Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Ecol ; 86(1): 154-162, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35881247

RESUMO

A breakdown in host-bacteria relationships has been associated with the progression of a number of marine diseases and subsequent mortality events. For the Pacific oyster, Crassostrea gigas, summer mortality syndrome (SMS) is one of the biggest constraints to the growth of the sector and is set to expand into temperate systems as ocean temperatures rise. Currently, a lack of understanding of natural spatiotemporal dynamics of the host-bacteria relationship limits our ability to develop microbially based monitoring approaches. Here, we characterised the associated bacterial community of C. gigas, at two Irish oyster farms, unaffected by SMS, over the course of a year. We found C. gigas harboured spatiotemporally variable bacterial communities that were distinct from bacterioplankton in surrounding seawater. Whilst the majority of bacteria-oyster associations were transient and highly variable, we observed clear patterns of stability in the form of a small core consisting of six persistent amplicon sequence variants (ASVs). This core made up a disproportionately large contribution to sample abundance (34 ± 0.14%), despite representing only 0.034% of species richness across the study, and has been associated with healthy oysters in other systems. Overall, our study demonstrates the consistent features of oyster bacterial communities across spatial and temporal scales and provides an ecologically meaningful baseline to track environmental change.


Assuntos
Crassostrea , Animais , Crassostrea/microbiologia , Temperatura , Bactérias/genética , Estações do Ano , Água do Mar/microbiologia
2.
Environ Monit Assess ; 195(1): 185, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36482211

RESUMO

Marine pollution in West Africa is major threat particularly around coastal megacities. We assess the chemical and ecotoxicological quality of the marine sediments in various submerged sampling sites of Dakar. Analysis revealed that sediments were slightly basic in which fine and coarse sands predominated. High percentages of total organic carbon were found sometime above 6%. Higher levels of heavy metal were reported than in previous studies. Chromium and nickel were above the Probable Effect Concentration. Low trophic level appeared not affected by the overall toxicity, while medium trophic level was more affected. Indeed, the vast majority (91%) of sites studied revealed a net percentage of Magallana gigas embryolarval developmental abnormality over 20%. The assessment of the global toxicity of marine sediments from the Dakar sites Studied (n = 11) seemed, almost, as a whole, to be in a poor ecotoxicological state calling to take measures to improve the sanitary condition of this marine feature.


Assuntos
Ecotoxicologia , Monitoramento Ambiental , Senegal , África Ocidental
3.
Parasitology ; 145(6): 814-821, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29183410

RESUMO

Invasive parasites can spill over to new hosts in invaded ecosystems with often unpredictable trophic relationships in the newly arising parasite-host interactions. In European seas, the intestinal copepod Mytilicola orientalis was co-introduced with Pacific oysters (Magallana gigas) and spilled over to native blue mussels (Mytilus edulis), with negative impacts on the condition of infected mussels. However, whether the parasite feeds on host tissue and/or stomach contents is yet unknown. To answer this question, we performed a stable isotope analysis in which we included mussel host tissue and the primary food sources of the mussels, microphytobenthos (MPB) and particulate organic matter (POM). The copepods were slightly enriched in δ15N (mean Δ15N ± s.d.; 1·22 ± 0·58‰) and δ13C (Δ13C 0·25 ± 0·32‰) with respect to their host. Stable isotope mixing models using a range of trophic fractionation factors indicated that host tissue was the main food resource with consistent additional contributions of MPB and POM. These results suggest that the trophic relationship of the invasive copepod with its mussel host is parasitic as well as commensalistic. Stable isotope studies such as this one may be a useful tool to unravel trophic relationships in new parasite-host associations in the course of invasions.


Assuntos
Copépodes/fisiologia , Interações Hospedeiro-Parasita , Mytilus edulis/fisiologia , Simbiose , Animais , Ecossistema , Comportamento Alimentar , Cadeia Alimentar , Marcação por Isótopo/métodos , Mytilus edulis/parasitologia
4.
Int J Mol Sci ; 19(6)2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844279

RESUMO

Uridine diphosphate galactose (UDP-galactose) is a valuable building block in the enzymatic synthesis of galactose-containing glycoconjugates. UDP-glucose 4-epimerase (UGE) is an enzyme which catalyzes the reversible conversion of abundantly available UDP-glucose to UDP-galactose. Herein, we described the cloning, expression, purification, and biochemical characterization of an unstudied UGE from the oyster Magallana gigas (MgUGE). Activity tests of recombinantly expressed MgUGE, using HPLC (high-performance liquid chromatography), mass spectrometry, and photometric assays, showed an optimal temperature of 16 °C, and reasonable thermal stability up to 37 °C. No metal ions were required for enzymatic activity. The simple nickel-affinity-purification procedure makes MgUGE a valuable biocatalyst for the synthesis of UDP-galactose from UDP-glucose. The biosynthetic potential of MgUGE was further exemplified in a coupled enzymatic reaction with an oyster-derived ß-1,4-galactosyltransferase (MgGalT7), allowing the galactosylation of the model substrate para-nitrophenol xylose (pNP-xylose) using UDP-glucose as the starting material.


Assuntos
Galactosiltransferases/metabolismo , Glicoconjugados/biossíntese , Ostreidae/enzimologia , UDPglucose 4-Epimerase/metabolismo , Animais , Uridina Difosfato Galactose/metabolismo
5.
Wellcome Open Res ; 9: 284, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050697

RESUMO

We present a genome assembly from an individual Magallana gigas (the Pacific oyster; Mollusca; Bivalvia; Ostreida; Ostreidae). The genome sequence is 564.0 megabases in span. Most of the assembly is scaffolded into 10 chromosomal pseudomolecules. The mitochondrial genome has also been assembled and is 18.23 kilobases in length.

6.
G3 (Bethesda) ; 14(9)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-38869232

RESUMO

Maintaining genetic diversity in cultured shellfish can be challenging due to high variance in individual reproductive success, founder effects, and rapid genetic drift, but is important to retain adaptive potential and avoid inbreeding depression. To support broodstock management and selective breeding in cultured Pacific oysters (Crassostrea (Magallana) gigas), we developed an amplicon panel targeting 592 genomic regions and SNP variants with an average of 50 amplicons per chromosome. Target SNPs were selected based on elevated observed heterozygosity or differentiation in Pacific oyster populations in British Columbia, Canada. The use of the panel for parentage applications was evaluated using multiple generations of oysters from a breeding program on Vancouver Island, Canada (n = 181) and families selected for Ostreid herpesvirus-1 resistance from the Molluscan Broodstock Program in Oregon, USA (n = 136). Population characterization was evaluated using wild, naturalized, farmed, or hatchery oysters sampled throughout the Northern Hemisphere (n = 189). Technical replicates showed high genotype concordance (97.5%; n = 68 replicates). Parentage analysis found suspected pedigree and sample handling errors, demonstrating the panel's value for quality control in breeding programs. Suspected null alleles were identified and found to be largely population dependent, suggesting population-specific variation impacting target amplification. Null alleles were identified using existing data without the need for pedigree information, and once they were removed, assignment rates increased to 93.0 and 86.0% of possible assignments in the two breeding program datasets. A pipeline for analyzing the amplicon sequence data from sequencer output, amplitools, is also provided.


Assuntos
Genótipo , Técnicas de Genotipagem , Polimorfismo de Nucleotídeo Único , Animais , Técnicas de Genotipagem/métodos , Crassostrea/genética , Crassostrea/virologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Ostreidae/genética
7.
Sci Total Environ ; 952: 175762, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39197777

RESUMO

The success of non-native species (NNS) invasions depends on patterns of dispersal and connectivity, which underpin genetic diversity, population establishment and growth. In the marine environment, both global environmental change and increasing anthropogenic activity can alter hydrodynamic patterns, leading to significant inter-annual variability in dispersal pathways. Despite this, multi-generational dispersal is rarely explicitly considered in attempts to understand NNS spread or in the design of management interventions. Here, we present a novel approach to quantifying species spread that considers range expansion and network formation across time using the non-native Pacific oyster, Magallana gigas (Thunberg 1793), as a model. We combined biophysical modelling, dynamic patch occupancy models, consideration of environmental factors, and graph network theory to model multi-generational dispersal in northwest Europe over 13 generations. Results revealed that M. gigas has a capacity for rapid range expansion through the creation of an ecological network of dispersal pathways that remains stable through time. Maximum network size was achieved in four generations, after which connectivity patterns remained temporally stable. Multi-generational connectivity could therefore be divided into two periods: network growth (2000-2003) and network stability (2004-2012). Our study is the first to examine how dispersal trajectories affect the temporal stability of ecological networks across biogeographic scales, and provides an approach for the assignment of site-based prioritisation of non-native species management at different stages of the invasion timeline. More broadly, the framework we present can be applied to other fields (e.g. Marine Protected Area design, management of threatened species and species range expansion due to climate change) as a means of characterising and defining ecological network structure, functioning and stability.


Assuntos
Ecossistema , Espécies Introduzidas , Animais , Distribuição Animal , Ostreidae/fisiologia , Europa (Continente) , Dinâmica Populacional
8.
Mar Environ Res ; 198: 106484, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604050

RESUMO

The growth of the human population causes significant harm to ecosystems, directly affecting the biological diversity of coastal areas by replacing natural habitats with artificial structures such as breakwaters, ports, and marinas. The hard substrate from those marine facilities lacks the topographic complexity of natural habitats. Because of that, artificial habitats usually do not support a diverse community to the same extent as rocky shores in the surroundings. To address this issue and bring a strategic solution to the improper disposal of shell waste from aquaculture farms, we evaluated how increasing the environmental heterogeneity of walls by incorporating mussel and oyster shells on artificial concrete affected the diversity of sessile organisms from the subtidal zone. Adding shells to concrete positively affected ascidians' richness. Substrates with added shells supported more species than flat substrates in total. They promoted species that did not occur on flat substrates that simulated the traditional walls of marinas and harbors. However, it did not affect the number of bryozoans and the average species richness. Consequently, incorporating shells resulted in communities with completely distinct structures from those on flat substrates. Adding shells affected the community structure, reducing the dominance by the exotic bryozoan Schizoporella errata, and promoting the occurrence of other groups, such as ascidians. Using shell residues from aquaculture on marina walls adds substrate for colonization. Still, it is also likely to provide refuges for fragile and vulnerable organisms, like crevices and pits in natural habitats. Because of that, the increment in diversity was mostly group-specific and restricted to ascidians. This research reinforces the importance of creating complex artificial coastal structures, inspired by the blue economy, for a more heterogeneous coverage of sessile communities and reduced presence and dominance of exotic species. Thus, the strategy tested here, besides the effects on the sessile community, also supports efforts to reduce inappropriate waste disposal in the environment.


Assuntos
Aquicultura , Biodiversidade , Animais , Ecossistema , Organismos Aquáticos , Exoesqueleto , Bivalves/fisiologia , Ostreidae/fisiologia
9.
Ecol Evol ; 14(9): e70238, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39290665

RESUMO

Oysters are ecosystem engineering species building reef-like biogenic structures in temperate shallow water environments, serving as biodiversity hotspots. Recently, also their ecosystem services such as fish nursery, pollutants sink and self-sustaining coastal protection mechanisms came into a research focus. In light of accelerated sea level rise and increasing environmental dynamics, a determination of vertical growth rates of these biosedimentary structures is paramount in assessing their resilience. This study embarked on a comprehensive survey of seasonal vertical reef growth rates using terrestrial laser scanning and related population dynamics of two intertidal reefs built by the non-native oyster Magallana gigas in the Wadden Sea. We quantified median reef growth at 19.8 mm yr-1 for the Kaiserbalje reef and 17.5 mm yr-1 for the Nordland reef. Additionally, we tested the hypothesis that the seasonal variations in reef growth rates correspond to the local population dynamics, mainly the parameters of shell length and abundance which mirror delayed effects from previous spawning events. Shell growth rates were 0.03-0.06 mm d-1 in winter and 0.10-0.16 mm d-1 in summer, mean oyster abundance from autumn 2019 to spring 2022 was 627 ± 43 ind. m-2 and 338 ± 87 ind. m-2 at the Kaiserbalje and Nordland reefs respectively. Minor reef growth in the topmost reef area reflects an emerging equilibrium of the vertical reef position to actual sea level. Our findings are in accordance with growth of natural Crassostrea virginica reefs on the US East Coast, indicating potential resilience to actual and predicted sea level rise scenarios. Moreover, understanding local hydro-morphodynamic feedback linked to sea level rise will be vital in predicting the three-dimensional stability of these biosedimentary structures and habitats.

10.
Microbiol Spectr ; 12(10): e0003124, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39162495

RESUMO

The Pacific oyster is the most widely cultured shellfish worldwide, but production has been affected by mortality events, including in hatcheries that supply the seed for growers. Several pathogens cause disease in oysters, but in many cases, mortality events cannot be attributed to a single agent and appear to be multifactorial, involving environmental variables and microbial interactions. As an organism's microbiome can provide resilience against pathogens and environmental stressors, we investigated the microbiomes in cohorts of freshly settled oyster spat, some of which experienced notable mortality. Deep sequencing of 16S rRNA gene fragments did not show a significant difference among the microbiomes of cohorts experiencing different mortality levels, but revealed a characteristic core microbiome comprising 74 taxa. Irrespective of mortality, the relative abundance of taxa in the core microbiomes changed significantly as the spat aged, yet remained distinct from the microbial community in the surrounding water. The core microbiome was dominated by bacteria in the families Rhodobacteraceae, Nitrosomonadaceae, Flavobacteriaceae, Pirellulaeceae, and Saprospiraceae. Within these families, 14 taxa designated as the "Hard-Core Microbiome" were indicative of changes in the core microbiome as the spat aged. The variability in diversity and richness of the core taxa decreased with age, implying niche occupation. As well, there was exchange of microbes with surrounding water during development of the core microbiome. The shift in the core microbiome demonstrates the dynamic nature of the microbiome as oyster spat age.IMPORTANCEThe Pacific oyster (Magallana gigas, also known as Crassostrea gigas) is the most widely cultivated shellfish and is important to the economy of many coastal communities. However, high mortality of spat during the first few days following metamorphosis can affect the seed supply to oyster growers. Here, we show that the microbiome composition of recently settled oyster spat experiencing low or high mortality was not significantly different. Instead, development of the core microbiome was associated with spat aging and was partially driven by dispersal through the water. These findings imply the importance of early-stage rearing conditions for spat microbiome development in aquaculture facilities. Furthermore, shellfish growers could gain information about the developmental state of the oyster spat microbiome by assessing key taxa. Additionally, the study provides a baseline microbiome for future hypothesis testing and potential probiotic applications on developing spat.


Assuntos
Bactérias , Microbiota , RNA Ribossômico 16S , Animais , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Crassostrea/microbiologia , Frutos do Mar/microbiologia , Aquicultura , Filogenia , Rhodobacteraceae/genética , Rhodobacteraceae/isolamento & purificação , Rhodobacteraceae/classificação , Sequenciamento de Nucleotídeos em Larga Escala , Ostreidae/microbiologia , Flavobacteriaceae/genética , Flavobacteriaceae/classificação , Flavobacteriaceae/isolamento & purificação
11.
Zool Stud ; 62: e15, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533559

RESUMO

A new species of polyclad flatworm, Idiostylochus tortuosus gen. nov., sp. nov. (Polycladida, Idioplanidae), from Arcachon Bay (France) is described. This description is based on a morphological analysis and a molecular analysis using partial sequences of the 28S and cytochrome Oxidase I (COI) genes. After the molecular analysis Idiostylochus gen. nov. appears to be the second genus of the Family Idioplanidae and closely related to the family Latocestidae as well as the genera Leptostylochus and Mirostylochus. The molecular data revealed that the new species may belong to an Indonesian or Indo-Pacific family, closely related to genera with origins in South Pacific Ocean waters. This species was found feeding on the oysters and mussels of the Arcachon farms.

12.
Aust Vet J ; 101(9): 345-355, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37421375

RESUMO

OBJECTIVE: To demonstrate that OsHV-1 microvariant was limited to the known infected areas in New South Wales at the time of the survey in 2011. DESIGN: A 2-stage survey to demonstrate probability of infection at 2% design prevalence within oyster growing regions and to detect at least one infected region (4% design prevalence) with 95% confidence. SAMPLE POPULATION: Magallana gigas in nominated oyster growing regions in New South Wales, South Australia and Tasmania as approved by the Aquatic Consultative Committee on Emergency Animal Diseases and documented in a national surveillance plan. PROCEDURE: Field sampling for active surveillance and laboratory selection of appropriate tissues using methods to minimize potential for cross contamination. Published methods for qPCR and conventional PCR for OsHV-1 microvariant. Stochastic analysis of survey results to demonstrate probability of detection in the areas tested. RESULTS AND CONCLUSIONS: OsHV-1 microvariant was not detected in a total 4121 samples according to the case definition developed for the survey. However, in NSW a screening qPCR for OsHV-1 detected 13 samples that reacted. These samples were negative at 2 laboratories in the qPCR and conventional PCR assays used in the case definition for the survey. We concluded that oyster production areas of Australia outside the infected area in NSW met the criteria for self-declaration of freedom at the time of the survey in 2011. CLINICAL RELEVANCE: This activity illustrated achievements in surveillance for an emerging emergency animal pathogen where epidemiological and test validation data were limited, but where data was required to inform the emergency disease response. It also illustrated the challenges faced by investigators in interpreting surveillance results using tests with limited validation. It was guided by and has informed improvements in surveillance and emergency disease preparedness.


Assuntos
Crassostrea , Herpesviridae , Animais , Herpesviridae/genética , Vírus de DNA , Austrália/epidemiologia
13.
Sci Total Environ ; 877: 162754, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36921858

RESUMO

Non-native species are spreading at an unprecedented rate over large spatial scales, with global environmental change and growth in commerce providing novel opportunities for range expansion. Assessing the pattern and rate of spread is key to the development of strategies for safeguarding against future invasions and efficiently managing existing ones. Such assessments often depend on spatial distribution data from online repositories, which can be spatially biased, imprecise, and lacking in quantity. Here, the influence of disparities between occurrence records from online data repositories and what is known of the invasion history from peer-reviewed published literature on non-native species range expansion was evaluated using 6693 records of the Pacific oyster, Magallana gigas (Thunberg, 1793), spanning 56 years of its invasion in Europe. Two measures of spread were calculated: maximum rate of spread (distance from introduction site over time) and accumulated area (spatial expansion). Results suggest that despite discrepancies between online and peer-reviewed data sources, including a paucity of records from the early invasion history in online repositories, the use of either source does not result in significantly different estimates of spread. Our study significantly improves our understanding of the European distribution of M. gigas and suggests that a combination of short- and long-range dispersal drives range expansions. More widely, our approach provides a framework for comparison of online occurrence records and invasion histories as documented in the peer-reviewed literature, allowing critical evaluation of both data sources and improving our understanding of invasion dynamics significantly.


Assuntos
Big Data , Ostreidae , Animais , Europa (Continente) , Espécies Introduzidas
14.
Sci Total Environ ; 892: 164485, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37257593

RESUMO

Warming could facilitate the intensification of toxic algal blooms, two important stressors for marine organisms that are predicted to co-occur more frequently in the future. We investigated the immediate and delayed effects of a heatwave and a simulated bloom (3 × 106 cells L-1) of the diarrhetic shellfish toxin (DST)-producing benthic dinoflagellate Prorocentrum lima on the survival, physiology (oxygen consumption rate, condition index, immune parameters), and toxin accumulation in the Pacific rock oyster Magallana (Crassostrea) gigas. Oysters exposed to both stressors contained higher mean DST concentrations (mean ± 1 SE: 173.3 ± 19.78 µg kg-1 soft tissue) than those exposed to P. lima bloom alone (120.4 ± 20.90 µg kg-1) and exceeded the maximum permitted levels for human consumption. Exposure to individual stressors and their combination modified the physiology of M. gigas. Oysters exposed to heatwave alone had significantly higher oxygen consumption rates (0.7 ± 0.06 mg O2 h-1 g-1) than the control (0.3 ± 0.06 mg O2 h-1 g-1). However, this was not observed in oysters exposed to both heatwave and P. lima (0.5 ± 0.06 mg O2 h-1 g-1). This alteration of the metabolic response to warming in the presence of P. lima may affect the ability of rock oysters to adapt to environmental stressors (i.e., a heatwave) to ensure survival. Immunomodulation, through changes in total hemocyte count, was observed in oysters exposed to P. lima alone and in combination with warming. Individual stressors and their combination did not influence the condition index, but one mortality was recorded in oysters exposed to both stressors. The findings of this study highlight the vulnerability of rock oysters to the predicted increased frequency of heatwaves and toxic algal blooms, and the increased likelihood of shellfish containing higher than regulatory levels of DST in warming coasts.


Assuntos
Dinoflagellida , Eutrofização , Calor Extremo , Venenos de Moluscos , Ostreidae , Água do Mar , Calor Extremo/efeitos adversos , Ostreidae/metabolismo , Ostreidae/fisiologia , Hemócitos/citologia , Venenos de Moluscos/análise , Venenos de Moluscos/metabolismo , Água do Mar/química , Oceanos e Mares , Intoxicação por Frutos do Mar , Aquecimento Global , Humanos , Animais , Dinoflagellida/crescimento & desenvolvimento , Dinoflagellida/metabolismo , Aquicultura
15.
Fish Sci ; 89(1): 71-81, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36465482

RESUMO

Oxidative stress is an automatic mechanism responsible for the commencement and continuance of liver injury. In this study, an antioxidative peptide Val-Thr-Ala-Leu (VTAL) was purified from simulated gastrointestinal digestion of protein hydrolysates of the triploid oyster Magallana gigas. Significant antioxidant activity was identified, as well as a protective effect against acetaminophen (APAP)-induced human liver cancer (HepG2) cells. The results suggested that the antioxidant activity improved in a dose-dependent manner. The highest cell viability (88.105 ± 3.62%) was observed in 15 mM APAP-induced cells when treated with 25 µg/mL M. gigas peptide [M.g (pep)]. The peptide sequences include hydrophobic amino acids, which could be responsible for its chemoprotective and antioxidant activities. Treatment with M.g (pep) significantly promoted the proliferation of HepG2 cells, thus protecting them against APAP and imbuing them with significant antioxidant capacity. M.g (pep) could be beneficial for treating drug-induced oxidative stress and liver damage. Additionally, M.g (pep) could serve as an alternative to synthetic antioxidant drugs.

16.
Sci Total Environ ; 838(Pt 3): 156437, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35660616

RESUMO

Magallana gigas is a naturalized species on the north coast of Galicia (Rías Altas, Northwest Iberian Peninsula), where it was unintentionally introduced. In recent decades, a greater abundance of M. gigas has been observed on the Galician coast, expanding towards the south, reaching the Artabro Gulf (Rías Centrales, NW Galician coast), probably due to ocean warming. Although this species has been cultivated in the Rías Baixas since the early 1990s and spawning has been reported, recruitment was never observed, which is likely due to the cold water upwelled during the spawning months. The future rise in seawater temperature may favor the naturalization of the non-indigenous species M. gigas southwards, in the Rías Baixas. Thermally, the Ría de Arousa seems to be the most favorable estuary for the future settlement of M. gigas, which may occur in the next decades. The extent of thermally favorable zones within estuaries is projected to increase rapidly by mid-century, and reaching 100 % of the estuarine area by the end of the century. As has already happened in other areas of the world, the expansion and naturalization of the Pacific oyster on the Galician coast will likely affect the native communities and economic activities, making it necessary to implement monitoring and management strategies to mitigate its effect.


Assuntos
Mudança Climática , Ostreidae , Animais , Cidadania , Europa (Continente) , Água do Mar
17.
Front Nutr ; 8: 726620, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485369

RESUMO

Deltamethrin (DEL) can be introduced into the food chain through bioaccumulation in Pacific oysters, and then potentially threaten human health. The objective of this study was to investigate the bioaccessibility of DEL in oysters with different cooking methods after simulated digestion. DEL content in different tissues of oysters going from high to low were gills, mantle, viscera, and adductor muscle. Bioaccessibility of DEL in oysters decreased after steaming (65%) or roasting (51%) treatments compared with raw oysters (82%), which indicated that roasting can be used as a recommended cooking method for oysters. In the simulated digestion process, the concentration of DEL in the digestive juice and the bioaccessibility of DEL were affected by the pH in the gastric phase. And the transport efficiency of DEL through the monolayer molecular membrane of NCM460 cells ranged from 35 to 45%. These results can help assess the potential harm to consumers of DEL in shellfish. Furthermore, it provides a reference for the impact of lipophilic toxins in seafood.

18.
Mar Environ Res ; 164: 105226, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33316607

RESUMO

The current global redistribution of biota is often attributed to two main drivers: contemporary climate change (CCC) and non-indigenous species (NIS). Despite evidence of synergetic effects, however, studies assessing long-term effects of CCC conditions on NIS fitness remain rare. We examined the interactive effects of warming, ocean acidification and reduced salinity on the globally distributed marine NIS Magallana gigas (Pacific oyster) over a ten-month period. Growth, clearance and oxygen consumption rates were measured monthly to assess individual fitness. Lower salinity had a significant, permanent effect on M. gigas, reducing and increasing clearance and oxygen consumption rates, respectively. Neither predicted increases in seawater temperature nor reduced pH had a long-term physiological effect, indicating conditions predicted for 2100 will not affect adult physiology and survival. These results suggest that M. gigas will remain a globally successful NIS and predicted CCC will continue to facilitate their competitive dominance in the near future.


Assuntos
Mudança Climática , Crassostrea , Animais , Concentração de Íons de Hidrogênio , Salinidade , Água do Mar
19.
Mar Environ Res ; 169: 105401, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34217094

RESUMO

Dinoflagellates from the globally distributed genus Alexandrium are known to produce both paralytic shellfish toxins (PST) and uncharacterized bioactive extracellular compounds (BEC) with allelopathic, ichthyotoxic, hemolytic and cytotoxic activities. In France, blooms of Alexandrium minutum appear generally during the spawning period of most bivalves. These blooms could therefore alter gametes and/or larval development of bivalves, causing severe issues for ecologically and economically important species, such as the Pacific oyster Crassostrea (=Magallana) gigas. The aim of this work was to test the effects of three strains of A. minutum producing either only PST, only BEC, or both PST and BEC upon oyster gametes, and potential consequences on fertilization success. Oocytes and spermatozoa were exposed in vitro for 2 h to a range of environmentally realistic A. minutum concentrations (10-2.5 × 104 cells mL-1). Following exposure, gamete viability and reactive oxygen species (ROS) production were assessed by flow cytometry, spermatozoa motility and fertilization capacities of both spermatozoa and oocytes were analysed by microscopy. Viability and fertilization capacity of spermatozoa and oocytes were drastically reduced following exposure to 2.5 × 104 cells mL-1 of A. minutum. The BEC-producing strain was the most potent strain decreasing spermatozoa motility, increasing ROS production of oocytes, and decreasing fertilization, from the concentration of 2.5 × 103 cells mL-1. This study highlights the significant cellular toxicity of the BEC produced by A. minutum on oyster gametes. Physical contact between gametes and motile thecate A. minutum cells may also contribute to alter oyster gamete integrity. These results suggest that oyster gametes exposure to A. minutum blooms could affect oyster fertility and reproduction success.


Assuntos
Dinoflagellida , Animais , Fertilização , França , Células Germinativas , Masculino , Toxinas Marinhas/toxicidade
20.
Mar Environ Res ; 160: 105051, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32907717

RESUMO

In order to detect the possible regulatory effect of non-native C. gigas on the native O. edulis, under aquaculture conditions, feeding interactions between them were investigated in a highly productive environment of Lim Bay (Adriatic Sea). The present study uses a multi-methodological approach, including stomach content, DNA barcoding and stable isotope analysis to elucidate the feeding ecology of two oyster species. The research confirmed a high overlap throughout the year in the feeding traits among native and non-native oyster species. Competition for food was not the only relationship that exists between the investigated species as the presence of O. edulis larvae in C. gigas stomach content was confirmed by DNA analysis. Findings are not in favour of introducing C. gigas to commercial aquaculture in any new areas in the Adriatic Sea and support the need to improve the existing O. edulis aquaculture and conserve its wild stocks.


Assuntos
Aquicultura , Crassostrea , Comportamento Alimentar , Ostrea , Animais , Ecologia , Cadeia Alimentar , Larva
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa