Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nano Lett ; 24(9): 2894-2903, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38407042

RESUMO

Harnessing the potential of tumor-associated macrophages (TAMs) to engulf tumor cells offers promising avenues for cancer therapy. Targeting phagocytosis checkpoints, particularly the CD47-signal regulatory protein α (SIRPα) axis, is crucial for modulating TAM activity. However, single checkpoint inhibition has shown a limited efficacy. In this study, we demonstrate that ferrimagnetic vortex-domain iron oxide (FVIO) nanoring-mediated magnetic hyperthermia effectively suppresses the expression of CD47 protein on Hepa1-6 tumor cells and SIRPα receptor on macrophages, which disrupts CD47-SIRPα interaction. FVIO-mediated magnetic hyperthermia also induces immunogenic cell death and polarizes TAMs toward M1 phenotype. These changes collectively bolster the phagocytic ability of macrophages to eliminate tumor cells. Furthermore, FVIO-mediated magnetic hyperthermia concurrently escalates cytotoxic T lymphocyte levels and diminishes regulatory T cell levels. Our findings reveal that magnetic hyperthermia offers a novel approach for dual down-regulation of CD47 and SIRPα, reshaping the tumor microenvironment to stimulate immune responses, culminating in significant antitumor activity.


Assuntos
Hipertermia Induzida , Neoplasias , Humanos , Antígeno CD47 , Regulação para Baixo , Imunoterapia , Fagocitose , Fenômenos Magnéticos , Neoplasias/patologia , Microambiente Tumoral
2.
Mol Cell Biochem ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347264

RESUMO

Cancer immunotherapies have greatly changed the prospects for the therapy of many malignancies, including colon cancer. Macrophages as the effectors of cancer immunotherapy provide considerable promise for cancer treatment. Prolyl 4-hydroxylase subunit alpha 3 (P4HA3) plays a cancer-promoting role in a variety of cancers, including colon cancer. In the present work, we provided evidence for the first time that P4HA3 promoted colon cancer cell escape from macrophage phagocytosis, and preliminarily explored its possible molecular mechanism. Immunohistochemistry was used to detect the expression of P4HA3 in tissues. Bioinformatics methods were used to analyze the tumor public databases (including TCGA database and GEO database). Macrophage phagocytosis assay and flow cytometric analysis were used to detect the phagocytic capacity of macrophages. Western blot and qRT-PCR were used to detect the expression of related markers (such as P4HA3, CD47, CD24, IL-34, and M-CSF). First, we found that P4HA3 was significantly and highly expressed in both colon cancer tissues and cells, and that P4HA3 had a positive correlation with lymph node metastasis, Dukes stage and also strongly correlated with poorer survival. Subsequently, we found that P4HA3 was strongly associated with the macrophage infiltration level in colon cancer. Immediately we also found that decreasing P4HA3 expression promoted macrophage phagocytosis in colon cancer cells, whereas P4HA3 overexpression produced the opposite effect. Finally, we demonstrated that P4HA3 promoted the expression of cluster of differentiation 47 (CD47) in colon cancer cells. Moreover, P4HA3 caused colon cancer cells to secrete Interleukin 34 (IL34) and Macrophage colony stimulating factor (M-CSF), which further induced macrophages to differentiate to M2 type and thereby contributed to the progression of colon cancer. We have demonstrated that P4HA3-driven CD47 overexpression may act as an escape mechanism, causing colon cancer cells to evade phagocytosis from macrophages.

3.
Cytotherapy ; 25(9): 967-976, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37330732

RESUMO

BACKGROUND/AIMS: Although several studies have demonstrated that mesenchymal stromal cells (MSCs) exhibit beneficial immunomodulatory properties in preclinical models of allergic asthma, effects on airway remodeling have been controversial. Recent evidence has shown that MSCs modify their in vivo immunomodulatory actions depending on the specific inflammatory environment encountered. Accordingly, we assessed whether the therapeutic properties of human mesenchymal stromal cells (hMSCs) could be potentiated by conditioning these cells with serum (hMSC-serum) obtained from patients with asthma and then transplanted in an experimental model of house dust mite (HDM)-induced allergic asthma. METHODS: hMSC and hMSC-serum were administered intratracheally 24 h after the final HDM challenge. hMSC viability and inflammatory mediator production, lung mechanics and histology, bronchoalveolar lavage fluid (BALF) cellularity and biomarker levels, mitochondrial structure and function as well as macrophage polarization and phagocytic capacity were assessed. RESULTS: Serum preconditioning led to: (i) increased hMSC apoptosis and expression of transforming growth factor-ß, interleukin (IL)-10, tumor necrosis factor-α-stimulated gene 6 protein and indoleamine 2,3-dioxygenase-1; (ii) fission and reduction of the intrinsic respiratory capacity of mitochondria; and (iii) polarization of macrophages to M2 phenotype, which may be associated with a greater percentage of hMSCs phagocytosed by macrophages. Compared with mice receiving hMSCs, administration of hMSC-serum led to further reduction of collagen fiber content, eotaxin levels, total and differential cellularity and increased IL-10 levels in BALF, improving lung mechanics. hMSC-serum promoted greater M2 macrophage polarization as well as macrophage phagocytosis, mainly of apoptotic hMSCs. CONCLUSIONS: Serum from patients with asthma led to a greater percentage of hMSCs phagocytosed by macrophages and triggered immunomodulatory responses, resulting in further reductions in both inflammation and remodeling compared with non-preconditioned hMSCs.


Assuntos
Asma , Células-Tronco Mesenquimais , Humanos , Asma/terapia , Pulmão/patologia , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fagocitose
4.
Cancer Immunol Immunother ; 70(3): 787-801, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32995942

RESUMO

CD47 is over-expressed in Acute Myeloid Leukemia (AML) and functions as an inhibitory signal, suppressing phagocytosis by binding to signal regulatory protein α (SIRPα) on the surface of macrophages. Inhibition of CD47 restores the immune surveillance of AML cells. However, the inhibition of CD47 in AML by activated macrophages and the subsequent effects on different immune response parameters are not fully understood. Here, we demonstrate the use of a distinct co-culture method to inhibit CD47 and therefore eliminate AML cells by macrophages in vitro. Human chemically induced THP-1 macrophages were activated using different concentrations of lipopolysaccharide (LPS) and co-culturing with three AML cancer cell lines (HL-60, NB4, and THP-1), respectively, as well as normal human peripheral blood mononuclear cells (PBMC). CD47 inhibition was observed in and selective to AML but not observed in normal PBMC. Additionally, calreticulin (CRT) levels were elevated in the same cell lines simultaneously, after co-culturing with activated human macrophages, but not elevated in normal cells. We also show that the activated macrophages secreted high levels of cytokines, including IL-12p70, IL-6, and TNF-α, consistent with the elimination of AML by macrophages. Our study reveals the potential of this model for screening new drugs against AML and the possibility of using human macrophages in AML treatment in the future.


Assuntos
Antígeno CD47/metabolismo , Calreticulina/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Biomarcadores , Antígeno CD47/genética , Calreticulina/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Técnicas de Cocultura , Regulação da Expressão Gênica , Humanos , Imunofenotipagem , Leucemia/etiologia , Leucemia/metabolismo , Leucemia/patologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia
5.
Adv Funct Mater ; 31(5)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33692665

RESUMO

Macrophages are one of the most abundant non-malignant cells in the tumor microenvironment, playing critical roles in mediating tumor immunity. As important innate immune cells, macrophages possess the potential to engulf tumor cells and present tumor-specific antigens for adaptive antitumor immunity induction, leading to growing interest in targeting macrophage phagocytosis for cancer immunotherapy. Nevertheless, live tumor cells have evolved to evade phagocytosis by macrophages via the extensive expression of anti-phagocytic molecules, such as CD47. In addition, macrophages also rapidly recognize and engulf apoptotic cells (efferocytosis) in the tumor microenvironment, which inhibits inflammatory responses and facilitates immune escape of tumor cells. Thus, intervention of macrophage phagocytosis by blocking anti-phagocytic signals on live tumor cells or inhibiting tumor efferocytosis presents a promising strategy for the development of cancer immunotherapies. Here, the regulation of macrophage-mediated tumor cell phagocytosis is first summarized, followed by an overview of strategies targeting macrophage phagocytosis for the development of antitumor therapies. Given the potential off-target effects associated with the administration of traditional therapeutics (for example, monoclonal antibodies, small molecule inhibitors), we highlight the opportunity for nanomedicine in macrophage phagocytosis intervention.

6.
Brain Behav Immun ; 95: 154-167, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33737172

RESUMO

Impaired amyloid-ß (Aß) clearance is believed to be a primary cause of Alzheimer's disease (AD), and peripheral abnormalities in Aß clearance have recently been linked to AD pathogenesis and progression. Data from recent genome-wide association studies have linked genetic risk factors associated with altered functions of more immune cells to AD pathology. Here, we first identified correlations of Smad3 signaling activation in peripheral macrophages with AD progression and phagocytosis of Aß. Then, manipulating the Smad3 signaling regulated macrophage phagocytosis of Aß and induced switch of macrophage inflammatory phenotypes in our cell cultures. In our mouse models, flag-tagged or fluorescent-dye conjugated Aß was injected into the lateral ventricles or tail veins, and traced. Interestingly, blocking Smad3 signaling efficiently increased Aß clearance by macrophages, reduced Aß in the periphery and thereby enhanced Aß efflux from the brain. Moreover, in our APP/PS1 transgenic AD model mice, Smad3 inhibition significantly attenuated Aß deposition and neuroinflammation, and ameliorated cognitive deficits, probably by enhancing the peripheral clearance of Aß. In conclusion, enhancing Aß clearance by peripheral macrophages through Smad3 inhibition attenuated AD-related pathology and cognitive deficits, which may provide a new perspective for understanding AD and finding novel therapeutic approaches.


Assuntos
Doença de Alzheimer , Macrófagos , Proteína Smad3 , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Estudo de Associação Genômica Ampla , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
7.
Transfus Apher Sci ; 60(1): 102930, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32933846

RESUMO

Liver-targeted cargo delivery possesses great potential for the treatment of liver disease. It is urgent to find an efficient and biocompatible liver targeted delivery system. This study focused on the liver targeting properties of erythrocyte ghosts and its possible mechanism. Herein, we optimized conditions to fabricate human and mouse erythrocyte ghosts with sufficient room capable of incorporating various model substances. Erythrocyte ghosts are biocompatible cargo carriers because it is derived from autologous red blood cells (RBCs), and the cell size, zeta potential, and biconcave-disk shape of the ghosts were consistent with those of RBCs. An in vivo imaging system and positron emission tomography/computed tomography imaging showed that the ghosts were captured mainly in the liver by intravenous injection of fluorescence or 18F-fluorodeoxyglucose (FDG)-labelled ghosts into mice. In contrast, the main concentration of naked octreotide was trapped in the lungs while naked 18F-FDG was trapped in the heart. However, the concentration of cargo-loaded ghosts decreased significantly in the liver in macrophage-depleted mice. Accordingly, in vitro experiments showed that higher phosphatidylserine exposure was observed in the ghosts (38.9 %) compared to normal erythrocytes (0.69 %), and the phagocytic activity of the macrophage RAW 264.7. on the ghosts was significantly higher than that of normal erythrocytes (p < 0.001). Together they indicate that erythrocyte ghosts show liver targeting properties, and possibly owing to macrophage phagocytosis. This promising and effective therapeutic delivery system may provide therapeutic benefits for liver disease.


Assuntos
Contagem de Eritrócitos/métodos , Macrófagos/metabolismo , Humanos
8.
Environ Toxicol ; 36(1): 77-85, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32889744

RESUMO

Mangiferin is a naturally occurring polyphenol, widely distributed in Thymeraceae families, and presents pharmacological activity, including anti-cancer activities in many human cancer cell lines. Mangiferin has also been reported to affect immune responses; however, no available information concerning the effects of mangiferin on immune reactions in leukemia mice in vivo. In the present study, we investigated the effects of mangiferin on leukemia WEHI-3 cell generated leukemia BLAB/c mice. Overall, the experiments were divided into two parts, one part was immune responses experiment and the other was the survival rate experiment. The immune responses and survival rate study, 40 mice for each part, were randomly separated into five groups (N = 8): Group I was normal animals and groups II-V WEHI-3 cell generated leukemia mice. Group II mice were fed normal diet as a positive control; group III, IV, and V mice received mangiferin at 40, 80, and 120 mg/kg, respectively, by intraperitoneal injection every 2 days for 20 days. Leukocytes cell population, macrophage phagocytosis, and NK cell activities were analyzed by flow cytometry. Isolated splenocytes stimulated with lipopolysaccharide (LPS) and concanavalin A (Con A) were used to determine the proliferation of B and T cells, respectively, and subsequently were analyzed by flow cytometry. Results indicated that mangiferin significantly increased body weight, decreased the liver and spleen weights of leukemia mice. Mangiferin also increased CD3 T-cell and CD19 B cell population but decreased Mac-3 macrophage and CD11b monocyte. Furthermore, mangiferin decreased phagocytosis of macrophages from PBMC and peritoneal cavity at 40, 80, and 120 mg/kg treatment. However, it also increased NK cell activity at 40 and 120 mg/kg treatment. There were no effects on T and B cell proliferation at three examined doses. In survival rate studies, mangiferin significantly elevated survival rate at 40 and 120 mg/kg treatment of leukemia mice in vivo.

9.
Environ Toxicol ; 35(4): 457-467, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31793136

RESUMO

Cardamonin, a monomeric alkaloid, is isolated from Alpinia conchigera Griff and other natural plants. Recently, it has been focused on its anticancer activities, and no information showing its immune effects on leukemia mice was reported. In this study, we investigated the immune effects of cardamonin on WEHI-3 cell-generated leukemia mice. Forty BALB/c mice were randomly divided into four groups: Group I mice were normal animals and groups II-IV were leukemia. Group II mice, as a positive control, were administered with normal diet, and group III and IV mice were treated with 1 and 5 mg/kg of cardamonin, respectively, by intraperitoneal injection every 2 days for 14 days. The population of white blood cells, macrophage phagocytosis, and the proliferations of T and B cells were analyzed by flow cytometry. Another forty mice were also separated randomly into four groups for the determination of survival rate. Results showed that cardamonin did not affect body weight. Cardamonin decreased CD3, CD11b, and Mac-3 cell populations but increased CD19 number. Cardamonin enhanced phagocytic abilities of macrophages from the peripheral blood mononuclear cells of leukemia mice. Furthermore, cardamonin at 1 mg/kg treatment improved the survival rate of leukemia mice in vivo. Therefore, cardamonin could be applied for a leukemia therapeutic reagent at a defined dose.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Chalconas/farmacologia , Leucemia Experimental/tratamento farmacológico , Leucemia Experimental/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Animais , Antígenos CD19/sangue , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Leucócitos Mononucleares/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , Taxa de Sobrevida
10.
J Magn Reson Imaging ; 49(4): 1166-1173, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30390366

RESUMO

BACKGROUND: Inflammation involves a heterogeneous macrophage population, for which there is no readily available MR assessment method. PURPOSE: To assess the feasibility of distinguishing proinflammatory M1 and antiinflammatory M2 macrophages at MRI enhanced with gadolinium liposomes or ultrasmall superparamagnetic iron oxide particles. STUDY TYPE: In vitro. SPECIMEN: We employed cultured RAW macrophages. M0 macrophages were polarized with lipopolysaccharide (LPS) or interleukin-4 (IL-4), resulting in M1 or M2 macrophages. The macrophages were incubated with gadolinium (±rhodamine) liposomes or iron oxide particles and cell pellets were prepared for MRI. FIELD STRENGTH/SEQUENCE: Transverse relaxation rates and quantitative susceptibility were obtained at 3.0T with multiecho turbo spin echo and spoiled gradient echo sequences. ASSESSMENT: MRI results were compared with confocal microscopy, flow cytometry, and expression of endocytosis, M1 and M2 genes. STATISTICAL TESTS: Mann-Whitney and Kruskal-Wallis tests were performed. RESULTS: Higher transverse relaxation rates and susceptibility were observed in M1 than in M2 and M0 macrophages (P < 0.01 both with liposomes and USPIO) and significantly different susceptibility in M2 and M0 macrophages (P < 0.01 both with liposomes and USPIO). These MRI results were confirmed at confocal microscopy and flow cytometry. LPS macrophages displayed M1 gene expression, whereas IL-4 macrophages showed M2 polarization and lower endocytosis gene expression rates. DATA CONCLUSION: These in vitro results show that it is feasible to distinguish between proinflammatory M1 and antiinflammatory M2 macrophages according to their level of contrast agent uptake at MRI. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:1166-1173.


Assuntos
Compostos Férricos/química , Gadolínio/química , Lipossomos/química , Macrófagos/citologia , Imageamento por Ressonância Magnética , Animais , Meios de Contraste/química , Dextranos/química , Endocitose , Nanopartículas de Magnetita/química , Camundongos , Microscopia Confocal , Fagocitose , Fenótipo , Células RAW 264.7
11.
AAPS PharmSciTech ; 21(1): 15, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31807908

RESUMO

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis and represents one of the leading causes of mortality worldwide due to multidrug-resistant TB (MDR-TB). In our work, a new formulation of biodegradable PLGA microparticles was developed for pulmonary administration of gatifloxacin, using a surface modifier agent to actively target alveolar macrophages thereby allowing to gain access of the drug to Mycobacterium tuberculosis. For this, rapid uptake of the particles by macrophages is beneficial. This process was evaluated with fluorescein-loaded microparticles using PLGA 502 or PLGA 502H as polymers and labrafil as surface modifier. Cell phagocytosis was studied in raw 264.7 mouse macrophage cell line after 3, 5, 24, and 48 h incubation with the microparticles. Labrafil enhanced the uptake rate of PLGA 502H microparticles by macrophages which was directly related to the modification of the polymer matrix. Gatifloxacin-loaded PLGA microparticles using PLGA 502 or PLGA 502H and labrafil were prepared. From our results, only microparticles prepared with PLGA 502H and labrafil exhibited high encapsulation efficiency (89.6 ± 0.2%), rapid phagocytosis by macrophages (3 h), and remained inside the cells for at least 48 h, thereby resulting in a suitable carrier to potentially treat MDR-TB.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Gatifloxacina/administração & dosagem , Macrófagos/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Animais , Gatifloxacina/química , Macrófagos/fisiologia , Masculino , Camundongos , Microscopia Eletrônica de Varredura/métodos , Microesferas , Mycobacterium tuberculosis/fisiologia , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Células RAW 264.7 , Propriedades de Superfície , Tuberculose/tratamento farmacológico
12.
Appl Microbiol Biotechnol ; 102(15): 6503-6513, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29754163

RESUMO

Glioblastoma, characterized by extensive microvascular proliferation and invasive tumor growth, is one of the most common and lethal malignancies in adults. Benefits of the conventional anti-angiogenic therapy were only observed in a subset of patients and limited by diverse relapse mechanism. Fortunately, recent advances in cancer immunotherapy have offered new hope for patients with glioblastoma. Herein, we reported a novel dual-targeting therapy for glioblastoma through simultaneous blockade of VEGF and CD47 signaling. Our results showed that VEGFR1D2-SIRPαD1, a VEGF and CD47 bispecific fusion protein, exerted potent anti-tumor effects via suppressing VEGF-induced angiogenesis and activating macrophage-mediated phagocytosis. Meanwhile, autophagy was activated by VEGFR1D2-SIRPαD1 through inactivating Akt/mTOR and Erk pathways in glioblastoma cells. Importantly, autophagy inhibitor or knockdown of autophagy-related protein 5 potentiated VEGFR1D2-SIRPαD1-induced macrophage phagocytosis and cytotoxicity against glioblastoma cells. Moreover, suppression of autophagy led to increased macrophage infiltration, angiogenesis inhibition, and tumor cell apoptosis triggered by VEGF and CD47 dual-targeting therapy, thus eliciting enhanced anti-tumor effects in glioblastoma. Our data revealed that VEGFR1D2-SIRPαD1 alone or in combination with autophagy inhibitor could effectively elicit potent anti-tumor effects, highlighting potential therapeutic strategies for glioblastoma through disrupting angiogenetic axis and CD47-SIRPα anti-phagocytic axis alone or in combination with autophagy inhibition.


Assuntos
Autofagia/efeitos dos fármacos , Antígeno CD47/antagonistas & inibidores , Glioblastoma/tratamento farmacológico , Proteínas Recombinantes de Fusão/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Xenoenxertos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fagocitose/efeitos dos fármacos
13.
Fish Shellfish Immunol ; 37(1): 108-14, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24486630

RESUMO

Oral administration of chicken egg yolk immunoglobulins (IgY) has attracted much attention as a means for controlling infectious diseases caused by microorganisms. This study evaluated the protective effect of IgY against Vibrio anguillarum infection in ayu, Plecoglossus altivelis. IgY was isolated from egg yolks laid by hens initially immunized with formalin-inactivated V. anguillarum. Lower mortality of ayu was observed in groups treated with anti-V. anguillarum IgY (aVIgY), compared with those treated with saline or with nonspecific IgY (nspIgY). All fish in saline-treated groups died within seven days after bacterial inoculation. The bacterial load in blood, liver, and spleen was significantly lower in fish treated with aVIgY than in fish treated with nspIgY. aVIgY treatment significantly reduced tumor necrosis factor-α (PaTNF-α), interleukin-1ß (PaIL-1ß), transforming growth factor-ß (PaTGF-ß), and leukocyte cell-derived chemotaxin-2 (PaLECT2) transcript levels in the head kidney, spleen, and liver of ayu challenged by V. anguillarum, compared with nspIgY treatment. The phagocytic activity of macrophages for V. anguillarum in the presence of specific IgY was significantly higher than that seen for nonspecific IgY. These results suggest that passive immunization by oral intubation with pathogen-specific IgY may provide a valuable treatment for V. anguillarum infection in ayu.


Assuntos
Proteínas do Ovo/farmacologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Imunoglobulinas/farmacologia , Osmeriformes , Vibrioses/veterinária , Vibrio/imunologia , Administração Oral , Análise de Variância , Animais , Galinhas , Citocinas/metabolismo , Primers do DNA/genética , Proteínas do Ovo/administração & dosagem , Proteínas do Ovo/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Imunoglobulinas/administração & dosagem , Imunoglobulinas/imunologia , Estimativa de Kaplan-Meier , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Vibrioses/imunologia
14.
J Adv Pharm Technol Res ; 15(3): 237-241, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39290545

RESUMO

Isoniazid (INH) is a frontline antituberculosis agent effective against Mycobacterium tuberculosis (Mtb), but the increasing challenge of avoiding multidrug-resistant tuberculosis, including INH resistance, necessitates innovative approaches. This study focused on enhancing macrophage phagocytosis to overcome INH resistance. Glucomannan, an immunomodulatory polysaccharide, emerged as a potential macrophage activator. Our objective was to characterize the glucomannan-INH mixture and assess its impact on INH efficacy and macrophage activity. Detailed examination of the glucomannan from Amorphophallus muelleri (0.05%-0.2%) was performed in several methods. INH sensitivity tests were carried out with the Mtb strain H37RV on Löwenstein-Jensen medium. Murine macrophage (RAW264.7) viability and activity were evaluated through MTT and latex bead phagocytosis assays. Ultraviolet-wavelength spectrophotometry was used to analyze chemical structure changes. Glucomannan (0.05%-0.2%) significantly enhanced murine macrophage viability and activity. When glucomannan was combined with INH, the IC50 value was greater compared to INH only. Phagocytosis assays revealed heightened macrophage activity in the presence of 0.05% and 0.1% glucomannan. Importantly, glucomannan did not compromise INH efficacy or alter its chemical structure. This study underscores the potential of glucomannan, particularly with a lower molecular weight, as a promising enhancer of INH, boosting macrophage phagocytosis against INH-resistant Mtb. These findings challenge the assumptions about the impact of glucomannan on drug absorption and prompt potential reevaluation. While specific receptors for glucomannan in macrophage phagocytosis require further exploration, the complement receptors are proposed to be potential mediators.

15.
Antib Ther ; 7(3): 266-280, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39257438

RESUMO

As a major immune cell type in the tumor microenvironment, tumor-associated macrophages secrete suppressive factors that can inhibit antitumor immunity and promote tumor progression. One approach trying to utilize macrophages for immunotherapy has been to block the CD47-SIRPα axis, which mediates inhibitory signaling, to promote phagocytosis of tumor cells. Many CD47-targeted agents, namely, anti-CD47 antibodies and SIRPα fusion proteins, were associated with a diverse spectrum of toxicities that limit their use in clinical settings. Universal expression of CD47 also leads to a severe "antigen sink" effect of CD47-targeted agents. Given that the CD47 receptor, SIRPα, has a more restricted expression profile and may have CD47-independent functions, targeting SIRPα is considered to have distinct advantages in improving clinical efficacy with a better safety profile. We have developed ES004-B5, a potentially best-in-class pan-allelic human SIRPα-blocking antibody using hybridoma technology. ES004-B5 binds to major human SIRPα variants through a unique epitope with high affinity. By blocking CD47-induced inhibitory "don't-eat-me" signaling, ES004-B5 exerts superior antitumor activity in combination with anti-tumor-associated antigen antibodies in vitro and in vivo. Unlike CD47-targeted agents, ES004-B5 exhibits an excellent safety profile in nonhuman primates. ES004-B5 has potential to be an important backbone for SIRPα-based combination therapy and/or bispecific antibodies, which will likely overcome the limitations of CD47-targeted agents encountered in clinical settings.

16.
Adv Sci (Weinh) ; : e2403921, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352318

RESUMO

Erythrocytes are the dominant component of a blood clot in terms of volume and number. However, longstanding compacted erythrocytes in blood clots form a physical barrier and make fibrin mesh more anti-fibrinolytic, thus impeding infiltration of mesenchymal stem cells. The necrosis or lysis of erythrocytes that are not removed timely can also lead to the release of pro-inflammatory toxic metabolites, interfering with bone regeneration. Proper bio-elimination of erythrocytes is essential for an undisturbed bone regeneration process. Here, hypoxia-mimicking is applied to enhance macrophage-elimination of erythrocytes. The effect of macrophage-elimination of erythrocytes on the macrophage intracellular reaction, bone regenerative microenvironment, and bone regeneration outcome is investigated. Results show that the hypoxia-mimicking agent dimethyloxalylglycine successfully enhances erythrophagocytosis by macrophages in a dose-dependent manner primarily by up-regulating the expression of integrin αvß3. Increased phagocytosed erythrocytes then regulate macrophage intracellular Fe2+-glycolysis-inflammation, creating an improved bone regenerative microenvironment characterized by loose fibrin meshes with down-regulated local inflammatory responses in vivo, thus effectively promoting early osteogenesis and ultimate bone generation. Modulating macrophage-elimination of erythrocytes can be a promising strategy for eradicating erythrocyte-caused bone regeneration hindrance and offers a new direction for advanced biomaterial development focusing on the bio-elimination of erythrocytes.

17.
ACS Appl Mater Interfaces ; 16(32): 41788-41799, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39079025

RESUMO

Glycinamide ribonucleotide formyltransferase (GARFT) is an important enzyme in the folate metabolism pathway, and chemical drugs targeting GARFT have been used in tumor treatments over the past few decades. The development of novel antimetabolism drugs that target GARFT with improved performance and superior activity remains an attractive strategy. Herein, we proposed a targeted double-template molecularly imprinted polymer (MIP) for enhancing macrophage phagocytosis and synergistic antimetabolic therapy. The double-template MIP was prepared by imprinting the exposed peptide segment of the extracellular domain of CD47 and the active center of GARFT. Owing to the imprinted cavities on the surface of MIP, it can actively target cancer cells and mask the "do not eat me" signal upon binding to CD47 thereby blocking the CD47-SIRPα pathway and ultimately enhancing phagocytosis by macrophages. In addition, MIP can specifically bind to the active center of GARFT upon entry into the cells, thereby inhibiting its catalytic activity and ultimately interfering with the normal expression of DNA. A series of cell experiments demonstrated that MIP can effectively target CD47 overexpressed 4T1 cancer cells and inhibit the growth of 4T1 cells. The enhanced phagocytosis ability of macrophages-RAW264.7 cells was also clearly observed by confocal imaging experiments. In vivo experiments also showed that the MIP exhibited a satisfactory tumor inhibition effect. Therefore, this study provides a new idea for the application of molecular imprinting technology to antimetabolic therapy in conjunction with macrophage-mediated immunotherapy.


Assuntos
Antígeno CD47 , Macrófagos , Polímeros Molecularmente Impressos , Fagocitose , Antígeno CD47/metabolismo , Antígeno CD47/química , Fagocitose/efeitos dos fármacos , Animais , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Células RAW 264.7 , Polímeros Molecularmente Impressos/química , Linhagem Celular Tumoral , Feminino , Camundongos Endogâmicos BALB C , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia
18.
Environ Toxicol ; 28(11): 601-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24150866

RESUMO

Many anticancer drugs are obtained from phytochemicals and natural products. However, some phytochemicals have mutagenic effects. Safrole, a component of Piper betle inflorescence, has been reported to be a carcinogen. We have previously reported that safrole induced apoptosis in human oral cancer cells in vitro and inhibited the human oral tumor xenograft growth in vivo. Until now, there is no information addressing if safrole promotes immune responses in vivo. To evaluate whether safrole modulated immune function, BALB/c mice were intraperitoneally injected with murine myelomonocytic WEHI-3 leukemia cells to establish leukemia and then were treated with or without safrole at 4 and 16 mg/kg. Animals were sacrificed after 2 weeks post-treatment with safrole for examining the immune cell populations, phagocytosis of macrophages and the natural killer (NK) cells' cytotoxicity. Results indicated that safrole increased the body weight, and decreased the weights of spleen and liver in leukemic mice. Furthermore, safrole promoted the activities of macrophages phagocytosis and NK cells' cytotoxicity in leukemic mice when compared with untreated leukemic mice. After determining the cell marker population, we found that safrole promoted the levels of CD3 (T cells), CD19 (B cells) and Mac-3 (macrophages), but it did not affect CD11b (monocytes) in leukemic mice. In conclusion, safrole altered the immune modulation and inhibited the leukemia WEHI-3 cells in vivo.


Assuntos
Células Matadoras Naturais/efeitos dos fármacos , Leucemia Mieloide/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Safrol/farmacologia , Animais , Antígenos CD19/sangue , Apoptose/imunologia , Biomarcadores/sangue , Antígeno CD11b/sangue , Complexo CD3/sangue , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Leucemia Mieloide/imunologia , Leucemia Mieloide/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Fagocitose/efeitos dos fármacos , Safrol/uso terapêutico , Baço/efeitos dos fármacos , Baço/imunologia , Baço/patologia
19.
Adv Healthc Mater ; 12(26): e2300967, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37470683

RESUMO

Novel strategies to facilitate tumor-specific drug delivery and restore immune attacks remain to be developed to overcome the current limitations of chemotherapy. Herein, a cancer cell membrane (CM)-camouflaged and ultrasmall iron oxide nanoparticles (USIO NPs)-loaded polyethylenimine nanogel (NG) system is reported to co-deliver docetaxel (DTX) and CD47 siRNA (siCD47). The prepared co-delivery system exhibits good colloidal stability, biocompatibility, and r1 relaxivity (1.35 mM-1 s-1 ) and enables redox-responsive release of the loaded DTX in the tumor microenvironment. The NG system realizes homologous targeting delivery of DTX and siCD47 to murine breast cancer cells (4T1 cells) for efficient chemotherapy and gene silencing; thus, inducing immunogenic cell death (ICD) and restoring macrophage phagocytic effect through downregulation of "don't eat me" signals on cancer cells. Likewise, the co-delivery system can also act on macrophages to promote their M1 polarization, which can be combined with DTX-mediated ICD and antibody-mediated immune checkpoint blockade to generate effector T cells for robust chemoimmunotherapy. Further, the USIO NPs-incorporated NG system also allows for magnetic resonance imaging of tumors. The developed biomimetic NG system acting on both cancer cells and macrophages holds a promising potential for macrophage phagocytosis-restored chemoimmunotherapy.


Assuntos
Nanopartículas , Neoplasias , Camundongos , Animais , Nanogéis , Biomimética , Polietilenoimina , Linhagem Celular Tumoral , Docetaxel/farmacologia , Fagocitose , Macrófagos/metabolismo , Imageamento por Ressonância Magnética , Neoplasias/metabolismo , Imunoterapia/métodos , Microambiente Tumoral
20.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-37259426

RESUMO

Morphine, one of the most efficacious analgesics, is effective in severe pain, especially in patients with concomitant painful cancers. The clinical use of morphine may be accompanied by increased immunosuppression, susceptibility to infection and postoperative tumor metastatic recurrence, and the specific mechanisms and clinical strategies to alleviate this suppression remain to be investigated. Expression of CD11b is closely associated with the macrophage phagocytosis of xenobiotic particles, bacteria or tumor cells. Here, we find that morphine at 0.1-10 nM levels inhibited CD11b expression and function on macrophages via a µ-opioid receptor (MOR)-dependent mechanism, thereby reducing macrophage phagocytosis of tumor cells, a process that can be reversed by thymopentin (TP5), a commonly used immune-enhancing adjuvant in clinical practice. By knocking down or overexpressing MOR on macrophages and using naloxone, an antagonist of the MOR receptor, and LA1, a molecule that promotes macrophage CD11b activation, we suggest that morphine may regulate macrophage phagocytosis by inhibiting the surface expression and function of macrophage CD11b through the membrane expression and activation of MOR. The CD47/SIRPα axis, which is engaged in macrophage-tumor immune escape, was not significantly affected by morphine. Notably, TP5, when combined with morphine, reversed the inhibition of macrophage phagocytosis by morphine through mechanisms that promote membrane expression of CD11b and modulate its downstream signaling (e.g., NOS2, IFNG, IL1B and TNFA, as well as AGR1, PDGFB, IL6, STAT3, and MYC). Thus, altered membrane expression and function of CD11b may mediate the inhibition of macrophage phagocytosis by therapeutic doses of morphine, and the reversal of this process by TP5 may provide an effective palliative option for clinical immunosuppression by morphine.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa