Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.035
Filtrar
1.
Genes Dev ; 36(17-18): 1031-1042, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328355

RESUMO

Targeted protein degradation (TPD) has risen as a promising therapeutic modality. Leveraging the catalytic nature of the ubiquitin-proteasome enzymatic machinery, TPD exhibits higher potency to eliminate disease-causing target proteins such as oncogenic transcription factors that may otherwise be difficult to abrogate by conventional inhibitors. However, there are challenges that remain. Currently, nearly all degraders engage CUL4CRBN or CUL2VHL as the E3 ligase for target ubiquitination. While their immediate efficacies are evident, the narrowed E3 ligase options make TPD vulnerable to potential drug resistance. In addition, E3 ligases show differential tissue expression and have intrinsic limitations in accessing varying types of disease-relevant targets. As the success of TPD is closely associated with the ability of E3 ligases to efficiently polyubiquitinate the target of interest, the long-term outlook of TPD drug development will depend on whether E3 ligases such as CUL4CRBN and CUL2VHL are accessible to the targets of interest. To overcome these potential caveats, a broad collection of actionable E3 ligases is required. Here, we designed a macrocyclic degrader engaging CUL3KLHL20 for targeting BET proteins and validated CUL3KLHL20 as an E3 ligase system suitable for TPD. This work thus contributes to the expansion of usable E3 ligases for potential drug development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/metabolismo , Proteólise , Ligantes , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ubiquitinação
2.
Nano Lett ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591962

RESUMO

Single-molecule electrical junctions possess a molecular core connected to source and drain electrodes via anchor groups, which feed and extract electricity from specific atoms within the core. As the distance between electrodes increases, the electrical conductance typically decreases, which is a feature shared by classical Ohmic conductors. Here we analyze the electrical conductance of cycloparaphenylene (CPP) macrocycles and demonstrate that they can exhibit a highly nonclassical increase in their electrical conductance as the distance between electrodes increases. We demonstrate that this is due to the topological nature of the de Broglie wave created by electrons injected into the macrocycle from the source. Although such topological states do not exist in isolated macrocycles, they are created when the molecule is in contact with the source. They are predicted to be a generic feature of conjugated macrocycles and open a new avenue to implementing highly nonclassical transport behavior in molecular junctions.

3.
Small ; 20(21): e2309351, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38102093

RESUMO

It is a great demand to develop high-performance electrodes for metal-air batteries to boost cathodic oxygen reduction/evolution dynamics and avoid anodic dendrites. The optimization of catalysis at electrode can be conducted by increasing effective surface exposure, active site density, and unsaturated coordination, via using metal clusters or atomic catalysts, along with conductive or defective supports. Herein, the polarized and synergistic cooperation between dual single atom sites (Fe-N4/Co-N4) are developed through electrolytical exfoliation of defect-enriched π-conjugated macrocyclic polyphthalocyanines to expose more active sites on hollow carbonized shells (HCS). Such FeCo-N4/HCS exhibits outstanding performance in oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), to achieve high-performance in an aqueous zinc battery (AZB) with a high discharge capacity (763.6 mAhg-1) after 750 cycles at 10 mA cm-2, showing stable discharge voltage and excellent durability. It also possesses high performance in a lithium-O2 battery owing to abundant defects, synergistic Fe-N4/Co-N4 active sites, reduced energy barriers, and boosted charge and mass transfer and reaction kinetics. This study provides novel perspectives to expand dual single-metal catalysts on macrocycles in the exploration of efficient, durable, and eco-friendly energy devices.

4.
Chembiochem ; 25(3): e202300671, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38055197

RESUMO

The proteasome degrades proteins, which is essential for cellular homeostasis. Ubiquitin independent proteolysis degrades highly disordered and misfolded proteins. A decline of proteasomal activity has been associated with multiple neurodegenerative diseases due to the accumulation of misfolded proteins. In this work, cyclic peptide proteasome stimulators (CyPPSs) that enhance the clearance of misfolded proteins were discovered. In the initial screen of predicted natural products (pNPs), several cyclic peptides were found to stimulate the 20S core particle (20S CP). Development of a robust structural activity relationship led to the identification of potent, cell permeable CyPPSs. In vitro assays revealed that CyPPSs stimulate degradation of highly disordered and misfolded proteins without affecting ordered proteins. Furthermore, using a novel flow-based assay for proteasome activity, several CyPPSs were found to stimulate the 20S CP in cellulo. Overall, this work describes the development of CyPPSs as chemical tools capable of stimulating the proteasome and provides strong support for proteasome stimulation as a therapeutic strategy for neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Complexo de Endopeptidases do Proteassoma , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/metabolismo , Proteólise , Proteínas/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico
5.
Chemistry ; 30(3): e202303316, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37926692

RESUMO

Balgacyclamide A-C are a family of cyanobactin natural products isolated from freshwater cyanobacteria Microcystis aeruginosa. These macrocyclic peptides are characterized by their oxazoline-thiazole core, their 7 or 8 stereocenters, and their antiparasitic activities. Balgacyclamide B is known for its activity towards Plasmodium falciparum chloroquine-resistant strain K1, Trypanosoma brucei rhodesiense, and Leishmania donovani. In this report, the first total synthesis of Balgacyclamide B is described in a 17-steps pathway and a 2 % overall yield. The synthetic pathway toward balgacyclamide B can be adapted for the future syntheses of balgacyclamide A and C. In addition, a brief history background of oxazolines syntheses is shown to emphasize the importance of the cyclization conditions used to interconvert or retain configuration of ß-hydroxy amides via dehydrative cyclization.


Assuntos
Antiparasitários , Leishmania donovani , Peptídeos Cíclicos , Testes de Sensibilidade Parasitária , Trypanosoma brucei rhodesiense , Plasmodium falciparum
6.
Chemistry ; 30(3): e202302538, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37793025

RESUMO

Studies of the supramolecular chemistry of iso-tellurazole N-oxides have been confined to non-polar media until now. To overcome that limitation, an iso-tellurazole N-oxide was derivatized with a primary alcohol group; the compound is soluble in polar solvents and stable in acidic to neutral aqueous media. Nickel (II) and iron (II) form macrocyclic complexes with six molecules of that iso-tellurazole N-oxide in a hitherto not-observed macrocyclic arrangement defined by CTe⋅⋅⋅O chalcogen bonds and κ6 -O bound to the metal ion. This behaviour is in sharp contrast with the κn -Te (n=1,2,4) complexes formed by soft metal ions.

7.
Chemistry ; 30(8): e202302946, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37950681

RESUMO

Dipolar interactions are ever-present in supramolecular architectures, though their impact is typically revealed by making dipoles stronger. While it is also possible to assess the role of dipoles by altering their orientations by using synthetic design, doing so without altering the molecular shape is not straightforward. We have now done this by flipping one triazole unit in a rigid macrocycle, tricarb. The macrocycle is composed of three carbazoles (2 Debye) and three triazoles (5 Debye) defining an array of dipoles aligned radially but organized alternately in and out. These dipoles are believed to dictate edge-to-edge tiling and face-to-face stacking. We modified our synthesis to prepare isosteric macrocycles with the orientation of one triazole dipole rotated 40°. The new dipole orientation guides edge-to-edge contacts to reorder the stability of two surface-bound 2D polymorphs. The impact on dipole-enhanced π stacking, however, was unexpected. Our stacking model identified an unchanged set of short-range (3.4 Å) anti-parallel dipole contacts. Despite this situation, the reduction in self-association was attributed to long-range (~6.4 Å) dipolar repulsions between π-stacked macrocycles. This work highlights our ability to control the build-up and symmetry of macrocyclic skeletons by synthetic design, and the work needed to further our understanding of how dipoles control self-assembly.

8.
Chemistry ; 30(5): e202303490, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37930279

RESUMO

Cycloparaphenylenes (CPPs) are the smallest possible armchair carbon nanotubes, the properties of which strongly depend on their ring size. They can be further tuned by either peripheral functionalization or by replacing phenylene rings for other aromatic units. Here we show how four novel donor-acceptor chromophores were obtained by incorporating fluorenone or 2-(9H-fluoren-9-ylidene)malononitrile into the loops of two differently sized CPPs. Synthetically, we managed to perform late-stage functionalization of the fluorenone-based rings by high-yielding Knoevenagel condensations. The structures were confirmed by X-ray crystallographic analyses, which revealed that replacing a phenylene for a fused-ring-system acceptor introduces additional strain. The donor-acceptor characters of the CPPs were supported by absorption and fluorescence spectroscopic studies, electrochemical studies (displaying the CPPs as multi-redox systems undergoing reversible or quasi-reversible redox events), as well as by computations. The oligophenylene parts were found to comprise the electron donor units of the macrocycles and the fluorenone parts the acceptor units.

9.
Chemistry ; : e202402932, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39196848

RESUMO

Crownphyrinogens and crownphyrins constitute a group of macrocycles that combine the structural facets of porphyrinoids and crown ethers. The dual-nature cavity embedded in their molecules enables reactivity involving two structurally distinct parts of the macrocyclic ligand. Upon Ni(II) and Pd(II) insertion, coordination compounds are produced wherein the metal is incorporated into the porphyrinoid-like pocket, resulting in monomeric or accordion-like dimeric products, depending on the oxidation level of the macrocycle and metal cation. The reactions with Na(I) and K(I) resulted in the formation of complexes where only the crown ether segment of the molecule is involved in metal binding, yielding remarkable dimeric species. The exploitation of a crownphyrin large enough to accommodate two metal cations allowed the synthesis of an alkali/transition metal binuclear complexes wherein the macrocycle demonstrated the Janus reactivity with one cavity acting as a porphyrinoid, and the other mimicking the crown ether.

10.
Chemistry ; 30(45): e202401343, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38676431

RESUMO

A chiral shape-persistent macrocyclic compound (Si-[3]), designed by the C/Si substitution in the spiro-atom of spirobifluorene in the cyclic trimer (C-[3]), has been successfully synthesized in this study. The C/Si substitution made the spiro-conjugation and energy levels of HOMO and LUMO decrease. Due to the silicon substitution, the macrocyclic compound Si-[3] was able to be degraded by fluoride ions, but its reaction rate was slower than that of the unsubstituted spirosilabifluorene, showing the chemical stability of Si-[3]. Furthermore, the chiroptical properties of Si-[3] with D3-symmetric macrocyclic structure were investigated, and (P,P,P)-Si-[3] showed a high emission quantum yield (Φf=80 %) and moderate dissymmetry factor of circularly polarized luminescence (CPL) (glum,exp=-1.2×10-3). According to the time-dependent density-functional theory (TD-DFT) calculations using polarizable continuum model (PCM), the bright CPL from Si-[3] was explained by a planarization of one bisilafluorenyl moiety at the excited state, which is responsible for the almost fully-allowed radiative transition with a short emission lifetime of τf=1.89 ns.

11.
Chemistry ; : e202400231, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289151

RESUMO

We disclose the features of a category of reversible nucleophilic aromatic substitutions in view of their significance and generality in dynamic aromatic chemistry. Exchange of sulfur components surrounding arenes and heteroarenes may occur at 25 °C, in a process that one may call a "sulfur dance". These SN Ar systems present their own features, apart from common reversible reactions utilized in dynamic covalent chemistry (DCC). By varying conditions, covalent dynamics may operate to provide libraries of thiaarenes with some selectivity, or conversion of a hexa(thio)benzene asterisk into another one. The reversible nature of SN Ar is confirmed by three methods: a convergence of the products distribution in reversible SN Ar systems, a related product redistribution between two per(thio)benzenes by using a thiolate promoter, and from kinetic/thermodynamic data. A four-component dynamic covalent system further illustrates the thermodynamically-driven formation of a thiacalix[2]arene[2]pyrimidine by sulfur component exchanges. This work stimulates the implementation of reversible SN Ar in aromatic chemistry and in DCC.

12.
Chemistry ; 30(8): e202303270, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37987097

RESUMO

Macrocyclic and medium-sized ring ketones, lactones and lactams can all be made from common acryloyl imide starting materials through divergent, one-pot cascade ring-expansion reactions. Following either conjugate addition with an amine or nitromethane, or osmium(VIII)-catalysed dihydoxylation, rearrangement through a four-atom ring expansion takes place spontaneously to form the ring expanded products. A second ring expansion can also be performed following a second iteration of imide formation and alkene functionalisation/ring expansion. In the dihydroxylation series, three- or four-atom ring expansion can be performed selectively, depending on whether the reaction is under kinetic or thermodynamic control.

13.
Chemistry ; 30(5): e202302950, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37950682

RESUMO

We herein describe the synthesis of a new class of axially chiral aza/boracyclophanes (BDN1, BXN1, BDB1 and BXB1) using binaphthyls as chiral building blocks and the main-group (B/N) chemistry with tunable electronic effects. All macrocycles substituted with triarylamine donors or triarylborane acceptors are strongly luminescent. These macrocycles showed two distinct meta and para π-conjugation pathways, leading to the formation of quasi figure-of-eight and square-shaped conformations. Interestingly, comparison of such structural models revealed that the former type of macrocycles BXN1 and BXB1 gave higher racemization barriers relative to the other ones. The results reported here may provide a new approach to engineer the optical stability of π-conjugated chiral macrocycles by controlling π-substitution patterns. The ring constraints induced by macrocyclization were also demonstrated to contribute to the configurational persistence as compared with the open-chain analogues p-BTT and m-BTT.

14.
Chemistry ; : e202402931, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39243222

RESUMO

Two fenestrindane-based porous nanographenes containing four polyaromatic macrocycles in a highly twisted, basically S4-symmetric conformation were synthesized and characterized by NMR spectroscopy and mass spectrometry. Stepwise π-extension at the periphery of the fenestrindane core by a sequence of eightfold Suzuki-Miyaura cross-coupling, fourfold Scholl cyclodehydrogenation and another eightfold Suzuki-Miyaura reaction affords the porous nanographene precursors in good yields. In the last step, fourfold intramolecular Yamamoto coupling generates the porous nanographenes in 17-18% yield. Their optical and electronic properties were studied by UV/Vis and fluorescence spectroscopy and cyclic voltammetry. DFT calculations revealed structural details of the macrocycles. The surprisingly weak binding of these porous structures with chloride ions (K ≈ 10 M-1) is attributed to their highly twisted conformation. The title compounds represent the first porous nanographenes based on the [5.5.5.5]fenestrane motif and, at the same time, they consist of a fenestrane-like polyarylene network.

15.
Chemistry ; : e202402702, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121347

RESUMO

Thiol-disulfide interchange has been an active field of study for biochemists and physical organic chemists alike due to its prevalence within biological systems and fundamentally interesting dynamic nature. More recently, efforts have been made to harness the power of this reversible reaction to make self-assembling systems of macrocyclic and cage-like molecules. However, less effort has focused on the fundamental study of isolating these assemblies and analyzing the factors that control the assembly and sorting of these emerging cyclic systems. We have shown previously that pnictogen-assisted self-assembly enables formation of discrete disulfide macrocycles and cages without competition from polymer formation for a wide variety of alkyl thiols. Herein we report the expansion of these methods to form disulfide macrocycles from aryl thiol containing ligands, allowing access to previously unreported molecules. More importantly, the development of this new self-assembly chemistry allows for a comparison of aryl vs alkyl disulfide exchange and self-assembly. These studies complement classical physical organic and chemical biology studies on the kinetics and thermodynamics of aryl thiol oxidation to disulfides, and we show that this self-assembly method revises some prevailing wisdom from these key classical studies by providing new product distributions and new isolable products in cyclic disulfide formation.

16.
Chemistry ; 30(24): e202400498, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38380876

RESUMO

Incorporation of privileged catalytic scaffolds into a macrocyclic skeleton represents an attractive strategy to furnish supramolecular catalysis systems with enzyme-mimetic cavity and multi-site cooperation. Herein we reported the synthesis, structure, binding properties and catalytic application of a series of chiral bis-phosphate macrocycles toward the challenging asymmetric electrophilic fluorination. With a large, integrated chiral cavity and two cooperative phosphate sites, these macrocycles exhibited good inclusion toward 1,4-diazabicyclo[2.2.2]octane (DABCO) dicationic ammoniums through complementary ion-pair and C-H⋅⋅⋅O interactions, as confirmed by crystallographic and solution binding studies. In fluorocyclization of tryptamines with Selectfluor reagent which has a similar DABCO-based dicationic structure, only 2 mol% macrocycle catalyst afforded the desired pyrroloindoline products in moderate yields and up to 91 % ee. For comparison, the acyclic mono-phosphate analogue gave obviously lower reactivity and enantioselectivity (<20 % ee), suggesting a remarkable macrocyclic effect. The high catalytic efficiency and superior stereocontrol were ascribed to the tight ion-pair binding and cavity-directed noncovalent interaction cooperation.

17.
Chemistry ; 30(25): e202304230, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38314967

RESUMO

Processive catalysts remain attached to a substrate and perform multiple rounds of catalysis. They are abundant in nature. This review highlights artificial processive catalytic systems, which can be divided into (A) catalytic rings that move along a polymer chain, (B) catalytic pores that hold polymer chains and decompose them, (C) catalysts that remain attached to and move around a cyclic substrate via supramolecular interactions, and (D) anchored catalysts that remain in contact with a substrate via multiple catalytic interactions (see frontispiece).

18.
J Comput Aided Mol Des ; 38(1): 19, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630341

RESUMO

Scaffold replacement as part of an optimization process that requires maintenance of potency, desirable biodistribution, metabolic stability, and considerations of synthesis at very large scale is a complex challenge. Here, we consider a set of over 1000 time-stamped compounds, beginning with a macrocyclic natural-product lead and ending with a broad-spectrum crop anti-fungal. We demonstrate the application of the QuanSA 3D-QSAR method employing an active learning procedure that combines two types of molecular selection. The first identifies compounds predicted to be most active of those most likely to be well-covered by the model. The second identifies compounds predicted to be most informative based on exhibiting low predicted activity but showing high 3D similarity to a highly active nearest-neighbor training molecule. Beginning with just 100 compounds, using a deterministic and automatic procedure, five rounds of 20-compound selection and model refinement identifies the binding metabolic form of florylpicoxamid. We show how iterative refinement broadens the domain of applicability of the successive models while also enhancing predictive accuracy. We also demonstrate how a simple method requiring very sparse data can be used to generate relevant ideas for synthetic candidates.


Assuntos
Produtos Biológicos , Aprendizagem Baseada em Problemas , Distribuição Tecidual , Lactonas , Piridinas
19.
Macromol Rapid Commun ; 45(3): e2300527, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37990851

RESUMO

Catalytic hydrosilylation is one of the important synthetic approaches to prepare functional organosilicon polymers. Herein, a functional silicon copolymer is constructed by polyhydrosilylation reaction between a novel 3,7-bis(dimethyl silane)-10-(2-ethylhexyl)-10H-phenothiazine monomer and a neutral tetrapyrrolic macrocycle, namely, 5,5,10,15,15,20-hexamethyl-10α, 20α-bis(4-[ethynylphenyl]) calix[4]pyrrole. The as-constructed copolymer (Mn  = 9609, PDI = 2.2) is investigated as an extractant for organic anions as their tetrabutylammonium salts under interfacial aqueous-organic (water-chloroform) conditions. In this context, a distinctive naked-eye colorimetric as well as fluorescence detection method is developed based on anion-directed hydrogen-bonding interactions. This kind of color/fluorescence monitoring serves as a handy tool for rapid screening of anion extraction processes. The copolymer exhibits high selectivity toward extraction of chloride anion. This study augments the field of polycarbosilanes, poly(silylenevinylene)s in particular, allowing access to a new application window that can be further advanced with good grace in near future.


Assuntos
Polímeros , Pirróis , Ânions , Ligação de Hidrogênio , Halogênios
20.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34789566

RESUMO

We report a molecular switching ensemble whose states may be regulated in synergistic fashion by both protonation and photoirradiation. This allows hierarchical control in both a kinetic and thermodynamic sense. These pseudorotaxane-based molecular devices exploit the so-called Texas-sized molecular box (cyclo[2]-(2,6-di(1H-imidazol-1-yl)pyridine)[2](1,4-dimethylenebenzene); 14+, studied as its tetrakis-PF6- salt) as the wheel component. Anions of azobenzene-4,4'-dicarboxylic acid (2H+•2) or 4,4'-stilbenedicarboxylic acid (2H+•3) serve as the threading rod elements. The various forms of 2 and 3 (neutral, monoprotonated, and diprotonated) interact differently with 14+, as do the photoinduced cis or trans forms of these classic photoactive guests. The net result is a multimodal molecular switch that can be regulated in synergistic fashion through protonation/deprotonation and photoirradiation. The degree of guest protonation is the dominating control factor, with light acting as a secondary regulatory stimulus. The present dual input strategy provides a complement to more traditional orthogonal stimulus-based approaches to molecular switching and allows for the creation of nonbinary stimulus-responsive functional materials.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa