inhibition depletes hRpn13 interactors PADI4 and HDAC8. Altogether, we find that hRpn13 acts dually in protein degradation and expression and that proteasome constituency and, in turn, regulation varies by cell type.


Assuntos
Histona Desacetilases , Peptídeos e Proteínas de Sinalização Intracelular , NF-kappa B , Proteína-Arginina Desiminase do Tipo 4 , Fatores de Transcrição , Humanos , Epigênese Genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteoma/metabolismo , Proteômica , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Linhagem Celular Tumoral
2.
Proc Natl Acad Sci U S A ; 121(19): e2318413121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38683993

RESUMO

Determining the pathogenicity of hypertrophic cardiomyopathy-associated mutations in the ß-myosin heavy chain (MYH7) can be challenging due to its variable penetrance and clinical severity. This study investigates the early pathogenic effects of the incomplete-penetrant MYH7 G256E mutation on myosin function that may trigger pathogenic adaptations and hypertrophy. We hypothesized that the G256E mutation would alter myosin biomechanical function, leading to changes in cellular functions. We developed a collaborative pipeline to characterize myosin function across protein, myofibril, cell, and tissue levels to determine the multiscale effects on structure-function of the contractile apparatus and its implications for gene regulation and metabolic state. The G256E mutation disrupts the transducer region of the S1 head and reduces the fraction of myosin in the folded-back state by 33%, resulting in more myosin heads available for contraction. Myofibrils from gene-edited MYH7WT/G256E human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) exhibited greater and faster tension development. This hypercontractile phenotype persisted in single-cell hiPSC-CMs and engineered heart tissues. We demonstrated consistent hypercontractile myosin function as a primary consequence of the MYH7 G256E mutation across scales, highlighting the pathogenicity of this gene variant. Single-cell transcriptomic and metabolic profiling demonstrated upregulated mitochondrial genes and increased mitochondrial respiration, indicating early bioenergetic alterations. This work highlights the benefit of our multiscale platform to systematically evaluate the pathogenicity of gene variants at the protein and contractile organelle level and their early consequences on cellular and tissue function. We believe this platform can help elucidate the genotype-phenotype relationships underlying other genetic cardiovascular diseases.


Assuntos
Miosinas Cardíacas , Cardiomiopatia Hipertrófica , Células-Tronco Pluripotentes Induzidas , Contração Miocárdica , Miócitos Cardíacos , Cadeias Pesadas de Miosina , Humanos , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Contração Miocárdica/genética , Mutação , Mitocôndrias/metabolismo , Mitocôndrias/genética , Miofibrilas/metabolismo , Respiração Celular/genética
3.
Hum Mol Genet ; 33(10): 884-893, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38340456

RESUMO

Patent ductus arteriosus (PDA) is a common form of congenital heart disease. The MYH6 gene has important effects on cardiovascular growth and development, but the effect of variants in the MYH6 gene promoter on ductus arteriosus is unknown. DNA was extracted from blood samples of 721 subjects (428 patients with isolated and sporadic PDA and 293 healthy controls) and analyzed by sequencing for MYH6 gene promoter region variants. Cellular function experiments with three cell lines (HEK-293, HL-1, and H9C2 cells) and bioinformatics analyses were performed to verify their effects on gene expression. In the MYH6 gene promoter, 11 variants were identified. Four variants were found only in patients with PDA and 2 of them (g.3434G>C and g.4524C>T) were novel. Electrophoretic mobility shift assay showed that the transcription factors bound by the promoter variants were significantly altered in comparison to the wild-type in all three cell lines. Dual luciferase reporter showed that all the 4 variants reduced the transcriptional activity of the MYH6 gene promoter (P < 0.05). Prediction of transcription factors bound by the variants indicated that these variants alter the transcription factor binding sites. These pathological alterations most likely affect the contraction of the smooth muscle of ductus arteriosus, leading to PDA. This study is the first to focus on variants at the promoter region of the MYH6 gene in PDA patients with cellular function tests. Therefore, this study provides new insights to understand the genetic basis and facilitates further studies on the mechanism of PDA formation.


Assuntos
Miosinas Cardíacas , Permeabilidade do Canal Arterial , Cadeias Pesadas de Miosina , Regiões Promotoras Genéticas , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Miosinas Cardíacas/genética , Estudos de Casos e Controles , Linhagem Celular , Permeabilidade do Canal Arterial/genética , Permeabilidade do Canal Arterial/patologia , Células HEK293 , Cadeias Pesadas de Miosina/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
J Biol Chem ; 300(1): 105514, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042490

RESUMO

Non-muscle myosin 2A (NM2A), a widely expressed class 2 myosin, is important for organizing actin filaments in cells. It cycles between a compact inactive 10S state in which its regulatory light chain (RLC) is dephosphorylated and a filamentous state in which the myosin heads interact with actin, and the RLC is phosphorylated. Over 170 missense mutations in MYH9, the gene that encodes the NM2A heavy chain, have been described. These cause MYH9 disease, an autosomal-dominant disorder that leads to bleeding disorders, kidney disease, cataracts, and deafness. Approximately two-thirds of these mutations occur in the coiled-coil tail. These mutations could destabilize the 10S state and/or disrupt filament formation or both. To test this, we determined the effects of six specific mutations using multiple approaches, including circular dichroism to detect changes in secondary structure, negative stain electron microscopy to analyze 10S and filament formation in vitro, and imaging of GFP-NM2A in fixed and live cells to determine filament assembly and dynamics. Two mutations in D1424 (D1424G and D1424N) and V1516M strongly decrease 10S stability and have limited effects on filament formation in vitro. In contrast, mutations in D1447 and E1841K, decrease 10S stability less strongly but increase filament lengths in vitro. The dynamic behavior of all mutants was altered in cells. Thus, the positions of mutated residues and their roles in filament formation and 10S stabilization are key to understanding their contributions to NM2A in disease.


Assuntos
Mutação de Sentido Incorreto , Cadeias Pesadas de Miosina , Miosina não Muscular Tipo IIA , Humanos , Citoesqueleto/metabolismo , Mutação , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosina não Muscular Tipo IIA/genética , Miosina não Muscular Tipo IIA/metabolismo , Estrutura Secundária de Proteína
5.
Mol Ther ; 32(5): 1578-1594, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38475992

RESUMO

Heart failure (HF) is manifested by transcriptional and posttranscriptional reprogramming of critical genes. Multiple studies have revealed that microRNAs could translocate into subcellular organelles such as the nucleus to modify gene expression. However, the functional property of subcellular Argonaute2 (AGO2), the core member of the microRNA machinery, has remained elusive in HF. AGO2 was found to be localized in both the cytoplasm and nucleus of cardiomyocytes, and robustly increased in the failing hearts of patients and animal models. We demonstrated that nuclear AGO2 rather than cytosolic AGO2 overexpression by recombinant adeno-associated virus (serotype 9) with cardiomyocyte-specific troponin T promoter exacerbated the cardiac dysfunction in transverse aortic constriction (TAC)-operated mice. Mechanistically, nuclear AGO2 activates the transcription of ANKRD1, encoding ankyrin repeat domain-containing protein 1 (ANKRD1), which also has a dual function in the cytoplasm as part of the I-band of the sarcomere and in the nucleus as a transcriptional cofactor. Overexpression of nuclear ANKRD1 recaptured some key features of cardiac remodeling by inducing pathological MYH7 activation, whereas cytosolic ANKRD1 seemed cardioprotective. For clinical practice, we found ivermectin, an antiparasite drug, and ANPep, an ANKRD1 nuclear location signal mimetic peptide, were able to prevent ANKRD1 nuclear import, resulting in the improvement of cardiac performance in TAC-induced HF.


Assuntos
Proteínas Argonautas , Modelos Animais de Doenças , Insuficiência Cardíaca , Miócitos Cardíacos , Proteínas Repressoras , Animais , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/patologia , Camundongos , Humanos , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Miócitos Cardíacos/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Remodelação Ventricular , Núcleo Celular/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Regulação da Expressão Gênica , Masculino , Dependovirus/genética , Transcrição Gênica
6.
Genes Chromosomes Cancer ; 63(3): e23227, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517106

RESUMO

AIMS: Kinase fusion-positive soft tissue tumors represent an emerging, molecularly defined group of mesenchymal tumors with a wide morphologic spectrum and diverse activating kinases. Here, we present two cases of soft tissue tumors with novel LTK fusions. METHODS AND RESULTS: Both cases presented as acral skin nodules (big toe and middle finger) in pediatric patients (17-year-old girl and 2-year-old boy). The tumors measured 2 and 3 cm in greatest dimension. Histologically, both cases exhibited bland-looking spindle cells infiltrating adipose tissue and accompanied by collagenous stroma. One case additionally displayed perivascular hyalinization and band-like stromal collagen. Both cases exhibited focal S100 staining, and one case had patchy coexpression of CD34. Targeted RNA-seq revealed the presence of novel in-frame MYH9::LTK and MYH10::LTK fusions, resulting in upregulation of LTK expression. Of interest, DNA methylation-based unsupervised clustering analysis in one case showed that the tumor clustered with dermatofibrosarcoma protuberans (DFSP). One tumor was excised with amputation with no local recurrence or distant metastasis at 18-month follow-up. The other case was initially marginally excised with local recurrence after one year, followed by wide local excision, with no evidence of disease at 10 years of follow-up. CONCLUSIONS: This is the first reported case series of soft tissue tumors harboring LTK fusion, expanding the molecular landscape of soft tissue tumors driven by activating kinase fusions. Furthermore, studies involving a larger number of cases and integrated genomic analyses will be warranted to fully elucidate the pathogenesis and classification of these tumors.


Assuntos
Neoplasias de Tecido Conjuntivo e de Tecidos Moles , Proteínas de Fusão Oncogênica , Neoplasias Cutâneas , Neoplasias de Tecidos Moles , Adolescente , Criança , Feminino , Humanos , Masculino , Antígenos CD34/metabolismo , Biomarcadores Tumorais/genética , Neoplasias de Tecido Conjuntivo e de Tecidos Moles/genética , Neoplasias de Tecido Conjuntivo e de Tecidos Moles/patologia , Receptores Proteína Tirosina Quinases , Neoplasias Cutâneas/patologia , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/patologia , Proteínas de Fusão Oncogênica/genética , Cadeias Pesadas de Miosina/genética , Miosina não Muscular Tipo IIB/genética
7.
J Physiol ; 602(3): 427-443, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160435

RESUMO

MYH13 is a unique type of sarcomeric myosin heavy chain (MYH) first detected in mammalian extraocular (EO) muscles and later also in vocal muscles, including laryngeal muscles of some mammals and syringeal muscles of songbirds. All these muscles are specialized in generating very fast contractions while producing relatively low force, a design appropriate for muscles acting against a much lower load than most skeletal muscles inserting into the skeleton. The definition of the physiological properties of muscle fibres containing MYH13 has been complicated by the mixed fibre type composition of EO muscles and the coexistence of different MYH types within the same fibre. A major advance in this area came from studies on isolated recombinant myosin motors and the demonstration that the affinity of actin-bound human MYH13 for ADP is much weaker than those of fast-type MYH1 (type 2X) and MYH2 (type 2A). This property is consistent with a very fast detachment of myosin from actin, a major determinant of shortening velocity. The MYH13 gene arose early during vertebrate evolution but was characterized only in mammals and birds and appears to have been lost in some teleost fish. The MYH13 gene is located at the 3' end of the mammalian fast/developmental gene cluster and in a similar position to the orthologous cluster in syntenic regions of the songbird genome. MYH13 gene regulation is controlled by a super-enhancer in the mammalian locus and deletion of the neighbouring fast MYH1 and MYH4 genes leads to abnormal MYH13 expression in mouse leg muscles.


Assuntos
Actinas , Cadeias Pesadas de Miosina , Animais , Humanos , Camundongos , Actinas/metabolismo , Mamíferos/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosinas/metabolismo , Músculos Oculomotores/metabolismo
8.
Breast Cancer Res ; 26(1): 48, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504374

RESUMO

BACKGROUND: Breast cancer stem cell (CSC) expansion results in tumor progression and chemoresistance; however, the modulation of CSC pluripotency remains unexplored. Transmembrane protein 120B (TMEM120B) is a newly discovered protein expressed in human tissues, especially in malignant tissues; however, its role in CSC expansion has not been studied. This study aimed to determine the role of TMEM120B in transcriptional coactivator with PDZ-binding motif (TAZ)-mediated CSC expansion and chemotherapy resistance. METHODS: Both bioinformatics analysis and immunohistochemistry assays were performed to examine expression patterns of TMEM120B in lung, breast, gastric, colon, and ovarian cancers. Clinicopathological factors and overall survival were also evaluated. Next, colony formation assay, MTT assay, EdU assay, transwell assay, wound healing assay, flow cytometric analysis, sphere formation assay, western blotting analysis, mouse xenograft model analysis, RNA-sequencing assay, immunofluorescence assay, and reverse transcriptase-polymerase chain reaction were performed to investigate the effect of TMEM120B interaction on proliferation, invasion, stemness, chemotherapy sensitivity, and integrin/FAK/TAZ/mTOR activation. Further, liquid chromatography-tandem mass spectrometry analysis, GST pull-down assay, and immunoprecipitation assays were performed to evaluate the interactions between TMEM120B, myosin heavy chain 9 (MYH9), and CUL9. RESULTS: TMEM120B expression was elevated in lung, breast, gastric, colon, and ovarian cancers. TMEM120B expression positively correlated with advanced TNM stage, lymph node metastasis, and poor prognosis. Overexpression of TMEM120B promoted breast cancer cell proliferation, invasion, and stemness by activating TAZ-mTOR signaling. TMEM120B directly bound to the coil-coil domain of MYH9, which accelerated the assembly of focal adhesions (FAs) and facilitated the translocation of TAZ. Furthermore, TMEM120B stabilized MYH9 by preventing its degradation by CUL9 in a ubiquitin-dependent manner. Overexpression of TMEM120B enhanced resistance to docetaxel and doxorubicin. Conversely, overexpression of TMEM120B-∆CCD delayed the formation of FAs, suppressed TAZ-mTOR signaling, and abrogated chemotherapy resistance. TMEM120B expression was elevated in breast cancer patients with poor treatment outcomes (Miller/Payne grades 1-2) than in those with better outcomes (Miller/Payne grades 3-5). CONCLUSIONS: Our study reveals that TMEM120B bound to and stabilized MYH9 by preventing its degradation. This interaction activated the ß1-integrin/FAK-TAZ-mTOR signaling axis, maintaining stemness and accelerating chemotherapy resistance.


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Humanos , Animais , Camundongos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Integrina beta1 , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células , Cadeias Pesadas de Miosina
9.
Br J Haematol ; 205(2): 552-567, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38802066

RESUMO

Effectively targeting transcription factors in therapeutic interventions remains challenging, especially in core-binding factor-acute myeloid leukaemia (CBF-AML) characterized by RUNX1::ETO and CBFß::MYH11 fusions. However, recent studies have drawn attention towards aberrant amino acid metabolisms as actionable therapeutic targets. Here, by integrating the expression profile and genetic makeup in AML cohort, we found higher BCAT1 expression in CBF-AML patients compared with other subtypes. Metabolic profiling revealed that high BCAT1 expression led to reprogrammed branch amino acid metabolism in CBF-AML and was associated with sphingolipid pathway relating to the fitness of leukaemia cells, supported by transcriptomic profiling. Mechanistically, we demonstrated in cell lines and primary patient samples that BCAT1 was directly activated by RUNX1::ETO and CBFß::MYH11 fusion proteins similarly in a RUNX1-dependent manner through rewiring chromatin conformation at the BCAT1 gene locus. Furthermore, BCAT1 inhibition resulted in blunted cell cycle, enhanced apoptosis and myeloid differentiation of CBF-AML cells in vitro, and alleviated leukaemia burden and prolonged survival in vivo. Importantly, pharmacological inhibition of BCAT1 using the specific inhibitor Gabapentin demonstrated therapeutic effects, as evidenced by delayed leukaemia progression and improved survival in vivo. In conclusion, our study uncovers BCAT1 as a genetic vulnerability and a promising targeted therapeutic opportunity for CBF-AML.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia Mieloide Aguda , Proteínas de Fusão Oncogênica , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Animais , Subunidade beta de Fator de Ligação ao Core/genética , Subunidade beta de Fator de Ligação ao Core/metabolismo , Camundongos , Regulação Leucêmica da Expressão Gênica , Linhagem Celular Tumoral
10.
Br J Haematol ; 204(6): 2400-2404, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38650331

RESUMO

MYH9-related disorder (MYH9-RD) is characterized by congenital macrothrombocytopenia and granulocyte inclusion bodies. MYH9-RD is often misdiagnosed as chronic immune thrombocytopenia. In this study, we investigated age at definitive diagnosis and indicative thrombocytopenia in 41 patients with MYH9-RD from the congenital thrombocytopenia registry in Japan. Our cohort comprises 54.8% adults over 18 years at confirmed diagnosis. We found a significant difference (p < 0.0001) between the median age at definitive diagnosis of 25.0 years and for indicative thrombocytopenia it was 9.0 years. Our findings strongly suggest diagnostic delay of MYH9-RD in Japan. Our registry system will continue to contribute to this issue.


Assuntos
Diagnóstico Tardio , Cadeias Pesadas de Miosina , Trombocitopenia , Humanos , Japão/epidemiologia , Adulto , Trombocitopenia/diagnóstico , Trombocitopenia/genética , Trombocitopenia/congênito , Masculino , Feminino , Criança , Adolescente , Cadeias Pesadas de Miosina/genética , Pessoa de Meia-Idade , Pré-Escolar , Adulto Jovem , Lactente , Proteínas Motores Moleculares/genética , Sistema de Registros , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/genética , Idoso
11.
Mol Genet Genomics ; 299(1): 44, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625590

RESUMO

Megacystis-microcolon-hypoperistalsis-syndrome (MMIHS) is a rare and early-onset congenital disease characterized by massive abdominal distension due to a large non-obstructive bladder, a microcolon and decreased or absent intestinal peristalsis. While in most cases inheritance is autosomal dominant and associated with heterozygous variant in ACTG2 gene, an autosomal recessive transmission has also been described including pathogenic bialellic loss-of-function variants in MYH11. We report here a novel family with visceral myopathy related to MYH11 gene, confirmed by whole genome sequencing (WGS). WGS was performed in two siblings with unusual presentation of MMIHS and their two healthy parents. The 38 years-old brother had severe bladder dysfunction and intestinal obstruction, whereas the 30 years-old sister suffered from end-stage kidney disease with neurogenic bladder and recurrent sigmoid volvulus. WGS was completed by retrospective digestive pathological analyses. Compound heterozygous variants of MYH11 gene were identified, associating a deletion of 1.2 Mb encompassing MYH11 inherited from the father and an in-frame variant c.2578_2580del, p.Glu860del inherited from the mother. Pathology analyses of the colon and the rectum revealed structural changes which significance of which is discussed. Cardiac and vascular assessment of the mother was normal. This is the second report of a visceral myopathy corresponding to late-onset form of MMIHS related to compound heterozygosity in MYH11; with complete gene deletion and a hypomorphic allele in trans. The hypomorphic allele harbored by the mother raised the question of the risk of aortic disease in adults. This case shows the interest of WGS in deciphering complex phenotypes, allowing adapted diagnosis and genetic counselling.


Assuntos
Anormalidades Múltiplas , Colo , Duodeno , Doenças Fetais , Obstrução Intestinal , Pseudo-Obstrução Intestinal , Bexiga Urinária , Adulto , Humanos , Masculino , Colo/anormalidades , Duodeno/anormalidades , Pseudo-Obstrução Intestinal/genética , Cadeias Pesadas de Miosina/genética , Estudos Retrospectivos , Bexiga Urinária/anormalidades , Feminino
12.
Clin Genet ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856159

RESUMO

Arthrogryposis is a clinical feature defined by congenital joint contractures in two or more different body areas which occurs in between 1/3000 and 1/5000 live births. Variants in multiple genes have been associated with distal arthrogryposis syndromes. Heterozygous variants in MYH3 have been identified to cause the dominantly-inherited distal arthrogryposis conditions, Freeman-Sheldon syndrome, Sheldon-Hall syndrome, and multiple pterygium syndrome. In contrast, MYH3 variants underlie both dominantly and recessively inherited Contractures, Pterygia, and Spondylocarpotarsal Fusion syndromes (CPSFS) which are characterized by extensive bony abnormalities in addition to congenital contractures. Here we report two affected sibs with distal arthrogryposis born to unaffected, distantly related parents. Sequencing revealed that both sibs were homozygous for two ultra-rare MYH3 variants, c.3445G>A (p.Glu1149Lys) and c.4760T>C (p.Leu1587Pro). Sequencing and deletion/duplication analysis of 169 other arthrogryposis genes yielded no other compelling candidate variants. This is the first report of biallelic variants in MYH3 being implicated in a distal arthrogryposis phenotype without the additional features of CPSFS. Thus, akin to CPSFS, both dominant and recessively inherited distal arthrogryposis can be caused by variants in MYH3.

13.
Am J Med Genet A ; 194(6): e63563, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38352997

RESUMO

Autosomal dominant sensorineural hearing loss (ADSNHL) is a genetically heterogeneous disorder caused by pathogenic variants in various genes, including MYH14. However, the interpretation of pathogenicity for MYH14 variants remains a challenge due to incomplete penetrance and the lack of functional studies and large families. In this study, we performed exome sequencing in six unrelated families with ADSNHL and identified five MYH14 variants, including three novel variants. Two of the novel variants, c.571G > C (p.Asp191His) and c.571G > A (p.Asp191Asn), were classified as likely pathogenic using ACMG and Hearing Loss Expert panel guidelines. In silico modeling demonstrated that these variants, along with p.Gly1794Arg, can alter protein stability and interactions among neighboring molecules. Our findings suggest that MYH14 causative variants may be more contributory and emphasize the importance of considering this gene in patients with nonsyndromic mainly post-lingual severe form of hearing loss. However, further functional studies are needed to confirm the pathogenicity of these variants.


Assuntos
Sequenciamento do Exoma , Perda Auditiva Neurossensorial , Cadeias Pesadas de Miosina , Miosina Tipo II , Linhagem , Humanos , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Feminino , Masculino , Cadeias Pesadas de Miosina/genética , Adulto , Mutação/genética , Predisposição Genética para Doença , Criança , Genes Dominantes , Pessoa de Meia-Idade , Adolescente
14.
Mol Cell Biochem ; 479(2): 393-417, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37079208

RESUMO

Myosin heavy chain gene 7 (MYH7), a sarcomeric gene encoding the myosin heavy chain (myosin-7), has attracted considerable interest as a result of its fundamental functions in cardiac and skeletal muscle contraction and numerous nucleotide variations of MYH7 are closely related to cardiomyopathy and skeletal muscle myopathy. These disorders display significantly inter- and intra-familial variability, sometimes developing complex phenotypes, including both cardiomyopathy and skeletal myopathy. Here, we review the current understanding on MYH7 with the aim to better clarify how mutations in MYH7 affect the structure and physiologic function of sarcomere, thus resulting in cardiomyopathy and skeletal muscle myopathy. Importantly, the latest advances on diagnosis, research models in vivo and in vitro and therapy for precise clinical application have made great progress and have epoch-making significance. All the great advance is discussed here.


Assuntos
Cardiomiopatias , Doenças Musculares , Humanos , Cadeias Pesadas de Miosina/genética , Doenças Musculares/genética , Músculo Esquelético , Cardiomiopatias/genética , Coração , Mutação , Fenótipo , Miosinas Cardíacas/genética
15.
Eur J Haematol ; 112(6): 964-974, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38388794

RESUMO

OBJECTIVES: This study assesses the clinical significance of additional cytogenetic abnormalities (ACAs) and/or the deletion of 3'CBFB (3'CBFBdel) resulting in unbalanced CBFB::MYH11 fusion in acute myeloid leukemia (AML) with inv (16)/t(16;16)/CBFB::MYH11. METHODS: We retrospectively evaluated the clinicopathologic features of 47 adult de novo AML with inv (16)/t(16;16)/CBFB::MYH11 fusion. There were 44 balanced and 3 unbalanced CBFB::MYH11 fusions. Given the low frequency of unbalanced cases, the latter group was combined with 19 published cases (N = 22) for statistic and meta-analysis. RESULTS: Both balanced and unbalanced cases were characterized by frequent ACAs (56.5% and 72.7%, respectively), with +8, +22, and del(7q) as the most frequent abnormalities. The unbalanced group tends to be younger individuals (p = .04) and is associated with a lower remission rate (p = .02), although the median overall survival (OS) was not statistically different (p = .2868). In the balanced group, "ACA" subgroup had higher mortality (p = .013) and shorter OS (p = .011), and patients with relapsed disease had a significantly shorter OS (p = .0011). Cox multivariate regression analysis confirmed that ACAs and history of disease relapse are independent risk factors, irrespective of disease relapse status. In the combined cohort, cases with ACAs had shorter OS than those with "Sole" abnormality (p = .0109). CONCLUSIONS: ACAs are independent high-risk factors in adult AML with inv (16)/t(16;16)/CBFB::MYH11 fusion and should be integrated for risk stratification in this disease. Larger studies are needed to assess the clinical significance of the unbalanced CBFB::MYH11 fusion resulting from the 3'CBFBdel.


Assuntos
Aberrações Cromossômicas , Inversão Cromossômica , Cromossomos Humanos Par 16 , Leucemia Mieloide Aguda , Proteínas de Fusão Oncogênica , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/diagnóstico , Adulto , Feminino , Masculino , Pessoa de Meia-Idade , Proteínas de Fusão Oncogênica/genética , Idoso , Cromossomos Humanos Par 16/genética , Prognóstico , Estudos Retrospectivos , Adulto Jovem , Subunidade beta de Fator de Ligação ao Core/genética , Adolescente , Idoso de 80 Anos ou mais , Translocação Genética , Cadeias Pesadas de Miosina/genética
16.
Acta Pharmacol Sin ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009651

RESUMO

Triple-negative breast cancer (TNBC) is incurable and prone to widespread metastasis. Therefore, identification of key targets for TNBC progression is urgently needed. Our previous study revealed that isotoosendanin (ITSN) reduced TNBC metastasis by targeting TGFßR1. ITSN is currently used as an effective chemical probe to further discover the key molecules involved in TNBC metastasis downstream of TGFßR1. The results showed that GOT2 was the gene downstream of Smad2/3 and that ITSN decreased GOT2 expression by abrogating the activation of the TGF-ß-Smad2/3 signaling pathway through directly binding to TGFßR1. GOT2 was highly expressed in TNBC, and its knockdown decreased TNBC metastasis. However, GOT2 overexpression reversed the inhibitory effect of ITSN on TNBC metastasis both in vitro and in vivo. GOT2 interacted with MYH9 and hindered its binding to the E3 ubiquitin ligase STUB1, thereby reducing MYH9 ubiquitination and degradation. Moreover, GOT2 also enhanced the translocation of MYH9 to mitochondria and thus induced DRP1 phosphorylation, thereby promoting mitochondrial fission and lamellipodia formation in TNBC cells. ITSN-mediated inhibition of mitochondrial fission and lamellipodia formation was associated with reduced GOT2 expression. In conclusion, ITSN prevented MYH9-regulated mitochondrial fission and lamellipodia formation in TNBC cells by enhancing MYH9 protein degradation through a reduction in GOT2 expression, thus contributing to its inhibition of TNBC metastasis.

17.
Cell Mol Biol Lett ; 29(1): 63, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698330

RESUMO

BACKGROUND: Endometrial cancer (EC) is one of the most common gynecological cancers. Herein, we aimed to define the role of specific myosin family members in EC because this protein family is involved in the progression of various cancers. METHODS: Bioinformatics analyses were performed to reveal EC patients' prognosis-associated genes in patients with EC. Furthermore, colony formation, immunofluorescence, cell counting kit 8, wound healing, and transwell assays as well as coimmunoprecipitation, cycloheximide chase, luciferase reporter, and cellular thermal shift assays were performed to functionally and mechanistically analyze human EC samples, cell lines, and a mouse model, respectively. RESULTS: Machine learning techniques identified MYH14, a member of the myosin family, as the prognosis-associated gene in patients with EC. Furthermore, bioinformatics analyses based on public databases showed that MYH14 was associated with EC chemoresistance. Moreover, immunohistochemistry validated MYH14 upregulation in EC cases compared with that in normal controls and confirmed that MYH14 was an independent and unfavorable prognostic indicator of EC. MYH14 impaired cell sensitivity to carboplatin, paclitaxel, and progesterone, and increased cell proliferation and metastasis in EC. The mechanistic study showed that MYH14 interacted with MYH9 and impaired GSK3ß-mediated ß-catenin ubiquitination and degradation, thus facilitating the Wnt/ß-catenin signaling pathway and epithelial-mesenchymal transition. Sesamolin, a natural compound extracted from Sesamum indicum (L.), directly targeted MYH14 and attenuated EC progression. Additionally, the compound disrupted the interplay between MYH14 and MYH9 and repressed MYH9-regulated Wnt/ß-catenin signaling. The in vivo study further verified sesamolin as a therapeutic drug without side effects. CONCLUSIONS: Herein, we identified that EC prognosis-associated MYH14 was independently responsible for poor overall survival time of patients, and it augmented EC progression by activating Wnt/ß-catenin signaling. Targeting MYH14 by sesamolin, a cytotoxicity-based approach, can be applied synergistically with chemotherapy and endocrine therapy to eventually mitigate EC development. This study emphasizes MYH14 as a potential target and sesamolin as a valuable natural drug for EC therapy.


Assuntos
Neoplasias do Endométrio , Glicogênio Sintase Quinase 3 beta , Cadeias Pesadas de Miosina , beta Catenina , Humanos , Feminino , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Animais , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Linhagem Celular Tumoral , beta Catenina/metabolismo , beta Catenina/genética , Camundongos , Proliferação de Células/efeitos dos fármacos , Camundongos Nus , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Prognóstico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Pessoa de Meia-Idade , Naftoquinonas/farmacologia
18.
Cell Mol Biol Lett ; 29(1): 9, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177995

RESUMO

BACKGROUND: Skeletal muscle development is pivotal for animal growth and health. Recently, long noncoding RNAs (lncRNAs) were found to interact with chromatin through diverse roles. However, little is known about how lncRNAs act as chromatin-associated RNAs to regulate skeletal muscle development. Here, we aim to investigate the regulation of chromatin-associated RNA (MYH1G-AS) during skeletal muscle development. METHODS: We provided comprehensive insight into the RNA profile and chromatin accessibility of different myofibers, combining RNA sequencing (RNA-seq) with an assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq). The dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay were used to analyze the transcriptional regulation mechanism of MYH1G-AS. ALKBH5-mediated MYH1G-AS N6-methyladenosine (m6A) demethylation was assessed by a single-base elongation and ligation-based qPCR amplification method (SELECT) assay. Functions of MYH1G-AS were investigated through a primary myoblast and lentivirus/cholesterol-modified antisense oligonucleotide (ASO)-mediated animal model. To validate the interaction of MYH1G-AS with fibroblast growth factor 18 (FGF18) protein, RNA pull down and an RNA immunoprecipitation (RIP) assay were performed. Specifically, the interaction between FGF18 and SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 (SMARCA5) protein was analyzed by coimmunoprecipitation (Co-IP) and a yeast two-hybrid assay. RESULTS: A total of 45 differentially expressed (DE) lncRNAs, with DE ATAC-seq peaks in their promoter region, were classified as open chromatin-associated lncRNAs. A skeletal muscle-specific lncRNA (MSTRG.15576.9; MYH1G-AS), which is one of the open chromatin-associated lncRNA, was identified. MYH1G-AS transcription is coordinately regulated by transcription factors (TF) SMAD3 and SP2. Moreover, SP2 represses ALKBH5 transcription to weaken ALKBH5-mediated m6A demethylation of MYH1G-AS, thus destroying MYH1G-AS RNA stability. MYH1G-AS accelerates myoblast proliferation but restrains myoblast differentiation. Moreover, MYH1G-AS drives a switch from slow-twitch to fast-twitch fibers and causes muscle atrophy. Mechanistically, MYH1G-AS inhibits FGF18 protein stabilization to reduce the interaction of FGF18 to SMARCA5, thus repressing chromatin accessibility of the SMAD4 promoter to activate the SMAD4-dependent pathway. CONCLUSIONS: Our results reveal a new pattern of the regulation of lncRNA expression at diverse levels and help expound the regulation of m6A methylation on chromatin status.


Assuntos
Cromatina , RNA Longo não Codificante , Animais , Cromatina/metabolismo , Galinhas/genética , Galinhas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Músculo Esquelético/metabolismo , Desenvolvimento Muscular/genética
19.
Clin Exp Nephrol ; 28(1): 40-49, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37733142

RESUMO

BACKGROUND: MYH9-related disease (MYH9-RD) is characterized by congenital macrothrombocytopenia, Döhle body-like granulocyte inclusions, and nephropathy, which may progress to end-stage kidney disease (ESKD). However, information on the effects of renin-angiotensin system (RAS) inhibitors on kidney survival is currently lacking and the outcomes of kidney replacement therapy (KRT) in MYH9-RD are largely unknown. METHODS: We conducted a cross-sectional nationwide survey by sending questionnaires to 145 institutions in Japan and analyzed data for 49 patients. RESULTS: The median patient age was 27 years. Genetic analysis was performed in 37 (76%) patients. Twenty-four patients (65%) had MYH9 variants affecting the motor domain of non-muscle myosin heavy chain-IIA, and these patients had poorer kidney survival than those with variants affecting the tail domain (P = 0.02). There was no significant difference in kidney survival between patients treated with and without RAS inhibitors. Hemodialysis and peritoneal dialysis were performed in 16 and 7 patients, respectively. There were no major bleeding complications during the perioperative period or during follow-up, except for one patient. Most of the 11 patients who underwent kidney transplantation required perioperative red cell concentrate transfusions, but there was no graft loss during the median posttransplant observational period of 2.0 (interquartile range, 1.3-6.8) years. CONCLUSION: Our study demonstrated no beneficial effect of RAS inhibitors on kidney function in patients with MYH9-RD, indicating the need for further studies with more patients. All modalities of KRT are feasible options for MYH9-RD patients who progress to ESKD, with adequate attention to bleeding complications.


Assuntos
Falência Renal Crônica , Trombocitopenia , Humanos , Adulto , Mutação , Japão/epidemiologia , Estudos Transversais , Trombocitopenia/complicações , Trombocitopenia/congênito , Trombocitopenia/genética , Falência Renal Crônica/genética , Falência Renal Crônica/terapia , Falência Renal Crônica/complicações , Anti-Hipertensivos , Cadeias Pesadas de Miosina/genética
20.
Immun Ageing ; 21(1): 29, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730291

RESUMO

BACKGROUND: Quercetin is a flavonol compound widely distributed in plants that possesses diverse biological properties, including antioxidative, anti-inflammatory, anticancer, neuroprotective and senescent cell-clearing activities. It has been shown to effectively alleviate neurodegenerative diseases and enhance cognitive functions in various models. The immune system has been implicated in the regulation of brain function and cognitive abilities. However, it remains unclear whether quercetin enhances cognitive functions by interacting with the immune system. RESULTS: In this study, middle-aged female mice were administered quercetin via tail vein injection. Quercetin increased the proportion of NK cells, without affecting T or B cells, and improved cognitive performance. Depletion of NK cells significantly reduces cognitive ability in mice. RNA-seq analysis revealed that quercetin modulated the RNA profile of hippocampal tissues in aging animals towards a more youthful state. In vitro, quercetin significantly inhibited the differentiation of Lin-CD117+ hematopoietic stem cells into NK cells. Furthermore, quercetin promoted the proportion and maturation of NK cells by binding to the MYH9 protein. CONCLUSIONS: In summary, our findings suggest that quercetin promotes the proportion and maturation of NK cells by binding to the MYH9 protein, thereby improving cognitive performance in middle-aged mice.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa