Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 537
Filtrar
1.
Am Nat ; 203(2): 267-283, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306283

RESUMO

AbstractVocal production learning (the capacity to learn to produce vocalizations) is a multidimensional trait that involves different learning mechanisms during different temporal and socioecological contexts. Key outstanding questions are whether vocal production learning begins during the embryonic stage and whether mothers play an active role in this through pupil-directed vocalization behaviors. We examined variation in vocal copy similarity (an indicator of learning) in eight species from the songbird family Maluridae, using comparative and experimental approaches. We found that (1) incubating females from all species vocalized inside the nest and produced call types including a signature "B element" that was structurally similar to their nestlings' begging call; (2) in a prenatal playback experiment using superb fairy wrens (Malurus cyaneus), embryos showed a stronger heart rate response to playbacks of the B element than to another call element (A); and (3) mothers that produced slower calls had offspring with greater similarity between their begging call and the mother's B element vocalization. We conclude that malurid mothers display behaviors concordant with pupil-directed vocalizations and may actively influence their offspring's early life through sound learning shaped by maternal call tempo.


Assuntos
Passeriformes , Aves Canoras , Animais , Feminino , Humanos , Mães , Vocalização Animal/fisiologia , Aves Canoras/fisiologia , Aprendizagem
2.
Proc Biol Sci ; 291(2028): 20241158, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39106956

RESUMO

Much is known about how the maternal environment can shape offspring traits via intergenerational effects. It is less clear, however, whether such effects may reach adult offspring sexual traits, with potential consequences for sexual selection and speciation. Here, we report effects of adult female aggregation density on the mating signals and mate preferences of their offspring in an insect that communicates via plant-borne vibrational signals. We experimentally manipulated the density of aggregations experienced by egg-laying mothers, reared the offspring in standard densities, and tested for corresponding differences in their signals and preferences. We detected a strong effect in male signals, with sons of mothers that experienced low aggregation density signalling more. We also detected a weak effect on female mate preferences, with daughters of mothers that experienced low aggregation density being less selective. These adjustments may help males and females find mates and secure matings in low densities, if the conditions they encounter correspond to those their mothers experienced. Our results thus extend theory regarding adjustments to the social environment to the scale of intergenerational effects, with maternal social environments influencing the expression of the sexual traits of adult offspring.


Assuntos
Hemípteros , Preferência de Acasalamento Animal , Animais , Feminino , Masculino , Hemípteros/fisiologia , Comunicação Animal , Meio Social , Densidade Demográfica , Comportamento Sexual Animal
3.
Proc Biol Sci ; 291(2027): 20241037, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39014998

RESUMO

Environmental variation often induces plastic responses in organisms that can trigger changes in subsequent generations through non-genetic inheritance mechanisms. Such transgenerational plasticity thus consists of environmentally induced non-random phenotypic modifications that are transmitted through generations. Transgenerational effects may vary according to the sex of the organism experiencing the environmental perturbation, the sex of their descendants or both, but whether they are affected by past sexual selection is unknown. Here, we use experimental evolution on an insect model system to conduct a first test of the involvement of sexual selection history in shaping transgenerational plasticity in the face of rapid environmental change (exposure to pesticide). We manipulated evolutionary history in terms of the intensity of sexual selection for over 80 generations before exposing individuals to the toxicant. We found that sexual selection history constrained adaptation under rapid environmental change. We also detected inter- and transgenerational effects of pesticide exposure in the form of increased fitness and longevity. These cross-generational influences of toxicants were sex dependent (they affected only male descendants), and intergenerational, but not transgenerational, plasticity was modulated by sexual selection history. Our results highlight the complexity of intra-, inter- and transgenerational influences of past selection and environmental stress on phenotypic expression.


Assuntos
Praguicidas , Seleção Sexual , Animais , Masculino , Feminino , Praguicidas/toxicidade , Evolução Biológica
4.
Mol Ecol ; 33(6): e17283, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38288572

RESUMO

Avian embryos develop in an egg composition which reflects both maternal condition and the recent environment of their mother. In birds, yolk corticosterone (CORT) influences development by impacting pre- and postnatal growth, as well as nestling stress responses and development. One possible mechanism through which maternal CORT may affect offspring development is via changes to offspring DNA methylation. We sought to investigate this, for the first time in birds, by quantifying the impact of manipulations to maternal CORT on offspring DNA methylation. We non-invasively manipulated plasma CORT concentrations of egg-laying female zebra finches (Taeniopygia castanotis) with an acute dose of CORT administered around the time of ovulation and collected their eggs. We then assessed DNA methylation in the resulting embryonic tissue and in their associated vitelline membrane blood vessels, during early development (5 days after lay), using two established methods - liquid chromatography-mass spectrometry (LC-MS) and methylation-sensitive amplification fragment length polymorphism (MS-AFLP). LC-MS analysis showed that global DNA methylation was lower in embryos from CORT-treated mothers, compared to control embryos. In contrast, blood vessel DNA from eggs from CORT-treated mothers showed global methylation increases, compared to control samples. There was a higher proportion of global DNA methylation in the embryonic DNA of second clutches, compared to first clutches. Locus-specific analyses using MS-AFLP did not reveal a treatment effect. Our results indicate that an acute elevation of maternal CORT around ovulation impacts DNA methylation patterns in their offspring. This could provide a mechanistic understanding of how a mother's experience can affect her offspring's phenotype.


Assuntos
Corticosterona , Passeriformes , Animais , Feminino , Corticosterona/farmacologia , Corticosterona/análise , Metilação de DNA , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , DNA
5.
Mol Ecol ; 33(11): e17370, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38682799

RESUMO

The composition of mammalian gut microbiomes is highly conserved within species, yet the mechanisms by which microbiome composition is transmitted and maintained within lineages of wild animals remain unclear. Mutually compatible hypotheses exist, including that microbiome fidelity results from inherited dietary habits, shared environmental exposure, morphophysiological filtering and/or maternal effects. Interspecific hybrids are a promising system in which to interrogate the determinants of microbiome composition because hybrids can decouple traits and processes that are otherwise co-inherited in their parent species. We used a population of free-living hybrid zebras (Equus quagga × grevyi) in Kenya to evaluate the roles of these four mechanisms in regulating microbiome composition. We analysed faecal DNA for both the trnL-P6 and the 16S rRNA V4 region to characterize the diets and microbiomes of the hybrid zebra and of their parent species, plains zebra (E. quagga) and Grevy's zebra (E. grevyi). We found that both diet and microbiome composition clustered by species, and that hybrid diets and microbiomes were largely nested within those of the maternal species, plains zebra. Hybrid microbiomes were less variable than those of either parent species where they co-occurred. Diet and microbiome composition were strongly correlated, although the strength of this correlation varied between species. These patterns are most consistent with the maternal-effects hypothesis, somewhat consistent with the diet hypothesis, and largely inconsistent with the environmental-sourcing and morphophysiological-filtering hypotheses. Maternal transmittance likely operates in conjunction with inherited feeding habits to conserve microbiome composition within species.


Assuntos
Dieta , Equidae , Fezes , Microbioma Gastrointestinal , RNA Ribossômico 16S , Animais , RNA Ribossômico 16S/genética , Quênia , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Equidae/microbiologia , Hibridização Genética , Feminino , Microbiota/genética , Masculino
6.
J Exp Biol ; 227(2)2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38206324

RESUMO

Across many taxa, males use elaborate ornaments or complex displays to attract potential mates. Such sexually selected traits are thought to signal important aspects of male 'quality'. Female mating preferences based on sexual traits are thought to have evolved because choosy females gain direct benefits that enhance their lifetime reproductive success (e.g. greater access to food) and/or indirect benefits because high-quality males contribute genes that increase offspring fitness. However, it is difficult to explain the persistence of female preferences when males only provide genetic benefits, because female preferences should erode the heritable genetic variation in fitness that sexually selected traits signal. This 'paradox of the lek' has puzzled evolutionary biologists for decades, and inspired many hypotheses to explain how heritable variation in sexually selected traits is maintained. Here, we discuss how factors that affect mitochondrial function can maintain variation in sexually selected traits despite strong female preferences. We discuss how mitochondrial function can influence the expression of sexually selected traits, and we describe empirical studies that link the expression of sexually selected traits to mitochondrial function. We explain how mothers can affect mitochondrial function in their offspring by (a) influencing their developmental environment through maternal effects and (b) choosing a mate to increase the compatibility of mitochondrial and nuclear genes (i.e. the 'mitonuclear compatibility model of sexual selection'). Finally, we discuss how incorporating mitochondrial function into models of sexual selection might help to resolve the paradox of the lek, and we suggest avenues for future research.


Assuntos
Evolução Biológica , Reprodução , Feminino , Masculino , Humanos , Exercício Físico , Alimentos , Mitocôndrias/genética
7.
J Exp Biol ; 227(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39037123

RESUMO

Offspring phenotypes can be affected by maternal testosterone and androstenedione (A4), which are considered a tool of mothers to adjust offspring to a fluctuating environment. Yet testosterone and A4 are very rapidly metabolized by developing avian embryos, suggesting that either the maternal testosterone and A4 have potent organizational effects on the embryos extremely early before being metabolized or it is the metabolites that evoke phenotypic variation in the offspring. One of the metabolites, etiocholanolone, increases substantially during early embryonic development and is a likely candidate for mediating maternal effects as it can promote erythropoiesis. To investigate and compare the effects of testosterone and A4 with the possible effects of etiocholanolone during prenatal embryonic development, we increased their levels in black-headed gull eggs (Larus ridibundus), and used sham-injected eggs as controls. This species usually has 3-egg clutches in which maternal androgen levels increase with the egg-laying sequence. We analysed embryonic heart rate, peri-hatching biometric traits, the ratio of white to red blood cells (W/R ratio) and bursa development. We found that testosterone and A4 treatment increased embryonic heart rate irrespective of egg-laying sequence and decreased bill length and W/R ratio, whereas etiocholanolone did not mimic these effects. Instead, etiocholanolone treatment decreased tarsus length and brain mass. Our finding that etiocholanolone does not mimic the effects induced by testosterone and A4 suggests that the embryonic metabolism of maternal testosterone and A4 can potentially diversify the function of these maternal androgens.


Assuntos
Androgênios , Desenvolvimento Embrionário , Etiocolanolona , Testosterona , Animais , Androgênios/farmacologia , Androgênios/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Etiocolanolona/farmacologia , Etiocolanolona/metabolismo , Testosterona/metabolismo , Testosterona/farmacologia , Feminino , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo
8.
J Exp Biol ; 227(Suppl_1)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38449326

RESUMO

It has long been recognized that the environment experienced by parents can influence the traits of offspring (i.e. 'parental effects'). Much research has explored whether mothers respond to predictable shifts in environmental signals by modifying offspring phenotypes to best match future conditions. Many organisms experience conditions that theory predicts should favor the evolution of such 'anticipatory parental effects', but such predictions have received limited empirical support. 'Condition transfer effects' are an alternative to anticipatory effects that occur when the environment experienced by parents during development influences offspring fitness. Condition transfer effects occur when parents that experience high-quality conditions produce offspring that exhibit higher fitness irrespective of the environmental conditions in the offspring generation. Condition transfer effects are not driven by external signals but are instead a byproduct of past environmental quality. They are also likely adaptive but have received far less attention than anticipatory effects. Here, we review the generality of condition transfer effects and show that they are much more widespread than is currently appreciated. Condition transfer effects are observed across taxa and are commonly associated with experimental manipulations of resource conditions experienced by parents. Our Review calls for increased research into condition transfer effects when considering the role of parental effects in ecology and evolution.


Assuntos
Ecologia , Exercício Físico , Feminino , Humanos , Mães , Fenótipo
9.
J Anim Ecol ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138820

RESUMO

Body size and growth rate can influence individual and population success by mediating fitness. Understanding the factors that influence growth can be difficult to disentangle, however, because growth can be shaped by environmental conditions recently experienced, as well as legacy effects from conditions experienced earlier in life and by parents (via parental effects). To improve understanding of growth among annual cohorts (1982-2015) of Lake Erie Walleye (Sander vitreus), a species with life-history and growth characteristics similar to many other long-lived, iteroparous fishes, we determined the role of the following hypothesised factors: (H1) recent environmental conditions; (H2) traits and experiences of the cohort, including growth, in the previous year; (H3) early-life cohort density; (H4) early-life body size; and (H5) parental composition and environment. We evaluated the relative importance of these hypothesised factors using piecewise structural equation modelling in an information-theoretic framework. Our results indicated that cohort-specific growth of Lake Erie Walleye was most strongly influenced by traits (growth) and experiences of the cohort during the previous year (H2) and parental composition and environment (H5). The observed negative relationship with growth during the previous year may indicate that Walleye exhibit compensatory growth. The relationships with parental sizes and environments may mean that parental contributions to offspring affects cohorts into adulthood, with serious implications for the effects of climate change. Warm winters appear to negatively influence offspring growth performance for many years. Legacy effects had a stronger influence on cohort growth than recent environmental conditions, providing new understanding of how somatic growth is regulated in Lake Erie's Walleye population. Specifically, the parental composition and environment appear important via epigenetic and/or egg-provisioning legacies, with carryover effects modifying growth among years. Ultimately, our findings demonstrate that understanding recent growth in animal populations similar to Lake Erie Walleye may require knowledge of past conditions, including those experienced by parents.

10.
Dev Sci ; : e13486, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414216

RESUMO

In humans, being more socially integrated is associated with better physical and mental health and/or with lower mortality. This link between sociality and health may have ancient roots: sociality also predicts survival or reproduction in other mammals, such as rats, dolphins, and non-human primates. A key question, therefore, is which factors influence the degree of sociality over the life course. Longitudinal data can provide valuable insight into how environmental variability drives individual differences in sociality and associated outcomes. The first year of life-when long-lived mammals are the most reliant on others for nourishment and protection-is likely to play an important role in how individuals learn to integrate into groups. Using behavioral, demographic, and pedigree information on 376 wild capuchin monkeys (Cebus imitator) across 20 years, we address how changes in group composition influence spatial association. We further try to determine the extent to which early maternal social environments have downstream effects on sociality across the juvenile and (sub)adult stages. We find a positive effect of early maternal spatial association, where female infants whose mothers spent more time around others also later spent more time around others as juveniles and subadults. Our results also highlight the importance of kin availability and other aspects of group composition (e.g., group size) in dynamically influencing spatial association across developmental stages. We bring attention to the importance of-and difficulty in-determining the social versus genetic influences that parents have on offspring phenotypes. RESEARCH HIGHLIGHTS: Having more maternal kin (mother and siblings) is associated with spending more time near others across developmental stages in both male and female capuchins. Having more offspring as a subadult or adult female is additionally associated with spending more time near others. A mother's average sociality (time near others) is predictive of how social her daughters (but not sons) become as juveniles and subadults (a between-mother effect). Additional variation within sibling sets in this same maternal phenotype is not predictive of how social they become later relative to each other (no within-mother effect).

11.
Gen Comp Endocrinol ; 347: 114420, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056529

RESUMO

In birds, maternal hormones deposited into eggs in response to environmental stimuli can impact offspring phenotype. Although less studied, environmental conditions can also influence females' incubation behavior, which might play a role in regulating embryo exposure to maternal hormones through changes in incubation temperature that affect the activity of the enzymes responsible for converting testosterone (T) to 5α-dihydrotestosterone (DHT) or estradiol. Here, we tested the hypothesis that the initial T content of the yolk and incubation temperature determine exposure to T metabolites during early embryo development. In the Japanese quail (Coturnix japonica), we experimentally manipulated yolk T and incubation temperature (38° C versus 36° C) and analyzed DHT and estradiol titers on day four of incubation. We found that eggs with experimentally increased T and those incubated at 36° C showed higher DHT concentration in egg yolk (with no synergistic effect of the two treatments). Estradiol titers were not affected by T manipulation or incubation temperature. Our study suggests that incubation temperature influences DHT titers and may act as an understudied source of maternal influence on offspring phenotype.


Assuntos
Coturnix , Di-Hidrotestosterona , Feminino , Animais , Di-Hidrotestosterona/metabolismo , Coturnix/fisiologia , Temperatura , Herança Materna , Testosterona/metabolismo , Gema de Ovo/metabolismo , Estradiol/metabolismo
12.
Gen Comp Endocrinol ; 347: 114439, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38158163

RESUMO

When females experience stress during reproduction, developing embryos can be exposed to elevated levels of glucocorticoids, which can permanently affect offspring development, physiology, and behavior. However, the embryo can regulate exposure to glucocorticoids. In placental species, the placenta regulates embryonic exposure to maternal steroids via metabolism. In a comparable way, recent evidence has shown the extraembryonic membranes of avian species also regulate embryonic exposure to a number of maternal steroids deposited in the yolk via metabolism early in development. However, despite the known effects of embryonic exposure to glucocorticoids, it is not yet understood how glucocorticoids are metabolized early in development. To address this knowledge gap, we injected corticosterone into freshly laid chicken (Gallus gallus) eggs and identified corticosterone metabolites, located metabolomic enzyme transcript expression, tracked metabolomic enzyme transcript expression during the first six days of development, and determined the effect of corticosterone and metabolites on embryonic survival. We found that yolk corticosterone was metabolized before day four of development into two metabolites: 5ß-corticosterone and 20ß-corticosterone. The enzymes, AKR1D1 and CBR1 respectively, were expressed in the extraembryonic membranes. Expression was dynamic during early development, peaking on day two of development. Finally, we found that corticosterone exposure is lethal to the embryos, yet exposure to the metabolites is not, suggesting that metabolism protects the embryo. Ultimately, we show that the extraembryonic membranes of avian species actively regulate their endocrine environment very early in development.


Assuntos
Corticosterona , Placenta , Animais , Feminino , Gravidez , Corticosterona/farmacologia , Corticosterona/metabolismo , Placenta/metabolismo , Gema de Ovo/metabolismo , Glucocorticoides/metabolismo , Galinhas/metabolismo , Esteroides/metabolismo
13.
Bioessays ; 44(9): e2100225, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35863907

RESUMO

Evolutionary biology is paying increasing attention to the mechanisms that enable phenotypic plasticity, evolvability, and extra-genetic inheritance. Yet, there is a concern that these phenomena remain insufficiently integrated within evolutionary theory. Understanding their evolutionary implications would require focusing on phenotypes and their variation, but this does not always fit well with the prevalent genetic representation of evolution that screens off developmental mechanisms. Here, we instead use development as a starting point, and represent it in a way that allows genetic, environmental and epigenetic sources of phenotypic variation to be independent. We show why this representation helps to understand the evolutionary consequences of both genetic and non-genetic phenotype determinants, and discuss how this approach can instigate future areas of empirical and theoretical research.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Variação Genética , Genótipo , Fenótipo
14.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34507981

RESUMO

In high-risk environments with frequent predator encounters, efficient antipredator behavior is key to survival. Parental effects are a powerful mechanism to prepare offspring for coping with such environments, yet clear evidence for adaptive parental effects on offspring antipredator behaviors is missing. Rapid escape reflexes, or "C-start reflexes," are a key adaptation in fish and amphibians to escape predator strikes. We hypothesized that mothers living in high-risk environments might induce faster C-start reflexes in offspring by modifying egg composition. Here, we show that offspring of the cichlid fish Neolamprologus pulcher developed faster C-start reflexes and were more risk averse if their parents had been exposed to cues of their most dangerous natural predator during egg production. This effect was mediated by differences in egg composition. Eggs of predator-exposed mothers were heavier with higher net protein content, and the resulting offspring were heavier and had lower igf-1 gene expression than control offspring shortly after hatching. Thus, changes in egg composition can relay multiple putative pathways by which mothers can influence adaptive antipredator behaviors such as faster escape reflexes.


Assuntos
Adaptação Fisiológica , Adaptação Psicológica , Ciclídeos/fisiologia , Ovos/análise , Reação de Fuga , Herança Materna , Comportamento Predatório , Animais , Ciclídeos/anatomia & histologia , Feminino
15.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33443206

RESUMO

Primate offspring often depend on their mothers well beyond the age of weaning, and offspring that experience maternal death in early life can suffer substantial reductions in fitness across the life span. Here, we leverage data from eight wild primate populations (seven species) to examine two underappreciated pathways linking early maternal death and offspring fitness that are distinct from direct effects of orphaning on offspring survival. First, we show that, for five of the seven species, offspring face reduced survival during the years immediately preceding maternal death, while the mother is still alive. Second, we identify an intergenerational effect of early maternal loss in three species (muriquis, baboons, and blue monkeys), such that early maternal death experienced in one generation leads to reduced offspring survival in the next. Our results have important implications for the evolution of slow life histories in primates, as they suggest that maternal condition and survival are more important for offspring fitness than previously realized.


Assuntos
Longevidade/fisiologia , Morte Materna/estatística & dados numéricos , Reprodução/fisiologia , Animais , Animais Recém-Nascidos , Animais Selvagens , Feminino , Mães , Gravidez , Primatas
16.
J Anim Breed Genet ; 141(4): 465-472, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38308514

RESUMO

Body weight is an economically important trait in poultry that shows sexual dimorphism (SD). In the present study, variation in SD in Mazandaran native chickens was investigated in terms of the (Co) variance components and genetic parameters of body weight between males and females. Studied traits were body weights at hatch (BW1), 8 weeks (BW8) and 12 weeks of age (BW12). Also, for weight at sexual maturity (WSM) covariance components were only estimated in females. Cross-sex direct and maternal correlations were also estimated for studied traits except for WSM. For this purpose, a deep 21-generation pedigree and body weight data (57,576 BW1, 72,925 BW8, 62,727 BW12 and, 42,496 WSM) were used. Evaluation of SD of body weight was performed using six bivariate animal models with and without considering the genetic and permanent maternal environmental effects under the restricted maximum likelihood method in WOMBAT software. Model with direct additive genetic effects and maternal genetic effects without covariance between them was identified as the best model for BW1 and BW8. The Model including direct additive genetic effects and permanent maternal environmental effects was the best model for BW12 and WSM. Direct heritability (h2) estimates for BW1, BW8 and, BW12 were, respectively, 0.05 ± 0.013, 0.17 ± 0.02 and, 0.25 ± 0.03 in males and, 0.05 ± 0.012, 0.15 ± 0.01 and 0.21 ± 0.01 in females. Also, the direct heritability of WSM based on univariate analysis in females was estimated to be 0.40 ± 0.01. Maternal heritability ( h m 2 ) varied from 0.39 ± 0.01 (BW1) to 0.04 ± 0.009 (BW8) in males, and 0.36 ± 0.10 (BW1) to 0.04 ± 0.006 (BW8) in females. The correlation between direct genetic effects between males and females for BW1 was not significantly different from one. The direct genetic correlation between the two sexes for BW8 and BW12 was significantly different from 1 concluding that these traits are dimorphic in terms of direct genetic effects and therefore independent selection in both sexes is possible.


Assuntos
Peso Corporal , Galinhas , Animais , Peso Corporal/genética , Feminino , Galinhas/genética , Galinhas/fisiologia , Galinhas/crescimento & desenvolvimento , Masculino , Caracteres Sexuais , Modelos Genéticos , Fenótipo
17.
J Therm Biol ; 119: 103796, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38306780

RESUMO

Seasonal variations in environmental conditions determine the success of decapod larval development, and females transmit more energy in sub-optimal conditions to maximise the fitness of their offspring. The objective of this study was to focus on the combined effects of temperature (14, 18 and 22 °C) and food quality on the performance of larvae produced by 5 young (0+) and 5 old (I+) Palaemon serratus females. We prepared 3 diets based on Artemia, in decreasing order of total fatty acid content: freshly hatched nauplii (N), unenriched metanauplii (M) and metanauplii enriched with a mixture of microalgae (ME). At hatching, the larvae produced by I+ females had a higher biomass but a similar fatty acid concentration to those produced by 0+ females. Larvae survived better and developed relatively faster as temperature increased, and the longer they waited to metamorphose, the greater their weight at metamorphosis. These performances were diet-dependent, with more survival and more growth in less time with diet N than with the other two. Larvae from I+ females performed better than those from 0+ females, especially under the most stressful conditions. The greater biomass of the larvae of I+ females seems to have enabled them to follow a shorter, and therefore faster, development path than those of 0+ females. The larvae's diet also had an impact on post-metamorphic composition: larvae eating a diet richer in fatty acids produced richer juveniles and those eating a poorer diet produced juveniles with slightly more essential fatty acids. This study supports the high plasticity of caridean shrimp larval development and the importance of maternal effects on the fitness of offspring.


Assuntos
Palaemonidae , Animais , Feminino , Larva , Temperatura , Dieta , Ácidos Graxos
18.
Zoo Biol ; 43(3): 236-254, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38345149

RESUMO

Due to their potential impact on population growth, many studies have investigated factors affecting infant survival in mammal populations under human care. Here we used more than 30 years of Association of Zoos and Aquariums (AZA) studbook data and contraception data from the AZA Reproductive Management Center, along with logistic regression models, to investigate which factors affect infant survival in four Eulemur species managed as Species Survival Plans® in AZA. Across species, infant survival to 1 month ranged from 65% to 78%. Previous experience producing surviving offspring was positively correlated to infant survival in collared (Eulemur collaris), crowned (Eulemur coronatus), and mongoose (Eulemur mongoz) lemurs. Both dam age and previous use of contraception were negatively correlated to infant survival for collared lemurs, though our results suggest the latter may be confounded with other factors. Blue-eyed black lemurs (Eulemur flavifrons) were affected by birth location, suggesting differences in husbandry that may affect infant survival. These results can be used to assist in reproductive planning or to anticipate the likelihood of breeding success. Population managers may also be able to focus their reproductive planning on younger dams or those with previous experience to predict successful births. Future studies should seek to determine what aspects of previous dam success are most important to infant survival, investigate sire-related factors, and examine factors related to cause of death in infants that may lead to differential survival. Our hope is to present a framework that may be useful for investigating infant survival in other mammal species' breeding programs.


Assuntos
Criação de Animais Domésticos , Animais de Zoológico , Animais , Feminino , Criação de Animais Domésticos/métodos , Lemuridae/fisiologia , Masculino , Animais Recém-Nascidos , Reprodução/fisiologia , Lemur/fisiologia
19.
BMC Genomics ; 24(1): 191, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37038099

RESUMO

BACKGROUND: Modifications to early development can lead to evolutionary diversification. The early stages of development are under maternal control, as mothers produce eggs loaded with nutrients, proteins and mRNAs that direct early embryogenesis. Maternally provided mRNAs are the only expressed genes in initial stages of development and are tightly regulated. Differences in maternal mRNA provisioning could lead to phenotypic changes in embryogenesis and ultimately evolutionary changes in development. However, the extent that maternal mRNA expression in eggs can vary is unknown for most developmental models. Here, we use a species with dimorphic development- where females make eggs and larvae of different sizes and life-history modes-to investigate the extent of variation in maternal mRNA provisioning to the egg. RESULTS: We find that there is significant variation in gene expression across eggs of different development modes, and that there are both qualitative and quantitative differences in mRNA expression. We separate parental effects from allelic effects, and find that both mechanisms contribute to mRNA expression differences. We also find that offspring of intraspecific crosses differentially provision their eggs based on the parental cross direction (a parental effect), which has not been previously demonstrated in reproductive traits like oogenesis. CONCLUSION: We find that maternally controlled initiation of development is functionally distinct between eggs of different sizes and maternal genotypes. Both allele-specific effects and parent-of-origin effects contribute to gene expression differences in eggs. The latter indicates an intergenerational effect where a parent's genotype can affect gene expression in an egg made by the next generation.


Assuntos
RNA Mensageiro Estocado , Reprodução , Animais , Feminino , RNA Mensageiro Estocado/genética , Larva , Evolução Biológica , RNA Mensageiro/genética
20.
Proc Biol Sci ; 290(2007): 20230824, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37752834

RESUMO

Through developmental plasticity, an individual organism integrates influences from its immediate environment with those due to the environment of its parents. While both effects on phenotypes are well documented, their relative impact has been little studied in natural systems, especially at the level of gene expression. We examined this issue in four genotypes of the annual plant Persicaria maculosa by varying two key resources-light and soil moisture-in both generations. Transcriptomic analyses showed that the relative effects of parent and offspring environment on gene expression (i.e. the number of differentially expressed transcripts, DETs) varied both for the two types of resource stress and among genotypes. For light, immediate environment induced more DETs than parental environment for all genotypes, although the precise proportion of parental versus immediate DETs varied among genotypes. By contrast, the relative effect of soil moisture varied dramatically among genotypes, from 8-fold more DETs due to parental than immediate conditions to 10-fold fewer. These findings provide evidence at the transcriptomic level that the relative impacts of parental and immediate environment on the developing organism may depend on the environmental factor and vary strongly among genotypes, providing potential for the interplay of these developmental influences to evolve.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Genótipo , Fenótipo , Solo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa