RESUMO
In mammals, the transition from mitosis to meiosis facilitates the successful production of gametes. However, the regulatory mechanisms that control meiotic initiation remain unclear, particularly in the context of complex histone modifications. Herein, we show that KDM2A, acting as a lysine demethylase targeting H3K36me3 in male germ cells, plays an essential role in modulating meiotic entry and progression. Conditional deletion of Kdm2a in mouse pre-meiotic germ cells results in complete male sterility, with spermatogenesis ultimately arrested at the zygotene stage of meiosis. KDM2A deficiency disrupts H3K36me2/3 deposition in c-KIT+ germ cells, characterized by a reduction in H3K36me2 but a dramatic increase in H3K36me3. Furthermore, KDM2A recruits the transcription factor E2F1 and its co-factor HCFC1 to the promoters of key genes required for meiosis entry and progression, such as Stra8, Meiosin, Spo11, and Sycp1. Collectively, our study unveils an essential role for KDM2A in mediating H3K36me2/3 deposition and controlling the programmed gene expression necessary for the transition from mitosis to meiosis during spermatogenesis.
Assuntos
Fator de Transcrição E2F1 , Histona Desmetilases com o Domínio Jumonji , Meiose , Espermatogênese , Animais , Masculino , Camundongos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Espermatogênese/genética , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Fator C1 de Célula Hospedeira/metabolismo , Fator C1 de Célula Hospedeira/genética , Histonas/metabolismo , Histonas/genética , Camundongos Knockout , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Histona DesmetilasesRESUMO
Sperm production and function require the correct establishment of DNA methylation patterns in the germline. Here, we examined the genome-wide DNA methylation changes during human spermatogenesis and its alterations in disturbed spermatogenesis. We found that spermatogenesis is associated with remodeling of the methylome, comprising a global decline in DNA methylation in primary spermatocytes followed by selective remethylation, resulting in a spermatids/sperm-specific methylome. Hypomethylated regions in spermatids/sperm were enriched in specific transcription factor binding sites for DMRT and SOX family members and spermatid-specific genes. Intriguingly, while SINEs displayed differential methylation throughout spermatogenesis, LINEs appeared to be protected from changes in DNA methylation. In disturbed spermatogenesis, germ cells exhibited considerable DNA methylation changes, which were significantly enriched at transposable elements and genes involved in spermatogenesis. We detected hypomethylation in SVA and L1HS in disturbed spermatogenesis, suggesting an association between the abnormal programming of these regions and failure of germ cells progressing beyond meiosis.
Assuntos
Metilação de DNA , Genoma Humano , Espermatogênese , Humanos , Espermatogênese/genética , Masculino , Espermátides/metabolismo , Espermatócitos/metabolismo , Elementos de DNA Transponíveis/genética , Espermatozoides/metabolismo , Meiose/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
DNA double-strand breaks (DSBs) are commonly appearing deleterious DNA damages, which progressively increase in male germ cells during biological aging. There are two main pathways for repairing DSBs: homologous recombination (HR) and classical nonhomologous end joining (cNHEJ). Knockout and functional studies revealed that, while RAD51 and RPA70 proteins are indispensable for HR-based repair, KU80 and XRCC4 are the key proteins in cNHEJ repair. As is known, γH2AX contributes to these pathways through recruiting repair-related proteins to damaged site. The underlying reasons of increased DSBs in male germ cells during aging are not fully addressed yet. In this study, we aimed to analyze the spatiotemporal expression of the Rad51, Rpa70, Ku80, and Xrcc4 genes in the postnatal mouse testes, classified into young, prepubertal, pubertal, postpubertal, and aged groups according to their reproductive features and histological structures. We found that expression of these genes significantly decreased in the aged group compared with the other groups (P < 0.05). γH2AX staining showed that DSB levels in the germ cells from spermatogonia to elongated spermatids as well as in the Sertoli cells remarkably increased in the aged group (P < 0.05). The RAD51, RPA70, KU80, and XRCC4 protein levels exhibited predominant changes in the germ and Sertoli cells among groups (P < 0.05). These findings suggest that altered expression of the Rad51, Rpa70, Ku80, and Xrcc4 genes in the germ and Sertoli cells may be associated with increasing DSBs during biological aging, which might result in fertility loss.
Assuntos
Reparo do DNA , Rad51 Recombinase , Masculino , Camundongos , Animais , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Camundongos Knockout , Reparo do DNA/genética , Recombinação Homóloga/genética , Células Germinativas/metabolismoRESUMO
Vertical hepatitis B virus (HBV) transmission is defined as transmission that occurs during pregnancy or postpartum from an HBV-infected mother to her fetus or child. It is an efficient route for the spread of HBV and is responsible for most of the cases of chronic HBV infection in adults. During pregnancy, vertical transmission can occur in the intrauterine phase, by placental infection via peripheral blood mononuclear cells, by placental leakage, or through female germ cells.The detection of HBV DNA in semen and spermatids from HBV-infected men has provided strong evidence that the male genital tract may act as a reservoir of the virus in HBV-infected men, supporting the possibility that vertical HBV transmission from an HBV-infected father to his child may also occur via the germ line at the time of fertilization, as occurs in HBV transmission from mother to child. Furthermore, it has been shown that integration of the HBV genome into the sperm cell genome can compromise sperm morphology and function and even cause hereditary or congenital biological effects in the offspring when an HBV-infected sperm fuses with an ovum.Since vertical HBV transmission from father to child can be a topic of interest and of global importance for controlling the spread of HBV, this article addresses the evidence supporting its occurrence via germ cells, the biological impact of integration of the HBV genome into the male germ cell genome, and the role of maternal immunoprophylaxis in vertical HBV transmission from father to child.
Assuntos
Hepatite B , Complicações Infecciosas na Gravidez , Humanos , Criança , Adulto , Masculino , Feminino , Gravidez , Vírus da Hepatite B/genética , Leucócitos Mononucleares , Placenta , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Sêmen , Pai , DNA Viral/genética , Antígenos de Superfície da Hepatite BRESUMO
BACKGROUND: Previous studies have shown significant results in the differentiation of mouse-induced pluripotent stem cells (miPSCs) into primordial germ cell-like cells (PGCLCs) and that human iPSCs (hiPSCs) can also differentiate into PGCLCs; however, the efficiency of PGCLC induction from hiPSCs is < 5%. In this study, we examined a new protocol to differentiate hiPSCs into PGCLCs. METHODS AND RESULTS: hiPSCs-derived embryoid bodies (EBs) were exposed to differentiate inducing factors, bone morphogenetic protein 4 (BMP4), and retinoic acid (RA) for 6 days. Cell differentiation was assessed by reverse transcriptase-polymerase chain reaction (RT-PCR) and immunofluorescence (IF) studies. Our results showed increased expression of the PRDM1 gene on the first day of differentiation. On other days, DAZL, VASA, and STRA8 genes increased, and the expression of PRDM1, NANOG, and OCT4 genes decreased. The expression of VASA, C-KIT, and STRA8 proteins was confirmed by IF. A flow cytometry analysis revealed that ~ 60% of differentiated cells were VASA- and STRA8-positive. CONCLUSION: EB formation and constant exposure of EBs to BMP4 and RA lead to the differentiation of hiPSCs into PGCLCs.
Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Animais , Camundongos , Células Cultivadas , Diferenciação Celular/genética , Células Germinativas/metabolismo , Genes Homeobox , Tretinoína/farmacologiaRESUMO
Mitochondria tailor their morphology to execute their specialized functions in different cell types and/or different environments. During spermatogenesis, mitochondria undergo continuous morphological and distributional changes with germ cell development. Deficiencies in these processes lead to mitochondrial dysfunction and abnormal spermatogenesis, thereby causing male infertility. In recent years, mitochondria have attracted considerable attention because of their unique role in the regulation of piRNA biogenesis in male germ cells. In this review, we describe the varied characters of mitochondria and focus on key mitochondrial factors that play pivotal roles in the regulation of spermatogenesis, from primordial germ cells to spermatozoa, especially concerning metabolic shift, stemness and reprogramming, mitochondrial transformation and rearrangement, and mitochondrial defects in human sperm. Further, we discuss the molecular mechanisms underlying these processes.
Assuntos
Diferenciação Celular , Células Germinativas/citologia , Infertilidade Masculina/patologia , Mitocôndrias/fisiologia , Doenças Mitocondriais/fisiopatologia , Espermatozoides/citologia , Animais , Humanos , Infertilidade Masculina/etiologia , Infertilidade Masculina/metabolismo , MasculinoRESUMO
The differentiation of embryonic stem cells (ESCs) into germ cells in vitro could have very promising applications for infertility treatment and could provide an excellent model for uncovering the molecular mechanisms of germline generation. This study aimed to investigate the differentially expressed miRNAs (DEMs) during the differentiation of chicken ESCs (cESCs) into male germ cells and to establish a profile of the DEMs. Cells before and after induction were subjected to miRNA sequencing (miRNA-seq). A total of 113 DEMs were obtained, including 61 upregulated and 52 downregulated DEMs. GO and KEGG enrichment analyses showed that the target genes were enriched mainly in the MAPK signaling pathway, HTLV infection signaling pathway, cell adhesion molecule (CAM)-related pathways, viral myocarditis, Wnt signaling pathway, ABC transporters, TGF-ß signaling pathways, Notch signaling pathways and insulin signaling pathway. The target genes of the miRNAs were related to cell binding, cell parts and biological regulatory processes. Six DEMs, let-7k-5p, miR-132c-5p, miR-193a-5p, miR-202-5p, miR-383-5p and miR-6553-3p, were assessed by qRT-PCR, and the results were consistent with the results of miRNA-seq. Based on qRT-PCR and western blot verification, miR-383-5p and its putative target gene STRN3 were selected to construct an STRN3 3'-UTR dual-luciferase gene reporter vector and its mutant vector. The double luciferase reporter activity of the cotransfected STRN3-WT + miR-383-5p mimics group was significantly lower (by approximately 46%) than that of the other five groups (p < 0.01). There was no significant difference in luciferase activity among the other 5 groups. This study establishes a DEM profile during the process of cESC differentiation into male germ cells; illustrates the mechanisms by which miRNAs regulate target genes; provides a theoretical basis for further research on the mechanisms of the formation and regulation of male germ cells; and provides an important strategy for gene editing, animal genetic resource protection and transgenic animal production.
Assuntos
MicroRNAs , Embrião de Galinha , Masculino , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Galinhas/genética , Galinhas/metabolismo , Diferenciação Celular/genética , Células Germinativas/metabolismo , Luciferases/genética , Perfilação da Expressão GênicaRESUMO
We studied the influence of epiphysectomy and administration of melatonin to epiphysectomized outbred white rats on the level and daily dynamics of damage to the genetic material of developing male germ cells. Epiphysectomy leads to an increase in the level of damage in the DNA structure and the disappearance of the circadian rhythm of the activity of repair enzyme PARP-1 and the apoptosis-inducing enzyme caspase-3. The administration of melatonin to animals after epiphysectomy reduces the level of DNA damage, restores the circadian rhythm of activity of PARP-1 and caspase-3. These fundings suggest that melatonin can indirectly protect DNA of maturing male gametes.
Assuntos
Melatonina , Ratos , Animais , Masculino , Melatonina/farmacologia , Caspase 3/genética , Inibidores de Poli(ADP-Ribose) Polimerases , Ritmo Circadiano , DNARESUMO
Fetal testis growth involves cell influx and extensive remodeling. Immediately after sex determination in mouse, macrophages enable normal cord formation and removal of inappropriately positioned cells. This study provides new information about macrophages and other immune cells after cord formation in fetal testes, including their density, distribution, and close cellular contacts. C57BL6J mouse testes from embryonic day (E) 13.5 to birth (post-natal day 0; PND0), were examined using immunofluorescence, immunohistochemistry, and RT-qPCR to identify macrophages (F4/80, CD206, MHCII), T cells (CD3), granulocytes/neutrophils (Ly6G), and germ cells (DDX4). F4/80+ cells were the most abundant, comprising 90% of CD45+ cells at E13.5 and declining to 65% at PND0. Changes in size, shape, and markers (CD206 and MHCII) documented during this interval align with the understanding that F4/80+ cells have different origins during embryonic life. CD3+ cells and F4/80-/MHCII+ were absent to rare until PND0. Ly6G+ cells were scarce at E13.5 but increased robustly by PND0 to represent half of the CD45+ cells. These immunofluorescence data were in accord with transcript analysis, which showed that immune marker mRNAs increased with testis age. F4/80+ and Ly6G+ cells were frequently inside cords adjacent to germ cells at E13.5 and E15.5. F4/80+ cells were often in clusters next to other immune cells. Macrophages inside cords at E13.5 and E15.5 (F4/80Hi/CD206+) were different from macrophages at PND0 (F4/80Dim/CD206-), indicating that they have distinct origins. This histological quantification coupled with transcript information identifies new cellular interactions for immune cells in fetal testis morphogenesis, and highlights new avenues for studies of their functional significance.
Assuntos
Macrófagos , Testículo , Animais , Desenvolvimento Fetal , Células Germinativas , Masculino , Camundongos , MorfogêneseRESUMO
The field of nanotechnology has allowed for increasing nanoparticle (NP) exposure to the male reproductive system. Certain NPs have been reported to have adverse consequences on male germ and somatic cells. Germ cells are the bridge between generations and are responsible for the transmission of genetic and epigenetic information to future generations. A number of NPs have negative impacts on male germ and somatic cells which could ultimately affect fertility or the ability to produce healthy offspring. These impacts are related to NP composition, modification, concentration, agglomeration, and route of administration. NPs can induce severe toxic effects on the male reproduction system after passing through the blood-testis barrier and ultimately damaging the spermatozoa. Therefore, understanding the impacts of NPs on reproduction is necessary. This review will provide a comprehensive overview on the current state of knowledge derived from the previous in vivo and in vitro research on effects of NPs on the male reproductive system at the genetic, cellular, and molecular levels.
Assuntos
Nanopartículas , Genitália Masculina , Humanos , Masculino , Nanopartículas/toxicidade , Nanotecnologia , ReproduçãoRESUMO
The efficiency of antioxidant defense system decreases with aging, thus resulting in high levels of reactive oxygen species and DNA damage in spermatozoa. This damage can lead to genetic disorders in the offspring. There are limited studies investigating the effects of the total loss of antioxidants, such as superoxide dismutase-1 (SOD1), in male germ cells as they progress through spermatogenesis. In this study, we evaluated the effects of aging and removing SOD1 (in male germ cells of SOD1-null (Sod1-/-) mice) in order to determine the potential mechanism(s) of DNA damage in these cells. Immunohistochemical analysis showed an increase in lipid peroxidation and DNA damage in the germ cells of aged wild-type (WT) and Sod1-/- mice of all age. Immunostaining of 8-oxoguanine DNA glycosylase, a marker of base excision repair (BER), increased in aged WT and young Sod1-/- mice. In contrast, immunostaining intensity of DNA ligase 4 and RAD51 Recombinase, markers of nonhomologous end-joining (NHEJ), and homologous recombination (HR), respectively, decreased in aged and Sod1-/- mice. Gene expression analysis showed similar results with altered mRNA expression of these key DNA repair transcripts in pachytene spermatocytes and round spermatids of aged and Sod1-/- mice. Our study indicates that DNA repair pathway markers of BER, NHEJ, and HR are differentially regulated as a function of aging and oxidative stress in spermatocytes and spermatids, and aging enhances the repair response to increased oxidative DNA damage, whereas impairments in other DNA repair mechanisms may contribute to the increase in DNA damage caused by aging and the loss of SOD1.
Assuntos
Envelhecimento , Reparo do DNA , Estresse Oxidativo , Espermatozoides/metabolismo , Superóxido Dismutase-1/genética , Animais , Masculino , Camundongos , Camundongos Transgênicos , Superóxido Dismutase-1/metabolismoRESUMO
Viruses have colonized the germ line of our ancestors on several occasions during evolution, leading to the integration in the human genome of viral sequences from over 30 retroviral groups and a few nonretroviruses. Among the recently emerged viruses infecting humans, several target the testis (e.g., human immunodeficiency virus [HIV], Zika virus, and Ebola virus). Here, we aimed to investigate whether human testicular germ cells (TGCs) can support integration by HIV, a contemporary retrovirus that started to spread in the human population during the last century. We report that albeit alternative receptors enabled HIV-1 binding to TGCs, HIV virions failed to infect TGCs in vitro Nevertheless, exposure of TGCs to infected lymphocytes, naturally present in the testis from HIV+ men, led to HIV-1 entry, integration, and early protein expression. Similarly, cell-associated infection or bypassing viral entry led to HIV-1 integration in a spermatogonial cell line. Using DNAscope, HIV-1 and simian immunodeficiency virus (SIV) DNA were detected within a few TGCs in the testis from one infected patient, one rhesus macaque, and one African green monkey in vivo Molecular landscape analysis revealed that early TGCs were enriched in HIV early cofactors up to integration and had overall low antiviral defenses compared with testicular macrophages and Sertoli cells. In conclusion, our study reveals that TGCs can support the entry and integration of HIV upon cell-associated infection. This could represent a way for this contemporary virus to integrate into our germ line and become endogenous in the future, as happened during human evolution for a number of viruses.IMPORTANCE Viruses have colonized the host germ line on many occasions during evolution to eventually become endogenous. Here, we aimed at investigating whether human testicular germ cells (TGCs) can support such viral invasion by studying HIV interactions with TGCs in vitro Our results indicate that isolated primary TGCs express alternative HIV-1 receptors, allowing virion binding but not entry. However, HIV-1 entered and integrated into TGCs upon cell-associated infection and produced low levels of viral proteins. In vivo, HIV-1 and SIV DNA was detected in a few TGCs. Molecular landscape analysis showed that TGCs have overall weak antiviral defenses. Altogether, our results indicate that human TGCs can support HIV-1 early replication, including integration, suggesting potential for endogenization in future generations.
Assuntos
Células Germinativas/virologia , Infecções por HIV/virologia , HIV-1/genética , Testículo/virologia , Animais , Chlorocebus aethiops , Interações Hospedeiro-Patógeno , Humanos , Macaca mulatta , Macrófagos/virologia , Masculino , Neoplasias da Próstata , Seminoma , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Espermatogônias , Internalização do Vírus , Replicação ViralRESUMO
Integrins are transmembrane receptors that facilitate cell adhesion and cell-extracellular matrix communication. They are involved in the sperm maturation including capacitation and gamete interaction, resulting in successful fertilization. αV integrin belongs to the integrin glycoprotein superfamily, and it is indispensable for physiological spermiogenesis and testosterone production. We targeted the gene and protein expression of the αV integrin subunit and described its membrane localization in sperm. Firstly, in mouse, we traced αV integrin gene expression during spermatogenesis in testicular fraction separated by elutriation, and we detected gene activity in spermatogonia, spermatocytes, and round spermatids. Secondly, we specified αV integrin membrane localization in acrosome-intact and acrosome-reacted sperm and compared its pattern between mouse, pig, and human. Using immunodetection and structured illumination microscopy (SIM), the αV integrin localization was confined to the plasma membrane covering the acrosomal cap area and also to the inner acrosomal membrane of acrosome-intact sperm of all selected species. During the acrosome reaction, which was induced on capacitated sperm, the αV integrin relocated and was detected over the whole sperm head. Knowledge of the integrin pattern in mature sperm prepares the ground for further investigation into the pathologies and related fertility issues in human medicine and veterinary science.
Assuntos
Integrina alfaV/metabolismo , Espermatozoides/metabolismo , Reação Acrossômica , Animais , Humanos , Masculino , Camundongos , SuínosRESUMO
Testicular Connexin43 (Cx43) connects adjacent Sertoli cells (SC) and SC to germ cells (GC) in the seminiferous epithelium and plays a crucial role in spermatogenesis. However, the distinction whether this results from impaired inter-SC communication or between GC and SC is not possible, so far. Thus, the question arises, whether a GC-specific Cx43 KO has similar effects on spermatogenesis as it is general or SC-specific KO. Using the Cre/loxP recombinase system, two conditional KO mouse lines lacking Cx43 in premeiotic (pGCCx43KO) or meiotic GC (mGCCx43KO) were generated. It was demonstrated by qRT-PCR that Cx43 mRNA was significantly decreased in adult pGCCx43KO mice, while it was also reduced in mGCCx43KO mice, yet not statistically significant. Body and testis weights, testicular histology, tubular diameter, numbers of intratubular cells and Cx43 protein synthesis and localization did not show any significant differences in semi-quantitative Western blot analysis and immunohistochemistry comparing adult male KO and WT mice of both mouse lines. Male KO mice were fertile. These results indicate that Cx43 in spermatogonia/spermatids does not seem to be essential for successful termination of spermatogenesis and fertility as it is known for Cx43 in somatic SC, but SC-GC communication might rather occur via heterotypic GJ channels.
Assuntos
Conexina 43/metabolismo , Espermátides/metabolismo , Espermatogênese , Espermatogônias/metabolismo , Testículo/metabolismo , Animais , Conexina 43/genética , Fertilidade , Masculino , Camundongos , Camundongos Knockout , Testículo/anatomia & histologiaRESUMO
Numerous reagents were employed for differentiating induced pluripotent stem cells (iPSCs) into male germ cells; however, the induction procedure was ineffective. The aim of this study was to improve the in vitro differentiation of mice iPSCs (miPSCs) into male germ cells with retinoic acid (RA) and progesterone (P). miPSCs were differentiated to embryoid bodies (EBs) in suspension with RA with or without progesterone for 0, 4, and 7 days. Then, the expression of certain genes at different stages of male germ cell development including Ddx4 (pre meiosis), Stra8 (meiosis), AKAP3 (post meiosis), and Mvh protein was examined in RNA and/or protein levels by real-time polymerase chain reaction or flow cytometry, respectively. The Stra8 gene expression increased in the RA groups on all days. But, expression of this gene declined in RA + P groups. In addition, an increased expression of Ddx4 gene was observed on day 0 in the P group. Also, a significant upregulation was observed in the expression of AKAP3 gene in the RA + P group on days 0 and 4. However, gene expression decreased in P and RA groups on day 7. The expression of Mvh protein significantly increased in the RA group on day 7. The Mvh expression was also enhanced in the P group on day 4, but it decreased on day 7, while this protein upregulated on day 0 and 7 in the RA + P group. The miPSCs have the capacity for in vitro differentiation into male germ cells by RA and/or progesterone. However, the effects of these inducers depend on the type of combination and an effective time.
Assuntos
Diferenciação Celular , RNA Helicases DEAD-box/metabolismo , Corpos Embrioides/citologia , Células Germinativas/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Progesterona/farmacologia , Tretinoína/farmacologia , Animais , Antineoplásicos/farmacologia , Proliferação de Células , Células Cultivadas , RNA Helicases DEAD-box/genética , Corpos Embrioides/efeitos dos fármacos , Corpos Embrioides/metabolismo , Perfilação da Expressão Gênica , Células Germinativas/efeitos dos fármacos , Células Germinativas/metabolismo , Técnicas In Vitro , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Progestinas/farmacologiaRESUMO
Cells grow differently in conventional 2D cell culture than when they grow in the physiological microenvironment. In this study, we developed a 3D cell culture model for generating male germ cells from human iPSCs using a human decellularized amnion membrane (DAM) scaffold. To this end, human iPSCs were generated using retroviral vectors and characterized for pluripotency properties by immunofluorescence assay, flow cytometry, ALP staining, cytogenetic assay, and differentiation capacity. The iPSCs were used for investigating male germ cells differentiation efficiency in both conventional 2D culture and 3D-DAM scaffold. The expression of male germ cell markers was evaluated at day 21 of differentiation using immunofluorescence assay, flow-cytometry, and RT-qPCR. The results indicated a successful reprogramming of human foreskin fibroblast cells into pluripotent iPSCs. The reprogrammed cells were positive for pluripotency markers and differentiated into the three germ layers. During male germ cell differentiation, the cells tend to aggregate and form colony-like structures in both 2D and 3D conditions. However, significant expression of VASA, DAZL, PLZF, STELLA, and NANOS3 markers and more efficient haploid male germ cell production were observed in the 3D condition when compared to the 2D model. Considering the effect of the 3D-DAM scaffold in prompting male germ cell-specific markers and increased efficiency of germ cell differentiation in 3D culture, it appears that DAM scaffold is a useful tool for in vitro studies of human germ cell development and ultimately future clinical application.
Assuntos
Âmnio/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Âmnio/metabolismo , Biomarcadores/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Células Germinativas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Alicerces TeciduaisRESUMO
BACKGROUND: RNA regulation by RNA-binding proteins (RBPs) involve extremely complicated mechanisms. MOV10 and MOV10L1 are two homologous RNA helicases implicated in distinct intracellular pathways. MOV10L1 participates specifically in Piwi-interacting RNA (piRNA) biogenesis and protects mouse male fertility. In contrast, the functional complexity of MOV10 remains incompletely understood, and its role in the mammalian germline is unknown. Here, we report a study of the biological and molecular functions of the RNA helicase MOV10 in mammalian male germ cells. RESULTS: MOV10 is a nucleocytoplasmic protein mainly expressed in spermatogonia. Knockdown and transplantation experiments show that MOV10 deficiency has a negative effect on spermatogonial progenitor cells (SPCs), limiting proliferation and in vivo repopulation capacity. This effect is concurrent with a global disturbance of RNA homeostasis and downregulation of factors critical for SPC proliferation and/or self-renewal. Unexpectedly, microRNA (miRNA) biogenesis is impaired due partially to decrease of miRNA primary transcript levels and/or retention of miRNA via splicing control. Genome-wide analysis of RNA targetome reveals that MOV10 binds preferentially to mRNAs with long 3'-UTR and also interacts with various non-coding RNA species including those in the nucleus. Intriguingly, nuclear MOV10 associates with an array of splicing factors, particularly with SRSF1, and its intronic binding sites tend to reside in proximity to splice sites. CONCLUSIONS: These data expand the landscape of MOV10 function and highlight a previously unidentified role initiated from the nucleus, suggesting that MOV10 is a versatile RBP involved in a broader RNA regulatory network.
Assuntos
Células-Tronco Germinativas Adultas/metabolismo , RNA Helicases/genética , Espermatozoides/metabolismo , Animais , Perfilação da Expressão Gênica , Masculino , Camundongos , RNA Helicases/metabolismoRESUMO
The LINC (LInker of Nucleoskeleton and Cytoskeleton) complex is localized within the nuclear envelope and consists of SUN (Sad1/UNc84 homology domain-containing) proteins located in the inner nuclear membrane and KASH (Klarsicht/Anc1/Syne1 homology domain-containing) proteins located in the outer nuclear membrane, hence linking nuclear with cytoplasmic structures. While the nucleoplasm-facing side acts as a key player for correct pairing of homolog chromosomes and rapid chromosome movements during meiosis, the cytoplasm-facing side plays a pivotal role for sperm head development and proper acrosome formation during spermiogenesis. A further complex present in spermatozoa is involved in head-to-tail coupling. An intact LINC complex is crucial for the production of fertile sperm, as mutations in genes encoding for complex proteins are known to be associated with male subfertility in both mice and men. The present review provides a comprehensive overview on our current knowledge of LINC complex subtypes present in germ cells and its central role for male reproduction. Future studies on distinct LINC complex components are an absolute requirement to improve the diagnosis of idiopathic male factor infertility and the outcome of assisted reproduction.
Assuntos
Complexos Multiproteicos/metabolismo , Espermatozoides/metabolismo , Animais , Núcleo Celular/metabolismo , Humanos , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Masculino , Modelos BiológicosRESUMO
Globally, fertility-related issues affect around 15% of couples. In 20%-30% of cases men are solely responsible, and they contribute in around 50% of all cases. Hence, understanding of in vivo germ-cell specification and exploring different angles of fertility preservation and infertility intervention are considered hot topics nowadays, with special focus on the use of human pluripotent stem cells (hPSCs) as a source of in vitro germ-cell generation. However, the generation of male germ cells from hPSCs can currently be considered challenging, making a judgment on the real perspective of these innovative approaches difficult. Ever since the first spontaneous germ-cell differentiation studies, using human embryonic stem cells, various strategies, including specific co-cultures, gene over-expression, and addition of growth factors, have been applied for human germ-cell derivation. In line with the variety of differentiation methods, the outcomes have ranged from early and migratory primordial germ cells up to post-meiotic spermatids. This variety of culture approaches and cell lines makes comparisons between protocols difficult. Considering the diverse strategies and outcomes, we aim in this mini-review to summarize the literature regarding in vitro derivation of human male germ cells from hPSCs, while keeping a particular focus on the culture methods, growth factors, and cell lines used.
Assuntos
Técnicas Citológicas/métodos , Células Germinativas/citologia , Células-Tronco Pluripotentes/citologia , Reprodução/fisiologia , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Humanos , Infertilidade/fisiopatologia , MasculinoRESUMO
New perspectives have been opened by advances in stem cell research for reproductive and regenerative medicine. Several different cell types can be differentiated from stem cells (SCs) under suitable in vitro and in vivo conditions. The differentiation of SCs into male germ cells has been reported by many groups. Due to their unlimited pluripotency and self-renewal, embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) can be used as valuable tools for drug delivery, disease modeling, developmental studies, and cell-based therapies in regenerative medicine. The unique features of SCs are controlled by a dynamic interplay between extrinsic signaling pathways, and regulations at epigenetic, transcriptional and posttranscriptional levels. In recent years, significant progress has been made toward better understanding of the functions and expression of specific microRNAs (miRNAs) in the maintenance of SC pluripotency. miRNAs are short noncoding molecules, which play a functional role in the regulation of gene expression. In addition, the important regulatory role of miRNAs in differentiation and dedifferentiation has been recently demonstrated. A balance between differentiation and pluripotency is maintained by miRNAs in the embryo and stem cells. This review summarizes the recent findings about the role of miRNAs in the regulation of self-renewal and pluripotency of iPSCs and ESCs, as well as their impact on cellular reprogramming and stem cell differentiation into male germ cells.