Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Fungal Genet Biol ; 159: 103664, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35026387

RESUMO

The diploid fungal pathogen Candida albicans has three configurations at the mating type locus (MTL): heterozygous (a/α) and homozygous (a/a or α/α). C. albicans MTL locus encodes four transcriptional regulators (MTLa1, a2, α1, and α2). The conserved a1/α2 heterodimer controls not only mating competency but also white-opaque heritable phenotypic switching. However, the regulatory roles of MTLa2 and α1 are more complex and remain to be investigated. MTLa/a cells often express a cell type-specific genes and mate as the a-type partner, whereas MTLα/α cells express α-specific genes and mate as the α-type partner. In this study, we report that the MTLa2 regulator controls the formation of mating projections through both the a- and α-pheromone-sensing pathways and thus results in the bi-mater feature of "α cells" of C. albicans. Ectopic expression of MTLa2 in opaque α cells activates the expression of not only MFA1 and STE3 (a-pheromone receptor) but also MFα1 and STE2 (α-pheromone receptor). Inactivation of either the MFa-Ste3 or MFα-Ste2 pheromone-sensing pathway cannot block the MTLa2-induced development of mating projections. However, the case is different in MTLα1-ectopically expressed opaque a cells. Inactivation of the MFα-Ste2 but not the MFa-Ste3 pheromone-sensing pathway blocks MTLα1-induced development of mating projections. Therefore, MTLa2 and MTLα1 exhibit distinct regulatory features that control the mating response in C. albicans. These findings shed new light on the regulatory mechanism of bi-mating behaviors and sexual reproduction in C. albicans.


Assuntos
Candida albicans , Genes Fúngicos Tipo Acasalamento , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Genes Fúngicos Tipo Acasalamento/genética , Feromônios/genética , Receptores de Feromônios/genética , Receptores de Feromônios/metabolismo , Reprodução
2.
Mycorrhiza ; 32(5-6): 373-385, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35767052

RESUMO

Some arbuscular mycorrhizal (AM) fungal species known to form sporocarps (i.e., aggregations of spores) are polyphyletic in two orders, Glomerales and Diversisporales. Spore clusters (sporocarp-like structures) often formed in pot cultures or in vitro conditions are supposed to be clonal populations, while sporocarps in natural habitats with a fungal peridium are morphologically similar to those of epigeous sexual (zygosporic) sporocarps of Endogone species. Thus, in this study, we explored the genetics of sporocarpic spores of two AM fungi with a view to possibilities of clonal or sexual reproduction during sporocarps formation. To examine these possibilities, we investigated single-nucleotide polymorphisms (SNPs) in reduced genomic libraries of spores isolated from sporocarps molecularly identified as Rhizophagus irregularis and Diversispora epigaea. In addition, partial sequences of the MAT locus HD2 gene of R. irregularis were phylogenetically analyzed to determine the nuclear status of the spores. We found that most SNPs were shared among the spores isolated from each sporocarp in both species. Furthermore, all HD2 sequences from spores isolated from three R. irregularis sporocarps were identical. These results indicate that those sporocarps comprise clonal spores. Therefore, sporocarps with clonal spores may have different functions than sexual reproduction, such as massive spore production or spore dispersal via mycophagy.


Assuntos
Glomeromycota , Micorrizas , Ecossistema , Fungos , Glomeromycota/genética , Micorrizas/genética , Esporos Fúngicos/genética
3.
BMC Genomics ; 22(1): 679, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548025

RESUMO

BACKGROUND: Aspergillus niger is a ubiquitous filamentous fungus widely employed as a cell factory thanks to its abilities to produce a wide range of organic acids and enzymes. Its genome was one of the first Aspergillus genomes to be sequenced in 2007, due to its economic importance and its role as model organism to study fungal fermentation. Nowadays, the genome sequences of more than 20 A. niger strains are available. These, however, do not include the neotype strain CBS 554.65. RESULTS: The genome of CBS 554.65 was sequenced with PacBio. A high-quality nuclear genome sequence consisting of 17 contigs with a N50 value of 4.07 Mbp was obtained. The assembly covered all the 8 centromeric regions of the chromosomes. In addition, a complete circular mitochondrial DNA assembly was obtained. Bioinformatic analyses revealed the presence of a MAT1-2-1 gene in this genome, contrary to the most commonly used A. niger strains, such as ATCC 1015 and CBS 513.88, which contain a MAT1-1-1 gene. A nucleotide alignment showed a different orientation of the MAT1-1 locus of ATCC 1015 compared to the MAT1-2 locus of CBS 554.65, relative to conserved genes flanking the MAT locus. Within 24 newly sequenced isolates of A. niger half of them had a MAT1-1 locus and the other half a MAT1-2 locus. The genomic organization of the MAT1-2 locus in CBS 554.65 is similar to other Aspergillus species. In contrast, the region comprising the MAT1-1 locus is flipped in all sequenced strains of A. niger. CONCLUSIONS: This study, besides providing a high-quality genome sequence of an important A. niger strain, suggests the occurrence of genetic flipping or switching events at the MAT1-1 locus of A. niger. These results provide new insights in the mating system of A. niger and could contribute to the investigation and potential discovery of sexuality in this species long thought to be asexual.


Assuntos
Aspergillus niger , Genes Fúngicos Tipo Acasalamento , Aspergillus niger/genética , Sequência de Bases , Mapeamento Cromossômico , Genômica
4.
Plant Dis ; 104(8): 2202-2209, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32452751

RESUMO

Poplar plantations provide important industrial feedstock in China. Red spot symptoms were observed on leaves of Populus tomentosa and P. deltoides in southeastern China. Based on morphology and molecular phylogenetic analysis, the fungus isolated from disease spots was identified as Elsinoë australis, which has been previously recognized as a pathogen of Citrus spp. and jojoba but has not been reported in China. Pathogenicity tests found that isolates from two poplar species caused red spot symptoms on leaves from different poplar species and also led to scab formation on the fruit of one hybrid citrus but not on fruit of orange, lemon, or grapefruit. The draft genome of one E. australis isolate was generated. The genetic architecture of the MAT1-1 and MAT1-2 loci of E. australis was revealed by genome sequence and long-range PCR analyses. Single isolates carried only one of two opposite mating-types was confirmed by idiomorph-specific PCR, suggesting a heterothallic mating system. Our results not only revealed a new E. australis pathotype causing poplar spot anthracnose in China but also provided its genome and mating system information.


Assuntos
Ascomicetos , Populus , China , Filogenia , Doenças das Plantas
5.
J Biol Chem ; 293(21): 8138-8150, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29632066

RESUMO

The conserved serine/threonine protein kinase target of rapamycin (TOR) is a major regulator of eukaryotic cellular and organismal growth and a valuable target for drug therapy. TOR forms the core of two evolutionary conserved complexes, TOR complex 1 (TORC1) and TORC2. In the fission yeast Schizosaccharomyces pombe, TORC2 responds to glucose levels and, by activating the protein kinase Gad8 (an orthologue of human AKT), is required for well-regulated cell cycle progression, starvation responses, and cell survival. Here, we report that TORC2-Gad8 is also required for gene silencing and the formation of heterochromatin at the S. pombe mating-type locus and at subtelomeric regions. Deletion of TORC2-Gad8 resulted in loss of the heterochromatic modification of histone 3 lysine 9 dimethylation (H3K9me2) and an increase in euchromatic modifications, including histone 3 lysine 4 trimethylation (H3K4me3) and histone 4 lysine 16 acetylation (H4K16Ac). Accumulation of RNA polymerase II (Pol II) at subtelomeric genes in TORC2-Gad8 mutant cells indicated a defect in silencing at the transcriptional level. Moreover, a concurrent decrease in histone 4 lysine 20 dimethylation (H4K20me2) suggested elevated histone turnover. Loss of gene silencing in cells lacking TORC2-Gad8 is partially suppressed by loss of the anti-silencer Epe1 and fully suppressed by loss of the Pol II-associated Paf1 complex, two chromatin regulators that have been implicated in heterochromatin stability and spreading. Taken together, our findings suggest that TORC2-Gad8 signaling contributes to epigenetic stability at subtelomeric regions and the mating-type locus in S. pombe.


Assuntos
Cromatina/genética , Inativação Gênica , Heterocromatina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Telômero/genética , Cromatina/metabolismo , Heterocromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Schizosaccharomyces/crescimento & desenvolvimento , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Telômero/metabolismo
6.
Fungal Genet Biol ; 126: 61-74, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30794950

RESUMO

Zizania latifolia Turcz., which is mainly distributed in Asia, has had a long cultivation history as a cereal and vegetable crop. On infection with the smut fungus Ustilago esculenta, Z. latifolia becomes an edible vegetable, water bamboo. Two main cultivars, with a green shell and red shell, are cultivated for commercial production in Taiwan. Previous studies indicated that cultivars of Z. latifolia may be related to the infected U. esculenta isolates. However, related research is limited. The infection process of the corn smut fungus Ustilago maydis is coupled with sexual development and under control of the mating type locus. Thus, we aimed to use the knowledge of U. maydis to reveal the mating system of U. esculenta. We collected water bamboo samples and isolated 145 U. esculenta strains from Taiwan's major production areas. By using PCR and idiomorph screening among meiotic offspring and field isolates, we identified three idiomorphs of the mating type locus and found no sequence recombination between them. Whole-genome sequencing (Illumina and PacBio) suggested that the mating system of U. esculenta was bipolar. Mating type locus 1 (MAT-1) was 552,895 bp and contained 44% repeated sequences. Sequence comparison revealed that U. esculenta MAT-1 shared high gene synteny with Sporisorium reilianum and many repeats with Ustilago hordei MAT-1. These results can be utilized to further explore the genomic diversity of U. esculenta isolates and their application for water bamboo breeding.


Assuntos
Genes Fúngicos , Genes Fúngicos Tipo Acasalamento , Poaceae/microbiologia , Ustilago/genética , Ásia , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Sequenciamento Completo do Genoma
7.
BMC Genomics ; 19(1): 189, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523080

RESUMO

BACKGROUND: Aspergillus arachidicola is an aflatoxigenic fungal species, first isolated from the leaves of a wild peanut species native to Argentina. It has since been reported in maize, Brazil nut and human sputum samples. This aflatoxigenic species is capable of secreting both B and G aflatoxins, similar to A. parasiticus and A. nomius. It has other characteristics that may result in its misidentification as one of several other section Flavi species. This study offers a preliminary analysis of the A. arachidicola genome. RESULTS: In this study we sequenced the genome of the A. arachidicola type strain (CBS 117610) and found its genome size to be 38.9 Mb, and its number of predicted genes to be 12,091, which are values comparable to those in other sequenced Aspergilli. A comparison of 57 known Aspergillus secondary metabolite gene clusters, among closely-related aflatoxigenic species, revealed nearly half were predicted to exist in the type strain of A. arachidicola. Of its predicted genes, 691 were identified as unique to the species and 60% were assigned Gene Ontology terms using BLAST2GO. Phylogenomic inference shows CBS 117610 sharing a most recent common ancestor with A. parasiticus. Finally, BLAST query of A. flavus mating-type idiomorph sequences to this strain revealed the presence of a single mating-type (MAT1-1) idiomorph. CONCLUSIONS: Based on A. arachidicola morphological, genetic and chemotype similarities with A. flavus and A. parasiticus, sequencing the genome of A. arachidicola will contribute to our understanding of the evolutionary relatedness among aflatoxigenic fungi.


Assuntos
Aflatoxinas/metabolismo , Aspergillus/genética , Genoma Fúngico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Transcriptoma , Arachis/microbiologia , Aspergillus/metabolismo , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Ontologia Genética , Anotação de Sequência Molecular , Doenças das Plantas/microbiologia
8.
Antonie Van Leeuwenhoek ; 111(10): 1935-1953, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29651688

RESUMO

Genes involved in mating type determination and recognition were examined in Metschnikowia and related species, to gather insights on factors affecting mating compatibility patterns among haplontic, heterothallic yeast species of the genus. We confirmed the universality of the special mating locus organisation found in Clavispora lusitaniae across and exclusive to the family Metschnikowiaceae (i.e., Metschnikowia and Clavispora). Timing of the divergence between idiomorphs was confirmed to coincide with the origin of the larger (CUG-ser) clade comprising the Debaryomycetaceae and the Metschnikowiaceae, exclusive of Cephaloascus fragrans. The sequence of the a mating pheromone is highly conserved within the large-spored Metschnikowia species, including Metschnikowia orientalis and Metschnikowia hawaiiana, but not Metschnikowia drosophilae or Metschnikowia torresii, which have a pattern of their own, as do other clades in the genus. In contrast, variation in α pheromones shows a more continuous, although imperfect correlation with phylogenetic distance as well as with in vivo mating compatibility.


Assuntos
Genes Fúngicos Tipo Acasalamento , Genoma Fúngico , Genômica , Fator de Acasalamento/genética , Metschnikowia/fisiologia , Sequência de Aminoácidos , Variação Genética , Genômica/métodos , Metschnikowia/classificação , Metschnikowia/ultraestrutura , Feromônios/química , Feromônios/genética , Feromônios/metabolismo , Filogenia , Locos de Características Quantitativas , Característica Quantitativa Herdável , Análise de Sequência de DNA , Esporos Fúngicos
9.
Fungal Genet Biol ; 101: 20-30, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28214601

RESUMO

Light is an environmental signal that influences reproduction in the Mucoromycotina fungi, as it does in many other species of fungi. Mating in Phycomyces blakesleeanus is inhibited by light, but the molecular mechanisms for this inhibition are uncharacterized. In this analysis, the role of the light-sensing MadA-MadB complex in mating was tested. The MadA-MadB complex is homologous to the Neurospora crassa White Collar complex. Three genes required for cell type determination in the sex locus or pheromone biosynthesis are transcriptionally-regulated by light and are controlled by MadA and MadB. This regulation acts through the plus partner, indicating that the inhibitory effect of light on mating is executed through only one of the two sexes. These results are an example whereby the mating types of fungi have acquired sex-specific properties beyond their role in conferring cell-type identity, and provide insight into how sex-determining chromosomal regions can expand the traits they control.


Assuntos
Genes Fúngicos Tipo Acasalamento/genética , Phycomyces/genética , Caracteres Sexuais , Genes Fúngicos Tipo Acasalamento/efeitos da radiação , Luz , Neurospora crassa/genética , Neurospora crassa/crescimento & desenvolvimento , Feromônios/genética , Phycomyces/crescimento & desenvolvimento , Phycomyces/efeitos da radiação
10.
Fungal Genet Biol ; 62: 43-54, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24216224

RESUMO

Dothideomycetes is one of the most ecologically diverse and economically important classes of fungi. Sexual reproduction in this group is governed by mating type (MAT) genes at the MAT1 locus. Self-sterile (heterothallic) species contain one of two genes at MAT1 (MAT1-1-1 or MAT1-2-1) and only isolates of opposite mating type are sexually compatible. In contrast, self-fertile (homothallic) species contain both MAT genes at MAT1. Knowledge of the reproductive capacities of plant pathogens are of particular interest because recombining populations tend to be more difficult to manage in agricultural settings. In this study, we sequenced MAT1 in the heterothallic Dothideomycete fungus Cercospora beticola to gain insight into the reproductive capabilities of this important plant pathogen. In addition to the expected MAT gene at MAT1, each isolate contained fragments of both MAT1-1-1 and MAT1-2-1 at ostensibly random loci across the genome. When MAT fragments from each locus were manually assembled, they reconstituted MAT1-1-1 and MAT1-2-1 exons with high identity, suggesting a retroposition event occurred in a homothallic ancestor in which both MAT genes were fused. The genome sequences of related taxa revealed that MAT gene fragment pattern of Cercospora zeae-maydis was analogous to C. beticola. In contrast, the genome of more distantly related Mycosphaerella graminicola did not contain MAT fragments. Although fragments occurred in syntenic regions of the C. beticola and C. zeae-maydis genomes, each MAT fragment was more closely related to the intact MAT gene of the same species. Taken together, these data suggest MAT genes fragmented after divergence of M. graminicola from the remaining taxa, and concerted evolution functioned to homogenize MAT fragments and MAT genes in each species.


Assuntos
Ascomicetos/genética , Beta vulgaris/microbiologia , Genes Fúngicos Tipo Acasalamento , Evolução Molecular , Éxons , Reprodução
11.
J Fungi (Basel) ; 9(10)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37888215

RESUMO

Grifola frondosa is a valuable edible fungus with high nutritional and medicinal values. The mating systems of fungi not only offer practical strategies for breeding, but also have far-reaching effects on genetic variability. Grifola frondosa has been considered as a sexual species with a tetrapolar mating system based on little experimental data. In the present study, one group of test crosses and six groups of three-round mating experiments from two parental strains were conducted to determine the mating system in G. frondosa. A chi-squared test of the results of the test-cross mating experiments indicated that they satisfied Mendelian segregation, while a series of three-round mating experiments showed that Mendelian segregation was not satisfied, implying a segregation distortion phenomenon in G. frondosa. A genomic map of the G. frondosa strain, y59, grown from an LMCZ basidiospore, with 40.54 Mb and 12 chromosomes, was generated using genome, transcriptome and Hi-C sequencing technology. Based on the genomic annotation of G. frondosa, the mating-type loci A and B were located on chromosomes 1 and 11, respectively. The mating-type locus A coded for the ß-fg protein, HD1, HD2 and MIP, in that order. The mating-type locus B consisted of six pheromone receptors (PRs) and five pheromone precursors (PPs) in a crossed order. Moreover, both HD and PR loci may have only one sublocus that determines the mating type in G. frondosa. The nonsynonymous SNP and indel mutations between the A1B1 and A2B2 mating-type strains and the reference genome of y59 only occurred on genes HD2 and PR1/2, preliminarily confirming that the mating type of the y59 strain was A1B2 and not A1B1. Based on the genetic evidence and the more reliable molecular evidence, the results reveal that the mating system of G. frondosa is tetrapolar. This study has important implications for the genetics and hybrid breeding of G. frondosa.

12.
J Fungi (Basel) ; 8(6)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35736062

RESUMO

Marssonina brunnea is an important fungal pathogen of poplar trees. We collected 32 M. brunnea f.sp. multigermtubi (MbMu) and three M. brunnea f.sp. monogermtubi (MbMo) isolates from four poplar species in three Chinese regions and performed genome resequencing. An annotation of SNPs of MbMu indicated that the SNPs potentially have a functional effect on 69.2% of the predicted genes. Using the SNP dataset of nonredundant isolates, a structure and principal component analysis revealed that MbMu and MbMo belong to two genetically distinct populations. By contrast, subpopulation structures could not be found among MbMu isolates. A neighbor-net analysis and a homoplasy index test provided evidence of recombination among MbMu isolates. The short distance (109-174 bp) of linkage disequilibrium half-decay supported the presence of a high level of recombination in the MbMu population. The genetic architectures of the MAT loci of MbMu and MbMo were revealed by searching genome assemblies or by homology-based cloning, and a BLAST search verified each isolate carrying one of the two opposite MAT loci. This study revealed that the MbMu population contains a wide range of functional variants, shows high-frequency recombination, and exhibits heterothallic mating systems, indicating high evolutionary potential and a resultant threat to poplar plantations.

13.
Mycology ; 13(1): 68-75, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186414

RESUMO

The recently emerged fungal pathogen Candida auris often displays resistance to one or more antifungal drugs. Its infections have been identified in at least 40 countries on six continents to date. Here we report a case of C. auris candidemia in a patient in Xiamen, a city in south China. We also review currently reported cases of C. auris infection in China and compare the genetic and biological features of C. auris strains isolated from this country. Our phylogenetic analysis indicates that there are at least two C. auris genetic clades present in China (the South African clade and the south Asian clade) that display opposite mating type loci (one is MTL a and the other is MTLα). We also found that there are several distinct features among the clinical isolates studied, including the expression of virulence factors, antifungal susceptibilities, and cellular morphologies, and that these features could be associated with the mating-type of the isolate. For example, C. auris MTL a isolates generally secreted higher levels of secreted aspartyl proteases (Saps) at ambient environmental temperatures. Taken together, this study demonstrates that C. auris clinical isolates from China exhibit diversity in both biological and genetic features.

14.
G3 (Bethesda) ; 12(2)2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34791213

RESUMO

The Tremellomycetes are a species-rich group within the basidiomycete fungi; however, most analyses of this group to date have focused on pathogenic Cryptococcus species within the order Tremellales. Recent genome-assisted studies of other Tremellomycetes have identified interesting features with respect to biotechnological applications as well as the evolution of genes involved in mating and sexual development. Here, we report genome sequences of two strains of Filobasidium floriforme, a species from the order Filobasidiales, which branches basally to the Tremellales, Trichosporonales, and Holtermanniales. The assembled genomes of strains CBS6241 and CBS6242 are 27.4 Mb and 26.4 Mb in size, respectively, with 8314 and 7695 predicted protein-coding genes. Overall sequence identity at nucleic acid level between the strains is 97%. Among the predicted genes are pheromone precursor and pheromone receptor genes as well as two genes encoding homedomain (HD) transcription factors, which are predicted to be part of the mating type (MAT) locus. Sequence analysis indicates that CBS6241 and CBS6242 carry different alleles for both the pheromone/receptor genes as well as the HD transcription factors. Orthology inference identified 1482 orthogroups exclusively found in F. floriforme, some of which were involved in carbohydrate transport and metabolism. Subsequent CAZyme repertoire characterization identified 267 and 247 enzymes for CBS6241 and CBS6242, respectively, the second highest number of CAZymes among the analyzed Tremellomycete species. In addition, F. floriforme contains five CAZymes absent in other species and several plant-cell-wall degrading CAZymes with the highest copy number in Tremellomycota, indicating the biotechnological potential of this species.


Assuntos
Basidiomycota , Basidiomycota/genética , DNA Fúngico/genética , Genes Fúngicos Tipo Acasalamento , Filogenia , Receptores de Feromônios/genética
15.
Microbiol Spectr ; 10(5): e0034922, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35972267

RESUMO

Transposable elements (TEs) play a pivotal role in shaping diversity in eukaryotic genomes. The covered smut pathogen on barley, Ustilago hordei, encountered a recent genome expansion. Using long reads, we assembled genomes of 6 U. hordei strains and 3 sister species, to study this genome expansion. We found that larger genome sizes can mainly be attributed to a higher genome fraction of long terminal repeat retrotransposons (LTR-RTs). In the studied smut genomes, LTR-RTs fractions are the largest in U. hordei and are positively correlated with the mating-type locus sizes, which is up to ~560 kb in U. hordei. Furthermore, LTR-RTs were found to be associated with higher nucleotide substitution levels, as these occur in specific genome regions of smut species with a recent LTR-RT proliferation. Moreover, genes in genome regions with higher nucleotide substitution levels generally reside closer to LTR-RTs than other genome regions. Genome regions with many nucleotide substitutions encountered an especially high fraction of CG substitutions, which is not observed for LTR-RT sequences. The high nucleotide substitution levels particularly accelerate the evolution of secretome genes, as their more accessory nature results in substitutions that often lead to amino acid alterations. IMPORTANCE Genomic alteration can be generated through various means, in which transposable elements (TEs) can play a pivotal role. Their mobility causes mutagenesis in itself and can disrupt the function of the sequences they insert into. They also impact genome evolution as their repetitive nature facilitates nonhomologous recombination. Furthermore, TEs have been linked to specific epigenetic genome organizations. We report a recent TE proliferation in the genome of the barley covered smut fungus, Ustilago hordei. This proliferation is associated with a distinct nucleotide substitution regime that has a higher rate and a higher fraction of CG substitutions. This different regime shapes the evolution of genes in subjected genome regions. We hypothesize that TEs may influence the error-rate of DNA polymerase in a hitherto unknown fashion.


Assuntos
Nucleotídeos , Retroelementos , Elementos de DNA Transponíveis , Secretoma , Sequências Repetidas Terminais , Aminoácidos , Proliferação de Células , Evolução Molecular
16.
Front Fungal Biol ; 2: 656386, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37744149

RESUMO

The study of the reproductive biology of lichen fungal symbionts has been traditionally challenging due to their complex lifestyles. Against the common belief of haploidy, a recent genomic study found a triploid-like signal in Letharia. Here, we infer the genome organization and reproduction in Letharia by analyzing genomic data from a pure culture and from thalli, and performing a PCR survey of the MAT locus in natural populations. We found that the read count variation in the four Letharia specimens, including the pure culture derived from a single sexual spore of L. lupina, is consistent with haploidy. By contrast, the L. lupina read counts from a thallus' metagenome are triploid-like. Characterization of the mating-type locus revealed a conserved heterothallic configuration across the genus, along with auxiliary genes that we identified. We found that the mating-type distributions are balanced in North America for L. vulpina and L. lupina, suggesting widespread sexual reproduction, but highly skewed in Europe for L. vulpina, consistent with predominant asexuality. Taken together, we propose that Letharia fungi are heterothallic and typically haploid, and provide evidence that triploid-like individuals are hybrids between L. lupina and an unknown Letharia lineage, reconciling classic systematic and genetic studies with recent genomic observations.

17.
Fungal Biol ; 125(6): 427-434, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34024590

RESUMO

Sexual reproduction is ubiquitous in nature, and nowhere is this more so than in the fungi. Heterothallic behaviour is observed when there is a strict requirement of contact between two individuals of opposite mating type for sexual reproduction to occur. In contrast, a homothallic species can complete the entire sexual cycle in isolation, although several genetic mechanisms underpin this self-fertility. These can be inferred by characterising the structure and gene-content of the mating-type locus, which contains genes that are involved in the regulation of sexual reproduction. In this study, the genetic basis of homothallism in Thielaviopsis cerberus was investigated, the only known self-fertile species within this genus. Using genome sequencing and conventional molecular techniques, two versions of the mating-type locus were identified in this species. This is typical of species that have a unidirectional mating-type switching reproductive strategy. The first version was a self-fertile locus that contained four known mating-type genes, while the second was a self-sterile version with a single mating-type gene. The conversion from a self-fertile to a self-sterile locus is likely mediated by a homologous recombination event at two direct repeats present in the self-fertile locus, resulting in the deletion of three mating-type genes and one of the repeats. Both locus versions were present in isolates that were self-fertile, while self-sterility was caused by the presence of only a switched locus. This study provides a clear example of the architectural fluidity in the mating-type loci that is common among even closely related fungal species.


Assuntos
Ascomicetos , Genes Fúngicos Tipo Acasalamento , Ascomicetos/fisiologia , Deleção de Genes , Genes Fúngicos Tipo Acasalamento/genética , Recombinação Homóloga , Reprodução/genética , Especificidade da Espécie
18.
J Fungi (Basel) ; 7(5)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065484

RESUMO

The B mating-type locus of the tetrapolar basidiomycete Schizophyllum commune encodes pheromones and pheromone receptors in multiple allelic specificities. This work adds substantial new evidence into the organization of the B mating-type loci of distantly related S. commune strains showing a high level of synteny in gene order and neighboring genes. Four pheromone receptor-like genes were found in the genome of S. commune with brl1, brl2 and brl3 located at the B mating-type locus, whereas brl4 is located separately. Expression analysis of brl genes in different developmental stages indicates a function in filamentous growth and mating. Based on the extensive sequence analysis and functional characterization of brl-overexpression mutants, a function of Brl1 in mating is proposed, while Brl3, Brl4 and Brl2 (to a lower extent) have a role in vegetative growth, possible determination of growth direction. The brl3 and brl4 overexpression mutants had a dikaryon-like, irregular and feathery phenotype, and they avoided the formation of same-clone colonies on solid medium, which points towards enhanced detection of self-signals. These data are supported by localization of Brl fusion proteins in tips, at septa and in not-yet-fused clamps of a dikaryon, confirming their importance for growth and development in S. commune.

19.
Pathogens ; 9(9)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942570

RESUMO

Congenic strains have been utilized in numerous model organisms to determine the genetic underpinning of various phenotypic traits. Congenic strains are usually derived after 10 backcrosses to a recipient parent, at which point they are 99.95% genetically identical to the parental strain. In recent decades, congenic pairs have provided an invaluable tool for genetics and molecular biology research in the Cryptococcus neoformans species complex. Here, we summarize the history of Cryptococcus congenic pairs and their application in Cryptococcus research on topics including the impact of the mating type locus on unisexual reproduction, virulence, tissue tropism, uniparental mitochondrial inheritance, and the genetic underpinning of other various traits. We also discuss the limitations of these approaches and other biological questions, which could be explored by employing congenic pairs.

20.
Cells ; 9(8)2020 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-32824370

RESUMO

The nuclear envelope (NE) consists of the inner and outer nuclear membranes (INM and ONM), and the nuclear pore complex (NPC), which penetrates the double membrane. ONM continues with the endoplasmic reticulum (ER). INM and NPC can interact with chromatin to regulate the genetic activities of the chromosome. Studies in the fission yeast Schizosaccharomyces pombe have contributed to understanding the molecular mechanisms underlying heterochromatin formation by the RNAi-mediated and histone deacetylase machineries. Recent studies have demonstrated that NE proteins modulate heterochromatin formation and functions through interactions with heterochromatic regions, including the pericentromeric and the sub-telomeric regions. In this review, we first introduce the molecular mechanisms underlying the heterochromatin formation and functions in fission yeast, and then summarize the NE proteins that play a role in anchoring heterochromatic regions and in modulating heterochromatin formation and functions, highlighting roles for a conserved INM protein, Lem2.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Heterocromatina/metabolismo , Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Retículo Endoplasmático/metabolismo , Transporte Proteico , Telômero/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa