RESUMO
BACKGROUND: As metabolic pathway resources become more commonly available, researchers have unprecedented access to information about their organism of interest. Despite efforts to ensure consistency between various resources, information content and quality can vary widely. Two maize metabolic pathway resources for the B73 inbred line, CornCyc 4.0 and MaizeCyc 2.2, are based on the same gene model set and were developed using Pathway Tools software. These resources differ in their initial enzymatic function assignments and in the extent of manual curation. We present an in-depth comparison between CornCyc and MaizeCyc to demonstrate the effect of initial computational enzymatic function assignments on the quality and content of metabolic pathway resources. RESULTS: These two resources are different in their content. MaizeCyc contains GO annotations for over 21,000 genes that CornCyc is missing. CornCyc contains on average 1.6 transcripts per gene, while MaizeCyc contains almost no alternate splicing. MaizeCyc also does not match CornCyc's breadth in representing the metabolic domain; MaizeCyc has fewer compounds, reactions, and pathways than CornCyc. CornCyc's computational predictions are more accurate than those in MaizeCyc when compared to experimentally determined function assignments, demonstrating the relative strength of the enzymatic function assignment pipeline used to generate CornCyc. CONCLUSIONS: Our results show that the quality of initial enzymatic function assignments primarily determines the quality of the final metabolic pathway resource. Therefore, biologists should pay close attention to the methods and information sources used to develop a metabolic pathway resource to gauge the utility of using such functional assignments to construct hypotheses for experimental studies.
Assuntos
Biologia Computacional , Zea mays/metabolismo , Anotação de Sequência Molecular , Proteínas de Plantas/metabolismo , Zea mays/enzimologiaRESUMO
Pathway databases provide information about the role of chemicals, genes, and gene products in the form of protein or RNA, their interactions leading to the formulation of metabolic, transport, regulatory, and signaling reactions. The reactions can then be tethered by the principle of inputs and outputs of one or more reaction to create pathways. This chapter provides a list of various online databases that carry information about plant pathways and provides a brief overview of how to use the pathway databases such as WikiPathways Plants Portal, MapMan and the cereal crop pathway databases like RiceCyc and MaizeCyc, that were developed using the Pathway Tools software.