Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Int J Mol Sci ; 25(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38203764

RESUMO

Plastic production has increased dramatically, leading to accumulated plastic waste in the ocean. Marine plastics can be broken down into microplastics (<5 mm) by sunlight, machinery, and pressure. The accumulation of microplastics in organisms and the release of plastic additives can adversely affect the health of marine organisms. Biodegradation is one way to address plastic pollution in an environmentally friendly manner. Marine microorganisms can be more adapted to fluctuating environmental conditions such as salinity, temperature, pH, and pressure compared with terrestrial microorganisms, providing new opportunities to address plastic pollution. Pseudomonadota (Proteobacteria), Bacteroidota (Bacteroidetes), Bacillota (Firmicutes), and Cyanobacteria were frequently found on plastic biofilms and may degrade plastics. Currently, diverse plastic-degrading bacteria are being isolated from marine environments such as offshore and deep oceanic waters, especially Pseudomonas spp. Bacillus spp. Alcanivoras spp. and Actinomycetes. Some marine fungi and algae have also been revealed as plastic degraders. In this review, we focused on the advances in plastic biodegradation by marine microorganisms and their enzymes (esterase, cutinase, laccase, etc.) involved in the process of biodegradation of polyethylene terephthalate (PET), polystyrene (PS), polyethylene (PE), polyvinyl chloride (PVC), and polypropylene (PP) and highlighted the need to study plastic biodegradation in the deep sea.


Assuntos
Actinobacteria , Microplásticos , Plásticos , Biodegradação Ambiental , Polietileno , Bacteroidetes , Firmicutes
2.
J Environ Manage ; 362: 121275, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38833932

RESUMO

The depletion of fossil energy reserves and the environmental pollution caused by these sources highlight the need to harness renewable energy sources from the oceans, such as waves and tides, due to their high potential. On the other hand, the large-scale deployment of ocean energy converters to meet future energy needs requires the use of large farms of these converters, which may have negative environmental impacts on the ocean ecosystem. In the meantime, a very important point is the volume of data produced by different methods of collecting data from the ocean for their analysis, which makes the use of advanced tools such as different machine learning algorithms even more colorful. In this article, some environmental impacts of ocean energy devices have been analyzed using machine learning and quantum machine learning. The results show that quantum machine learning performs better than its classical counterpart in terms of calculation accuracy. This approach offers a promising new method for environmental impact assessment, especially in a complex environment such as the ocean.


Assuntos
Aprendizado de Máquina , Oceanos e Mares , Ecossistema , Meio Ambiente , Algoritmos , Monitoramento Ambiental/métodos , Energia Renovável
3.
Environ Manage ; 73(3): 634-645, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38006452

RESUMO

Ecosystem services (ES) embrace contributions of nature to human livelihood and well-being. Reef environments provide a range of ES with direct and indirect contributions to people. However, the health of reef environments is declining globally due to local and large-scale threats, affecting ES delivery in different ways. Mapping scientific knowledge and identifying research gaps on reefs' ES is critical to guide their management and conservation. We conducted a systematic assessment of peer-reviewed articles published between 2007 and 2022 to build an overview of ES research on reef environments. We analyzed the geographical distribution, reef types, approaches used to assess ES, and the potential drivers of change in ES delivery reported across these studies. Based on 115 articles, our results revealed that coral and oyster reefs are the most studied reef ecosystems. Cultural ES (e.g., subcategories recreation and tourism) was the most studied ES in high-income countries, while regulating and maintenance ES (e.g., subcategory life cycle maintenance) prevailed in low and middle-income countries. Research efforts on reef ES are biased toward the Global North, mainly North America and Oceania. Studies predominantly used observational approaches to assess ES, with a marked increase in the number of studies using statistical modeling during 2021 and 2022. The scale of studies was mostly local and regional, and the studies addressed mainly one or two subcategories of reefs' ES. Overexploitation, reef degradation, and pollution were the most commonly cited drivers affecting the delivery of provisioning, regulating and maintenance, and cultural ES. With increasing threats to reef environments, the growing demand for assessing the contributions to humans provided by reefs will benefit the projections on how these ES will be impacted by anthropogenic pressures. The incorporation of multiple and synergistic ecosystem mechanisms is paramount to providing a comprehensive ES assessment, and improving the understanding of functions, services, and benefits.


Assuntos
Antozoários , Ecossistema , Animais , Humanos , Recifes de Corais , Conservação dos Recursos Naturais/métodos , Antozoários/fisiologia , Modelos Estatísticos
4.
Proc Biol Sci ; 290(1992): 20222129, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36722076

RESUMO

Changing patterns in diversity are a feature of many habitats, with seasonality a major driver of ecosystem structure and function. In coastal marine plankton-based ecosystems, seasonality has been established through long-term time-series of bacterioplankton and protists. Alongside these groups, fungi also inhabit coastal marine ecosystems. If and how marine fungi show long-term intra- and inter-annual diversity patterns is unknown, preventing a comprehensive understanding of marine fungal ecology. Here, we use a 17-year environmental DNA time-series from the English Channel to determine long-term marine fungal diversity patterns. We show that fungal community structure progresses at seasonal and monthly scales and is only weakly related to environmental parameters. Communities restructured every 52-weeks suggesting long-term stability in diversity patterns. Some major marine fungal genera have clear inter-annual recurrence patterns, re-appearing in the annual cycle at the same period. Low relative abundance taxa that are likely non-marine show seasonal input to the coastal marine ecosystem suggesting land-sea exchange regularly takes place. Our results demonstrate long-term intra- and inter-annual marine fungal diversity patterns. We anticipate this study could form the basis for better understanding the ecology of marine fungi and how they fit in the structure and function of the wider coastal marine ecosystem.


Assuntos
DNA Ambiental , DNA Fúngico , Ecossistema , Ecologia , Estações do Ano , Água do Mar/microbiologia
5.
Glob Chang Biol ; 29(4): 998-1008, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36350299

RESUMO

Breeding success is often correlated with climate, but the underlying bottom-up mechanisms remain elusive-particularly in marine environments. Consequently, conservation plans of many species often consider climate change as a unilateral threat, ignoring that even nearby populations can show contradicting trends with climate. Better understanding the relationship between climate and environment at different scales can help us interpret local differences in population trends, ultimately providing better tools to evaluate the global response of a species to threats such as global warming. We studied a growing king penguin population nesting at Kerguelen island (Southern Indian Ocean), hosting one of the largest colonies in the world. We used a unique dataset of foraging, breeding success, and climate data spanning over 25 years to examine the links between climate, marine environment, and breeding success at this colony. The results were then compared to the neighboring population of Crozet, which experienced the steepest decline for this species over the past few decades. At Crozet, penguins experienced lower breeding success in warmer years due to productive currents shifting away from the colony, affecting foraging behavior during chick rearing. At Kerguelen, while chick mass and survival experienced extreme variation from year to year, the annual variation was not associated with the position of the currents, which varied very little compared to the situation in Crozet. Rather than being affected by prey distribution shifts, we found evidence that chick provisioning in Kerguelen might be influenced by prey abundance, which seem to rather increase in warmer conditions. Furthermore, warmer air temperature in winter increased chick survival rate, likely due to reduced thermoregulation cost. Investigating the mechanisms between climate and fitness allowed us to predict two different fates for these populations regarding ongoing global warming.


Assuntos
Spheniscidae , Animais , Spheniscidae/fisiologia , Oceano Índico , Temperatura , Estações do Ano , Estudos Longitudinais , Ecossistema , Mudança Climática
6.
Glob Chang Biol ; 29(13): 3545-3561, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37079435

RESUMO

Undertaking climate vulnerability assessments (CVAs) on marine fisheries is instrumental to the identification of regions, species, and stakeholders at risk of impacts from climate change, and the development of effective and targeted responses for fisheries adaptation. In this global literature review, we addressed three important questions to characterize fisheries CVAs: (i) what are the available approaches to develop CVAs in various social-ecological contexts, (ii) are different geographic scales and regions adequately represented, and (iii) how do diverse knowledge systems contribute to current understanding of vulnerability? As part of these general research efforts, we identified and characterized an inventory of frameworks and indicators that encompass a wide range of foci on ecological and socioeconomic dimensions of climate vulnerability on fisheries. Our analysis highlighted a large gap between countries with top research inputs and the most urgent adaptation needs. More research and resources are needed in low-income tropical countries to ensure existing inequities are not exacerbated. We also identified an uneven research focus across spatial scales and cautioned a possible scale mismatch between assessment and management needs. Drawing on this information, we catalog (1) a suite of research directions that could improve the utility and applicability of CVAs, particularly the examination of barriers and enabling conditions that influence the uptake of CVA results into management responses at multiple levels, (2) the lessons that have been learned from applications in data-limited regions, particularly the use of proxy indicators and knowledge co-production to overcome the problem of data deficiency, and (3) opportunities for wider applications, for example diversifying the use of vulnerability indicators in broader monitoring and management schemes. This information is used to provide a set of recommendations that could advance meaningful CVA practices for fisheries management and promote effective translation of climate vulnerability into adaptation actions.


Assuntos
Ecossistema , Pesqueiros , Mudança Climática , Aclimatação
7.
Glob Chang Biol ; 29(23): 6478-6492, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37815723

RESUMO

Ocean extreme events, such as marine heatwaves, can have harmful impacts on marine ecosystems. Understanding the risks posed by such extreme events is key to develop strategies to predict and mitigate their effects. However, the underlying ocean conditions driving severe impacts on marine ecosystems are complex and often unknown as risks to marine ecosystems arise not only from hazards but also from the interactions between hazards, exposure and vulnerability. Marine ecosystems may not be impacted by extreme events in single drivers but rather by the compounding effects of moderate ocean anomalies. Here, we employ an ensemble climate-impact modeling approach that combines a global marine fish model with output from a large ensemble simulation of an Earth system model, to identify the key ocean ecosystem drivers associated with the most severe impacts on the total biomass of 326 pelagic fish species. We show that low net primary productivity is the most influential driver of extremely low fish biomass over 68% of the ocean area considered by the model, especially in the subtropics and the mid-latitudes, followed by high temperature and low oxygen in the eastern equatorial Pacific and the high latitudes. Severe biomass loss is generally driven by extreme anomalies in at least one ocean ecosystem driver, except in the tropics, where a combination of moderate ocean anomalies is sufficient to drive extreme impacts. Single moderate anomalies never drive extremely low fish biomass. Compound events with either moderate or extreme ocean conditions are a necessary condition for extremely low fish biomass over 78% of the global ocean, and compound events with at least one extreme variable are a necessary condition over 61% of the global ocean. Overall, our model results highlight the crucial role of extreme and compound events in driving severe impacts on pelagic marine ecosystems.


Assuntos
Ecossistema , Peixes , Animais , Biomassa , Clima , Mudança Climática , Oceanos e Mares
8.
Microb Ecol ; 86(1): 144-153, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35622094

RESUMO

The interaction between marine phyto- and bacterioplankton is regulated by multiple environmental and biological factors. Among them, phages as the major regulators of bacterial mortality are considered to have important impacts on algae-associated bacteria and algae-bacteria relationship. However, little is currently known about the actual impact of phages from this perspective. Here, we revealed that phage infection improved the maximum quantum efficiency of photosystem II of Phaeodactylum tricornutum by regulating the associated bacterial community. Specifically, phage infection weakened bacterial abundance and eliminated their negative effects on the diatom. Unexpectedly, the structure of the bacterial community co-cultured with the diatom was not significantly affected, likely because the shaping effect of the diatom on the bacterial community structure can far outcompete or mask the impact of phage infection. Our results established a link between algae, bacteria, and phages, suggesting that phage infection benefits the diatom by regulating the associated bacterial community.


Assuntos
Bacteriófagos , Diatomáceas , Diatomáceas/fisiologia , Bactérias , Organismos Aquáticos
9.
Environ Res ; 233: 116437, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37331553

RESUMO

In the Arctic fjords, the marine mycobiome experiences significant changes under environmental conditions driven by climate change. However, research on the ecological roles and the adaptive mechanisms of marine mycobiome in the Arctic fjord remains insufficiently explored. The present study employed shotgun metagenomics to comprehensively characterize the mycobiome in 24 seawater samples from Kongsfjorden, a High Arctic fjord situated in Svalbard. It revealed the presence of a diverse mycobiome with eight phyla, 34 classes, 71 orders, 152 families, 214 genera, and 293 species. The taxonomic and functional composition of the mycobiome differed significantly among the three layers, i.e., upper layer (depth of 0 m), middle layer (depths of 30-100 m), and lower layer (depths of 150-200 m). Several taxonomic groups (e.g., phylum Ascomycota, class Eurotiomycetes, order Eurotiales, family Aspergillaceae, and genus Aspergillus) and KOs (e.g., K03236/EIF1A, K03306/TC.PIT, K08852/ERN1, and K03119/tauD) were significantly distinct among the three layers. Among the measured environmental parameters, depth, NO2-, and PO43- were identified as the key factors influencing the mycobiome composition. Conclusively, our findings revealed that the mycobiome was diverse in the Arctic seawater and significantly impacted by the variability of environmental conditions in the High Arctic fjord. These results will assist future studies in exploring the ecological and adaptive responses towards the changes within the Arctic ecosystems.


Assuntos
Micobioma , Humanos , Estuários , Ecossistema , Svalbard , Metagenômica , Água do Mar , Regiões Árticas
10.
Environ Res ; 217: 114811, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36414105

RESUMO

Persistent uncertainties in the representations of net primary production (NPP) and silicate in the Southern Ocean have been noted in recent assessments ofthe ocean biogeochemical components of Earth system models (ESMs). Consequently, more mechanistic studies at the regional scale are required. To reduce these uncertainties, we applied a one-dimensional (1D) marine ecosystem model to different bioregions in the Southern Ocean: the Polar Frontal Zone in the Pacific sector, the seasonal sea ice zone in the northwestern Ross Sea, and the inner shelf of Terra Nova Bay. To make the existing ecosystem model applicable to the Southern Ocean, we modified the phytoplankton physiology (stoichiometry depending on species) and the silicate cycle (dissolution rate of biogenic silica (BSi) depending on latitude) in the model. We quantified and compared seasonal variations in several limitation factors of NPP, namely, iron, irradiance, silicate and temperature, in the three regions. The simulation results showed that dissolved iron plays the most significant role in determining the magnitude of NPP and the phytoplankton community structure during summer. Additionally, the modified model successfully reproduced the vertical flux of BSi and particulate organic carbon (POC). The POC export efficiency was high in the inner shelf zone, which had high levels of iron concentration, NPP, and Phaeocystis biomass. In contrast, BSi export occurred most efficiently in the Polar Frontal Zone, where diatoms are dominant, the BSi dissolution rate is low, and NPP is extremely low. Our results from the integrated mechanistic framework at the regional scale demonstrate which specific processes should be urgently included in ESMs for better representation of the biogeochemical dynamics in the Southern Ocean.


Assuntos
Ecossistema , Dióxido de Silício , Fitoplâncton/fisiologia , Ferro , Carbono , Oceanos e Mares
11.
Sensors (Basel) ; 23(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37430495

RESUMO

With an increasing number of offshore wind farms, monitoring and evaluating the effects of the wind turbines on the marine environment have become important tasks. Here we conducted a feasibility study with the focus on monitoring these effects by utilizing different machine learning methods. A multi-source dataset for a study site in the North Sea is created by combining satellite data, local in situ data and a hydrodynamic model. The machine learning algorithm DTWkNN, which is based on dynamic time warping and k-nearest neighbor, is used for multivariate time series data imputation. Subsequently, unsupervised anomaly detection is performed to identify possible inferences in the dynamic and interdepending marine environment around the offshore wind farm. The anomaly results are analyzed in terms of location, density and temporal variability, granting access to information and building a basis for explanation. Temporal detection of anomalies with COPOD is found to be a suitable method. Actionable insights are the direction and magnitude of potential effects of the wind farm on the marine environment, depending on the wind direction. This study works towards a digital twin of offshore wind farms and provides a set of methods based on machine learning to monitor and evaluate offshore wind farm effects, supporting stakeholders with information for decision making on future maritime energy infrastructures.

12.
Environ Monit Assess ; 195(9): 1088, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37615753

RESUMO

The present work is aimed at investigating the effects of seasonal changes and habitat conditions on reproductive state and gonadal development of two macrobenthic fauna. Echinometra mathaei and Tridacna squamosa were collected seasonally (summer and winter) in July 2019 and January 2020 from three sites along the Red Sea coast, Egypt: Hamraween, Sedy Malek, and Porto Ghalb. Sexual differences and gonadal maturation in the two species were determined by performing biopsies of their gonads followed by morphologic analyses. Hematoxylin and eosin-stained gonadal sections were examined and analyzed. In E. mathaei, reproductive behavior was more active in the summer than in the winter; in T. squamosa, reproductive behavior was active almost all the year, especially during the winter. The reproductive activity and gonadal maturation of both species were affected by environmental factors. The results indicated that temperature is a vital factor affecting the reproductive activity of both species. This study concluded that temperature fluctuations may pose significant challenges to coastal marine ecosystems.


Assuntos
Bivalves , Equinodermos , Animais , Ecossistema , Egito , Oceano Índico , Estações do Ano , Monitoramento Ambiental , Ouriços-do-Mar , Gônadas
13.
Glob Chang Biol ; 28(19): 5726-5740, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35899628

RESUMO

The California Current Marine Ecosystem is a highly productive system that exhibits strong natural variability and vulnerability to anthropogenic climate trends. Relating projections of ocean change to biological sensitivities requires detailed synthesis of experimental results. Here, we combine measured biological sensitivities with high-resolution climate projections of key variables (temperature, oxygen, and pCO2 ) to identify the direction, magnitude, and spatial distribution of organism-scale vulnerabilities to multiple axes of projected ocean change. Among 12 selected species of cultural and economic importance, we find that all are sensitive to projected changes in ocean conditions through responses that affect individual performance or population processes. Response indices were largest in the northern region and inner shelf. While performance traits generally increased with projected changes, fitness traits generally decreased, indicating that concurrent stresses can lead to fitness loss. For two species, combining sensitivities to temperature and oxygen changes through the Metabolic Index shows how aerobic habitat availability could be compressed under future conditions. Our results suggest substantial and specific ecological susceptibility in the next 80 years, including potential regional loss of canopy-forming kelp, changes in nearshore food webs caused by declining rates of survival among red urchins, Dungeness crab, and razor clams, and loss of aerobic habitat for anchovy and pink shrimp. We also highlight fillable gaps in knowledge, including specific physiological responses to stressors, variation in responses across life stages, and responses to multistressor combinations. These findings strengthen the case for filling information gaps with experiments focused on fitness-related responses and those that can be used to parameterize integrative physiological models, and suggest that the CCME is susceptible to substantial changes to ecosystem structure and function within this century.


Assuntos
Mudança Climática , Ecossistema , Animais , California , Peixes/fisiologia , Cadeia Alimentar , Oxigênio
14.
Glob Chang Biol ; 28(8): 2657-2677, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35106859

RESUMO

Global warming is affecting the population dynamics and trophic interactions across a wide range of ecosystems and habitats. Translating these real-time effects into their long-term consequences remains a challenge. The rapid and extreme warming period that occurred after the Last Glacial Maximum (LGM) during the Pleistocene-Holocene transition (7-12 thousand years ago) provides an opportunity to gain insights into the long-term responses of natural populations to periods with global warming. The effects of this post-LGM warming period have been assessed in many terrestrial taxa, whereas insights into the impacts of rapid global warming on marine taxa remain limited, especially for megafauna. In order to understand how large-scale climate fluctuations during the post-LGM affected baleen whales and their prey, we conducted an extensive, large-scale analysis of the long-term effects of the post-LGM warming on abundance and inter-ocean connectivity in eight baleen whale and seven prey (fish and invertebrates) species across the Southern and the North Atlantic Ocean; two ocean basins that differ in key oceanographic features. The analysis was based upon 7032 mitochondrial DNA sequences as well as genome-wide DNA sequence variation in 100 individuals. The estimated temporal changes in genetic diversity during the last 30,000 years indicated that most baleen whale populations underwent post-LGM expansions in both ocean basins. The increase in baleen whale abundance during the Holocene was associated with simultaneous changes in their prey and climate. Highly correlated, synchronized and exponential increases in abundance in both baleen whales and their prey in the Southern Ocean were indicative of a dramatic increase in ocean productivity. In contrast, the demographic fluctuations observed in baleen whales and their prey in the North Atlantic Ocean were subtle, varying across taxa and time. Perhaps most important was the observation that the ocean-wide expansions and decreases in abundance that were initiated by the post-LGM global warming, continued for millennia after global temperatures stabilized, reflecting persistent, long-lasting impacts of global warming on marine fauna.


Assuntos
Ecossistema , Aquecimento Global , Animais , Oceano Atlântico , Dinâmica Populacional , Baleias/fisiologia
15.
Glob Chang Biol ; 28(18): 5346-5367, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35583661

RESUMO

The globally widespread adoption of Artificial Light at Night (ALAN) began in the mid-20th century. Yet, it is only in the last decade that a renewed research focus has emerged into its impacts on ecological and biological processes in the marine environment that are guided by natural intensities, moon phase, natural light and dark cycles and daily light spectra alterations. The field has diversified rapidly from one restricted to impacts on a handful of vertebrates, to one in which impacts have been quantified across a broad array of marine and coastal habitats and species. Here, we review the current understanding of ALAN impacts in diverse marine ecosystems. The review presents the current state of knowledge across key marine and coastal ecosystems (sandy and rocky shores, coral reefs and pelagic) and taxa (birds and sea turtles), introducing how ALAN can mask seabird and sea turtle navigation, cause changes in animals predation patterns and failure of coral spawning synchronization, as well as inhibition of zooplankton Diel Vertical Migration. Mitigation measures are recommended, however, while strategies for mitigation were easily identified, barriers to implementation are poorly understood. Finally, we point out knowledge gaps that if addressed would aid in the prediction and mitigation of ALAN impacts in the marine realm.


Assuntos
Antozoários , Ecossistema , Animais , Recifes de Corais , Luz , Poluição Luminosa
16.
Indian J Microbiol ; 62(4): 475-493, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35601673

RESUMO

Actinomycetes are potential antibiotic producers that have been isolated from various terrestrial ecosystems and are exploited for their bioactive compounds. On the contrary, the marine environments were less explored and the research on marine actinomycetes had gained momentum only for the past three decades. Marine actinomycetes are one of the most significant producers of diverse groups of secondary metabolites and provide a huge scope for pharmaceutical and other industries. These organisms are proved to be important, both biotechnologically and economically considering their global presence. The marine ecosystem in India is less explored for the isolation of actinomycetes and several ecological niches are left unattended. Compared to the global scenario, the contribution from Indian researchers towards the isolation and exploitation of marine actinomycetes from the Indian sub-continent is noteworthy. Exploration of actinomycetes from these ecosystems will certainly yield new species and metabolites. Considering the declining rate of drug discovery from terrestrial actinomycetes, the marine counterparts, especially from unexplored regions from the Indian coast will hold a promising way ahead. Apart from drugs, these organisms are reported for the production of different industrially important enzymes like cellulase, amylase, protease, lipase, etc. They are also used in environmental applications, agriculture, and aquacultures sectors. With the rapid advancement in the study of actinomycetes from different marine sources in India, new metabolites are being discovered which have an important role from the economic and industrial point of view. As the world is witnessing newer diseases such as Sars-Cov 2 and the pandemic due to its demands drugs and other metabolites are increasing day by day. Therefore, the necessity for the quest for unique and rare marine actinomycetes is enhancing too. This review highlights the research on marine actinomycetes in India and also the challenges associated with its research.

17.
Glob Chang Biol ; 27(20): 5310-5328, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34309964

RESUMO

Natural systems can undergo critical transitions, leading to substantial socioeconomic and ecological outcomes. "Ecological resilience" has been proposed to describe the capacity of natural systems to absorb external perturbation and reorganize while undergoing change so as to still retain essentially the same function, structure, identity, and feedbacks. However, the mere application of ecological resilience in theoretical research and the lack of quantitative approaches present considerable obstacles for predicting critical transitions and understanding their mechanisms. Large marine ecosystems (LMEs) in the Northwestern Pacific are characterized by great biodiversity and productivity, as well as remarkable warming in recent decades. However, no information is available on the critical transitions and ecological resilience of LMEs in response to warming. Therefore, we applied an integrated resilience assessment framework to fisheries catch data from seven LMEs covering a wide range of regions, from tropical to subarctic, in the Northwestern Pacific to identify critical transitions, assess ecological resilience, and reconstruct folded stability landscapes, with a specific focus on the effects of warming. The results provide evidence of the occurrence of critical transitions, with fold bifurcation and hysteresis in response to increasing sea surface temperatures (SSTs) in the seven LMEs. In addition, these LMEs show similarities and synchronies in structure variations and critical transitions forced by warming. Both dramatic increases in SST and small fluctuations at the corresponding thresholds may trigger critical transitions. Ecological resilience decreases when approaching the tipping points and is repainted as the LMEs shift to alternative stable states with different resilient dynamics. Folded stability landscapes indicate that the responses of LMEs to warming are discontinuous, which may be caused by the reorganization of LMEs as their sensitivity to warming changes. Our study clarifies the nonlinear responses of LMEs to anthropogenic warming and provides examples of quantifying ecological resilience in empirical systems at unprecedented spatial and temporal scales.


Assuntos
Ecossistema , Aquecimento Global , Biodiversidade , Pesqueiros , Temperatura
18.
Glob Chang Biol ; 27(23): 6280-6293, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34529330

RESUMO

Anthropogenic climate change has resulted in warming temperatures and reduced oxygen concentrations in the global oceans. Much remains unknown on the impacts of reduced oxygen concentrations on the biology and distribution of marine fishes. In the Southern California Channel Islands, visual fish surveys were conducted frequently in a manned submersible at three rocky reefs between 1995 and 2009. This area is characterized by a steep bathymetric gradient, with the surveyed sites Anacapa Passage, Footprint and Piggy Bank corresponding to depths near 50, 150 and 300 m. Poisson models were developed for each fish species observed consistently in this network of rocky reefs to determine the impact of depth and year on fish peak distribution. The interaction of depth and year was significant in 23 fish types, with 19 of the modelled peak distributions shifting to a shallower depth over the surveyed time period. Across the 23 fish types, the peak distribution shoaled at an average rate of 8.7 m of vertical depth per decade. Many of the species included in the study, including California sheephead, copper rockfish and blue rockfish, are targeted by commercial and recreational fisheries. CalCOFI hydrographic samples are used to demonstrate significant declines in dissolved oxygen at stations near the survey sites which are forced by a combination of natural multidecadal oscillations and anthropogenic climate change. This study demonstrates in situ fish depth distribution shifts over a 15-year period concurrent with oxygen decline. Climate-driven distribution shifts in response to deoxygenation have important implications for fisheries management, including habitat reduction, habitat compression, novel trophic dynamics and reduced body condition. Continued efforts to predict the formation and severity of hypoxic zones and their impact on fisheries dynamics will be essential to guiding effective placement of protected areas and fisheries regulations.


Assuntos
Peixes , Oxigênio , Animais , Recifes de Corais , Ecossistema , Pesqueiros , Oceanos e Mares
19.
Glob Chang Biol ; 27(7): 1485-1499, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33438266

RESUMO

Global environmental changes have accelerated at an unprecedented rate in recent decades due to human activities. As a consequence, the incidence of novel abiotic conditions and biotic communities, which have been continuously emerging in the Earth system, has rapidly risen. Despite growing attention to the incidence and challenges posed by novelty in terrestrial ecosystems, novelty has not yet been quantified in marine ecosystems. Here, we measured for the rate of novelty (RoN) in abiotic conditions and community structure for three trophic levels, i.e., phytoplankton, zooplankton, and fish, in a large marine system - the Baltic Sea. We measured RoN as the degree of dissimilarity relative to a specific spatial and temporal baseline, and contrasted this with the rate of change as a measure of within-basin change over time. We found that over the past 35 years abiotic and biotic RoN showed complex dynamics varying in time and space, depending on the baseline conditions. RoN in abiotic conditions was smaller in the open Central Baltic Sea than in the Kattegat and the more enclosed Gulf of Bothnia, Gulf of Riga, and Gulf of Finland in the north. We found a similar spatial pattern for biotic assemblages, which resulted from changes in composition and stock size. We identified sea-surface temperature and salinity as key drivers of RoN in biotic communities. Hence, future environmental changes that are expected to affect the biogeochemistry of the Baltic Sea, may favor the rise of biotic novelty. Our results highlighted the need for a deeper understanding of novelty development in marine ecosystems, including interactions between species and trophic levels, ecosystem functioning under novel abiotic conditions, and considering novelty in future management interventions.


Assuntos
Ecossistema , Zooplâncton , Animais , Finlândia , Humanos , Oceanos e Mares , Fitoplâncton
20.
J Phycol ; 57(1): 379-391, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33150587

RESUMO

Kelps provide critical services for coastal food chains and ecosystem, and they are important food source for some segments of human population. Despite their ecological importance, little is known about long-term impacts of elevated CO2 (eCO2 ) on nutrient metabolites in kelps and the underlying regulation mechanisms. In this study, the kelp Saccharina japonica was cultured in CO2 -enriched coastal mesocosm systems for up to 3 months. We found that, although eCO2 significantly increased the growth rate, carbon concentrations, and C/N ratio of S. japonica, and it had no effect on total nitrogen and protein contents at the end of cultivation period. Meanwhile, it decreased the lipid, magnesium, sodium, and calcium content and changed the amino acid and fatty acid composition. Combining the genome-wide transcriptomic and metabolic evidence, we obtained a system-level understanding of metabolic response of S. japonica to eCO2 . The unique ornithine-urea cycle (OUC) and aspartate-argininosuccinate shunt (AAS), coupled with TCA cycle, balanced the carbon and nitrogen metabolism under eCO2 by providing carbon skeleton for amino acid synthesis and reduced power for nitrogen assimilation. This research provides a major advance in the understanding of kelp nutrient metabolic mechanism in the context of global climate change, and such CO2 -induced shifts in nutritional value may induce changes in the structure and stability of marine trophic webs and affect the quality of human nutrition resources.


Assuntos
Kelp , Dióxido de Carbono , Ecossistema , Nitrogênio , Nutrientes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa