Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 962: 176223, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056619

RESUMO

BACKGROUND: Myocardial infarction (MI) is one of the common causes of hospitalization and death all over the world. Maresin2 (MaR2), a specialized pro-solving mediator of inflammation, has been consolidated to be a novel cytokine fine-tuning inflammatory cascade. However, the precise mechanism is still unknown. Here, we demonstrated that maresin2 relieved myocardial damage via ULK1 O-GlcNAc modification during MI. METHODS: The myocardial infarction model was established by ligating the left anterior descending artery (LAD). Echocardiography, histopathology, transmission electron microscope, and Western blot were used to evaluate cardiac function and remodeling. Furthermore, primary neonatal rat cardiomyocytes (NRCMs) were cultivated, and immunoprecipitation (IP) assays were performed to explore the specific mechanism. RESULTS: As suggested, maresin2 treatment protected cardiac function and ameliorated adverse cardiac remodeling. Furthermore, we found that maresin2 facilitated autophagy and inhibited apoptosis under the modulation of O-GlcNAcylation-dependent ULK1 activation. Meanwhile, we discovered that maresin2 treatment ameliorated the inflammation of myocardial cells by inhibiting the interaction of TAK1 and TAB1. CONCLUSIONS: Maresin2 is likely to promote autophagy while relieving apoptosis and inflammation of myocardial cells, thereby exerting a protective effect on the heart after MI.


Assuntos
Infarto do Miocárdio , Ratos , Animais , Infarto do Miocárdio/patologia , Miocárdio/patologia , Miócitos Cardíacos , Vasos Coronários/patologia , Inflamação/patologia , Remodelação Ventricular , Proteína Homóloga à Proteína-1 Relacionada à Autofagia
2.
Int Immunopharmacol ; 140: 112785, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39088915

RESUMO

OBJECTIVE: To observe the effects and mechanisms of Maresin2 on the function of DCs(Dendritic cells). METHOD: The levels of IL-6, IL-12, TNF-α and IL-1ß secreted by BMDCs (Bone marrow-derived Dendritic cells) after Maresin2 treatment were detected by ELISA. At the same time, the expressions of costimulatory molecules CD40 and CD86 on the surface, the ability of phagocytosis of ovalbumin(OVA) antigen, and antigen presentation function in BMDCs were analyzed by flow cytometry. Finally, MAPK and NF-κB pathway signaling phosphorylation in Maresin2-treated BMDCs were detected by western blot. RESULTS: The secretion levels of IL-6, IL-12, TNF-α and IL-1ß were significantly decreased in the Maresin2 treatment group after LPS treatment (P < 0.05). The expression levels of CD86 and CD40 were significantly decreased after Maresin2 treatment (P < 0.05). Maresin2 enhanced the phagocytosis ability of ovalbumin(OVA) (P < 0.05), but the ability of antigen presentation of BMDCs with the treatment of Maresin2 changed slightly (P > 0.05). Phosphorylation of p38, JNK, p65, ikka/ß and ERK peaked at 15 min in the LPS group, while phosphorylation of p-p38 and p-ERK weakened 30 min and 60 min after treatment with Maresin2. CONCLUSIONS: Maresin2 inhibits inflammatory cytokine secretion but enhances phagocytosis via the MAPK/NF-κB pathway in BMDCs, which may contribute to negatively regulating inflammation.


Assuntos
Citocinas , Células Dendríticas , NF-kappa B , Fagocitose , Transdução de Sinais , Animais , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , NF-kappa B/metabolismo , Camundongos , Citocinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Células Cultivadas , Ovalbumina/imunologia , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/imunologia , Camundongos Endogâmicos C57BL , Diferenciação Celular/efeitos dos fármacos , Antígenos CD40/metabolismo , Apresentação de Antígeno/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos
3.
Mol Immunol ; 146: 78-86, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35462079

RESUMO

Asthma is a chronic inflammatory disease of the respiratory system. Maresin-2 (MaR2) is biosynthesized from docosahexaenoic acid (DHA) by macrophages, display strong anti-inflammatory and pro-resolving activity. To investigate the therapeutic effect and mechanism of MaR2 on asthmatic mice induced by ovalbumin (OVA) in conjunction with the adjuvant aluminum hydroxide. Twenty four female BALB/c mice were randomly divided into control, OVA, OVA + MaR2, and OVA + dexamethasone (Dexa) groups. MaR2 or Dexa were given as a treatment for OVA-induced asthma. Serum, bronchoalveolar alveolar lavage fluid (BALF) and lung tissue were collected for further analysis. The Pathological changes of lung tissue, proportion of inflammatory cells in BALF, levels of inflammatory cytokines in BALF or serum, oxidative stress indices, and the protein concentration of ASC, MPO, Ly-6G, ICAM-1, NLRP3 and Caspase-1 in lung tissues were evaluated. Compared with the OVA group, both OVA + MaR2 and OVA + Dexa group had reduced inflammation and mucus secretion in lung tissue, number of inflammatory cells in BALF, levels of related inflammatory cytokines in serum or BALF, and expressions of ASC, MPO, Ly-6G, ICAM-1, NLRP3 and Caspase-1 proteins in lung tissue. In addition, the oxidative stress was alleviated as indicated by decreased MDA, and elevated SOD and GSH. MaR2 has an obvious protective effect on OVA-induced bronchial asthma in mice, in a similar manner as Dexa. The mechanism may be related to the inhibition of the Th2 type immune response, the NLRP3 inflammasome activation and oxidative stress.


Assuntos
Asma , Inflamassomos , Animais , Líquido da Lavagem Broncoalveolar , Caspases/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Feminino , Imunidade , Inflamassomos/metabolismo , Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Pulmão , Camundongos , Camundongos Endogâmicos BALB C , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ovalbumina , Estresse Oxidativo
4.
Neuropharmacology ; 216: 109189, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35820471

RESUMO

Maresin-2 (MaR2) is a specialized pro-resolution lipid mediator (SPM) that reduces neutrophil recruitment in zymosan peritonitis. Here, we investigated the analgesic effect of MaR2 and its mechanisms in different mouse models of pain. For that, we used the lipopolysaccharide (LPS)-induced mechanical hyperalgesia (electronic version of the von Frey filaments), thermal hyperalgesia (hot plate test) and weight distribution (static weight bearing), as well as the spontaneous pain models induced by capsaicin (TRPV1 agonist) or AITC (TRPA1 agonist). Immune cell recruitment was determined by immunofluorescence and flow cytometry while changes in the pro-inflammatory mediator landscape were determined using a proteome profiler kit and ELISA after LPS injection. MaR2 treatment was also performed in cultured DRG neurons stimulated with capsaicin or AITC in the presence or absence of LPS. The effect of MaR2 on TRVP1- and TRPA1-dependent CGRP release by cultured DRG neurons was determined by EIA. MaR2 inhibited LPS-induced inflammatory pain and changes in the cytokine landscape as per cytokine array assay. MaR2 also inhibited TRPV1 and TRPA1 activation as observed by a reduction in calcium influx in cultured DRG neurons, and the number of flinches and time spent licking the paw induced by capsaicin or AITC. In corroboration, MaR2 reduced capsaicin- and AITC-induced CGRP release by cultured DRG neurons and immune cell recruitment to the paw skin close the CGRP+ fibers. In conclusion, we show that MaR2 is an analgesic SPM that acts by targeting leukocyte recruitment, nociceptor TRPV1 and TRPA1 activation, and CGRP release in mice.


Assuntos
Capsaicina , Canais de Potencial de Receptor Transitório , Analgésicos/farmacologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Capsaicina/farmacologia , Citocinas/farmacologia , Ácidos Docosa-Hexaenoicos , Hiperalgesia , Lipopolissacarídeos/farmacologia , Camundongos , Monócitos/metabolismo , Neurônios , Neutrófilos , Nociceptores/metabolismo , Dor , Canal de Cátion TRPA1 , Canais de Cátion TRPV
5.
Toxicol Rep ; 9: 1410-1418, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518468

RESUMO

The zebrafish is an animal model of increasing use in many biomedical fields of study, including toxicology, inflammation, and tissue regeneration. In this paper, we have investigated the inflammatory effects of Loxosceles intermedia's venom (LIV) on zebrafish, as well as the effects of Maresin 2 (Mar2) and Resolvin D5 (RvD5), two specialized pro-resolving mediators (SPMs), in the context of tissue regeneration after fin fold amputation. Furthermore, increasing concentrations of LIV (250-2000 ng) were assayed for their haemolytic effects in vitro, and, afterwards, the same concentrations were evaluated in vivo, when injected intraperitoneally. LIV caused haemolysis in human red blood cells (RBCs), but not in zebrafish RBCs. The survival curve was also not altered by LIV injection, regardless of venom dosage. Histological analysis of renal and hepatic tissues, as well as the whole animal, revealed no pathological differences between LIV-injected and PBS-injected groups. Fin fold regeneration was not altered between LIV-injected and control groups, nor in the presence of MaR2 and RvD5. Results of swimming behavioral analysis also did not differ between groups. Moreover, in silico data indicated differences between human and zebrafish cell membrane lipid constitutions, such as in phospholipases D preferred substrates, that could lead to the protection of zebrafish against LIV. Although our data implies that zebrafish cannot be used as a toxicological model for LIV studies, the absence of observed toxicological effects paves the way for the comprehension of the venom's mechanism of action in mammals and the fundamental evolutionary processes involved.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa