RESUMO
To defend themselves against pathogenic microorganisms, honey bees resort to social immunity mechanisms, such as the secretion of antibiotic compounds in the jelly they feed to their larvae. Whereas the bactericidal activity of jelly fed to queen larvae is well studied, little is known about the bioactivity of compositionally different jelly fed to worker larvae. However, the numerous worker larvae are likely to drive the spread of the microorganism and influence its virulence and pathogenesis. Diluted jelly or extracts are mostly used for jelly bioactivity tests, which may bias the evaluation of the pathogen's resistance and virulence. Here, we compared the bactericidal effect of pure and diluted jellies destined for queen and worker larvae on Melissococcus plutonius, the etiological agent of the European foulbrood (EFB) disease of honey bees, and on a secondary invader bacteria, Enterococcus faecalis. We tested three strains of M. plutonius with varying virulence to investigate the association between resistance to antibacterial compounds and virulence. The resistance of the bacteria varied but was not strictly correlated with their virulence and was lower in pure than in diluted jelly. Resistance differed according to whether the jelly was destined for queen or worker larvae, with some strains being more resistant to queen jelly and others to worker jelly. Our results provide a biologically realistic assessment of host defenses via nutritive jelly and contribute to a better understanding of the ecology of M. plutonius and of secondary invaders bacteria in the honey bee colony environment, thus shedding light on the selective forces affecting their virulence and on their role in EFB pathogenesis.
Assuntos
Antibacterianos , Enterococcaceae , Abelhas , Animais , Larva/microbiologia , Antibacterianos/farmacologia , BactériasRESUMO
European foulbrood (EFB) is a honey bee brood disease caused by the bacterium Melissococcus plutonius. Large-scale EFB outbreaks have been reported in several countries in recent decades, which entail costly sanitation measures of affected apiaries to restrict the spread of this contagious pathogen. To mitigate its impact, a better understanding of the population dynamics of the etiological agent is required. We here used multi-locus sequence typing (MLST) to infer the genetic diversity and geographical distribution of 160 M. plutonius isolates collected from EFB symptomatic honey bee colonies seven years apart. Isolates belonged to three clonal complexes (CCs) known worldwide and to 12 sequence types (STs), of which five were novel. Phylogenetic and clustering analyses showed that some of these novel sequence types have likely evolved locally during a period of outbreak, but most disappeared again. We further screened the isolates for melissotoxin A (mtxA), a putative virulence gene. The prevalence of STs in which mtxA was frequent increased over time, suggesting that this gene promotes spread. Despite the increased frequency of this gene in the population, the total number of cases decreased, which could be due to stricter control measures implemented before the second sampling period. Our results provide a better understanding of M. plutonius population dynamics and help identify knowledge gaps that limit efficient control of this emerging disease.
Assuntos
Genética Populacional , Abelhas , Animais , Larva/microbiologia , Tipagem de Sequências Multilocus , Prevalência , FilogeniaRESUMO
BACKGROUND: European foulbrood is a significant bacterial brood disease of Apis sp. and can cause severe and devastating damages in beekeeping operations. Nevertheless, the epidemiology of its causative agent Melissococcus plutonius has been begun to uncover but the underlying mechanisms of infection and cause of disease still is not well understood. Here, we sought to provide insight into the infection mechanism of EFB employing RNAseq in in vitro reared Apis mellifera larvae of two developmental stages to trace transcriptional changes in the course of the disease, including Paenibacillus alvei secondary infected individuals. RESULTS: In consideration of the progressing development of the larva, we show that infected individuals incur a shift in metabolic and structural protein-encoding genes, which are involved in metabolism of crucial compounds including all branches of macronutrient metabolism, transport protein genes and most strikingly chitin and cuticle associated genes. These changes underpin the frequently observed developmental retardation in EFB disease. Further, sets of expressed genes markedly differ in different stages of infection with almost no overlap. In an earlier stage of infection, a group of regulators of the melanization response cascade and complement component-like genes, predominantly C-type lectin genes, are up-regulated while a differential expression of immune effector genes is completely missing. In contrast, late-stage infected larvae up-regulated the expression of antimicrobial peptides, lysozymes and prominent bacteria-binding haemocyte receptor genes compared to controls. While we clearly show a significant effect of infection on expressed genes, these changes may partly result from a shift in expression timing due to developmental alterations of infection. A secondary infection with P. alvei elicits a specific response with most of the M. plutonius associated differential immune effector gene expression missing and several immune pathway genes even down-regulated. CONCLUSION: We conclude that with progressing infection diseased individuals undergo a systemic response with a change of metabolism and their activated immune defence repertoire. Moreover, larvae are capable of adjusting their response to a secondary invasion in late stage infections.
Assuntos
Bacillus , Infecções Bacterianas , Animais , Abelhas , Larva/microbiologia , TranscriptomaRESUMO
Lactic acid bacteria (LAB) naturally inhabits the organisms of honeybees and can exhibit adhesive properties that protect these insects against various pathogenic microorganisms. Thus, cell surface (auto-aggregation, co-aggregation, hydrophobicity) and adhesive properties of LAB to two abiotic (polystyrene and glass) and four biotic (collagen, gelatin, mucus, and intestinal Caco-2 cells) surfaces were investigated. Additionally, anti-adhesion activity and the eradication of honeybee pathogen biofilms by LAB metabolites (culture supernatants) were determined. The highest hydrophobicity was demonstrated by Pediococcus pentosaceus 19/1 (63.16%) and auto-aggregation by Lactiplantibacillus plantarum 18/1 (71.91%). All LAB showed a broad spectrum of adhesion to the tested surfaces. The strongest adhesion was noted for glass. The ability to co-aggregate with pathogens was tested for the three most potently adherent LAB strains. All showed various levels of co-aggregation depending on the pathogen. The eradication of mature pathogen biofilms by LAB metabolites appeared to be weaker than their anti-adhesive properties against pathogens. The most potent anti-adhesion activity was observed for L. plantarum 18/1 (98.80%) against Paenibacillus apiarius DSM 5582, while the strongest biofilm eradication was demonstrated by the same LAB strain against Melissococcus plutonius DSM 29964 (19.87%). The adhesive and anti-adhesive activity demonstrated by LAB can contribute to increasing the viability of honeybee colonies and improving the conditions in apiaries.
Assuntos
Lactobacillales , Probióticos , Abelhas , Animais , Humanos , Células CACO-2 , Biofilmes , Probióticos/farmacologia , Pediococcus pentosaceusRESUMO
Stingless bees (Apidae: Meliponini) are a group of bees with vestigial stings showing a high level of social organization. They are important pollinators in tropical and subtropical regions, and, in the last decades, stingless beekeeping has increased rapidly in Brazil. Bee-collected pollen and honey of Apis mellifera can be an important source of disease when used as supplements to feed stingless bee colonies, a common and increasing practice adopted by stingless beekeepers. Here, we aimed to investigate the presence of pathogens commonly found in honey bees in diseased colonies of Melipona species in Espírito Santo and São Paulo States, Southeast Brazil. We detected, for the first time, the bacterium Melissococcus plutonius and symptoms of European foulbrood in Melipona spp., associated with brood death and colony losses in some cases. In addition, we tested for the presence of the bacterium Paenibacillus larvae and the fungus Aschosphaera apis, as well as the six more common honey bee viruses in Brazil (BQCV, ABPV, DWV, KBV, IAPV, CBPV) and the microsporidia Nosema apis and Nosema ceranae. However, only one sample of brood was infected with N. ceranae and all other pathogens, with the exception of Melissococcus plutonius, were absent in the analyzed brood. Lastly, we looked for toxic pollen in all food fed to diseased colonies, but none was present.
Assuntos
Abelhas/microbiologia , Enterococcaceae/isolamento & purificação , Nosema/isolamento & purificação , Animais , Abelhas/crescimento & desenvolvimento , Brasil , Larva/crescimento & desenvolvimento , Larva/microbiologia , Pupa/crescimento & desenvolvimento , Pupa/microbiologiaRESUMO
Paenibacillus larvae and Melissococcus plutonius represent the most threatening bacterial diseases of honeybee (Apis mellifera)-American and European foulbrood, respectively. For efficient control of those diseases, rapid and accurate detection of the pathogens is crucial. Therefore, we developed a novel multiplex PCR method simultaneously detecting both pathogens. To design and optimize multiplex PCR reaction, four strains of P. larvae representing four ERIC genotypes I-IV (strain DSM 7030-ERIC I, DSM 25430-ERIC II, LMG 16252-ERIC III, DSM 3615-ERIC IV) were selected. Those strains were fully sequenced using long-read sequencing (Sequel I, Pacific Biosciences). For P. larvae, the multicopy insertion sequence IS256 identified in all genotypes of P. larvae was selected to provide high sensitivity. M. plutonius was detected by plasmid pMP1 sequence and the virulence verified by following detection of ETX/MTX2 toxin responsible for pore formation in the cell membrane. As an internal control, a gene encoding for major royal jelly protein 1 specific for honeybees was selected. The method was validated on 36 clinical specimens collected from the colonies suffering from American and European foulbrood in the Czech Republic. Based on the results, sensitivity of PCR was calculated to 93.75% and specificity to 100% for P. larvae diagnosed from hive debris and 100% sensitivity and specificity for honeybee workers and larval scales as well as for diseased brood infected by M. plutonius.
Assuntos
Enterococcaceae , Paenibacillus larvae , Paenibacillus , Abelhas/genética , Animais , Paenibacillus larvae/genética , Elementos de DNA Transponíveis , Larva/microbiologia , Plasmídeos/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Paenibacillus/genéticaRESUMO
Tyramine, a trace monoamine produced from tyrosine by decarboxylation and found naturally in foods, plants, and animals, is a suspected virulence factor of Melissococcus plutonius that causes European foulbrood in honey bee brood. In the present study, we developed a method for quantitative analysis of tyramine in culture medium and honey bee larvae with a limit of quantitation of 3 ng/mL and a recovery rate of >97% using Liquid Chromatography-Mass Spectrometry/Mass Spectrometry and deuterium-labeled tyramine, demonstrating for the first time that a highly virulent M. plutonius strain actually produces tyramine in infected larvae. This method will be an indispensable tool to elucidate the role of tyramine in European foulbrood pathogenesis in combination with exposure bioassays using artificially reared bee larvae.
Assuntos
Enterococcaceae , Larva , Tiramina , Animais , Larva/microbiologia , Abelhas/microbiologia , Tiramina/análise , Enterococcaceae/isolamento & purificação , Cromatografia Líquida/veterinária , Espectrometria de Massas em Tandem/veterináriaRESUMO
Honeybee diseases are one of the most significant and most common causes of honeybee colonies' weakness and death. An early diagnosis of subclinical infections is necessary to implement precautionary and control measures. Sampling debris from hive bottom boards is simple, non-invasive, and cheap. In this study, we collected winter debris samples in apiaries located in the continental part of Croatia. We used molecular methods, PCR and qPCR, for the first time to analyze those samples. Laboratory results were compared with the health condition and strength of honeybee colonies at an apiary in spring. Our study successfully identified the presence and quantity of various pathogens, including the presence of Vairimorpha spp. (Nosema spp.), quintefied Paenibacillus larvae, Acute Bee Paralysis Virus (ABPV), Black Queen Cell Virus (BQCV), Deformed Wing Virus (DWV), and Sacbrood Virus (SBV). However, our analysis did not detect Melissococcus plutonius, Crithidia mellificae, Lotmaria passim, and Aethina tumida. Samples of winter debris were also examined for the presence and quantification of the V. destructor mites, and their natural mite fall was observed in spring. Honeybee colonies were simultaneously infected by an average of four to six pathogens. Some observed honeybee colonies developed characteristic symptoms, while others did not survive the winter.
RESUMO
Melissococcus plutonius is a Gram-positive lanceolate coccus that is the causative agent of European foulbrood, an important bacterial disease of honey bee brood. Although this bacterium was originally described in the early 20th century, a culture method for this bacterium was not established until more than 40 years after its discovery due to its fastidious characteristics, including the requirement for high potassium and anaerobic/microaerophilic conditions. These characteristics were considered to be common to the majority of M. plutonius strains isolated worldwide, and M. plutonius was also thought to be genetically homologous or clonal for years. However, non-fastidious variants of this species (designated as atypical M. plutonius) were very recently identified in Japan. Although the morphology of these unusual strains was similar to that of traditionally well-known M. plutonius strains, atypical strains were genetically very different from most of the M. plutonius strains previously isolated and were highly virulent to individual bee larva. These atypical variants were initially considered to be unique to Japan, but were subsequently found worldwide; however, the frequency of isolation varied from country to country. The background of the discovery of atypical M. plutonius in Japan and current knowledge on atypical strains, including their biochemical and culture characteristics, virulence, detection methods, and global distribution, are described in this review. Remaining mysteries related to atypical M. plutonius and directions for future research are also discussed.
Assuntos
Infecções Bacterianas , Enterococcaceae , Abelhas , Animais , Virulência , Larva/microbiologia , Enterococcaceae/genética , Infecções Bacterianas/veterináriaRESUMO
Paenibacillus larvae and Melissococcus plutonius are the causative agents of American and European foulbroods of honey bees, respectively. Since their virulence and resistance to disinfectants differ depending on the genotypes/phenotypes of the strains, the discrimination of strain types is important for the effective control of these diseases. Methods to detect and differentiate pathogens in honey are useful for surveying the contamination status of beehives/apiaries. In the present study, we selected a sequence (GenBank accession no. FI763267) as the specific target for enterobacterial repetitive intergenic consensus (ERIC) II-type P. larvae strains for the first time and developed a novel multiplex PCR assay that precisely distinguishes between the major types of foulbrood pathogens (ERIC I and II P. larvae and typical and atypical M. plutonius) in one reaction. In addition, we found that commercially available kits designed for DNA extraction from Mycobacterium in feces efficiently extracted DNA from foulbrood pathogens in honey. Using the multiplex PCR assay and DNA extraction kits, all the targeted types of P. larvae and M. plutonius were detected in honey spiked with the pathogens at a concentration of 100 bacterial cells/strain/ml. Moreover, 94% of the Japanese honey samples examined in the present study were contaminated with one or more types of the foulbrood pathogens. These results indicate that the newly developed methods are useful for detecting foulbrood pathogens in honey. The epidemiological information obtained by these methods will contribute to the effective control of foulbroods in apiaries.
Assuntos
Paenibacillus larvae , Animais , Abelhas , Enterococcaceae/genética , Japão , Larva/microbiologia , Reação em Cadeia da Polimerase Multiplex/métodos , Reação em Cadeia da Polimerase Multiplex/veterinária , Paenibacillus larvae/genética , Estados UnidosRESUMO
Lactic acid bacteria (LAB) are an essential part of the microbiota of the digestive tract of honeybees (Apis mellifera L.). Antagonistic activity of 103 LAB strains (isolates from different environments) against 21 honeybee pathogens/opportunistic pathogens (with agar slab method) was screened. The growth of Paenibacillus genus was inhibited to the most extent. The highest antagonistic activity was demonstrated by Lacticaseibacillus casei 12AN, while the lowest by Apilactobacillus kunkeei DSM 12361, a species naturally inhabiting the honeybee gut. LAB isolated from the honeybee environment demonstrated stronger antagonism against pathogens than collection strains. The antagonistic activity of cell-free supernatants (CFSs) from 24 LAB strains against 7 honeybee pathogens was additionally assessed at physiological pH with the microtitration method. The same was determined for selected CFSs at neutralized pH. CFSs with physiological pH showed significantly stronger antibacterial activity than CFSs with neutralized pH. The results confirmed that the mechanism of antimicrobial activity of LAB is acidification of the environment. The obtained results may, in the future, contribute to a better understanding of the antagonistic properties of LAB and the construction of a probiotic preparation to increase the viability of honeybee colonies.
RESUMO
The balance of the gut microbiome is important for the honey bee's growth and development, immune function and defense against pathogens. The use of a beneficial bacteria-based strategy for the prevention and biocontrol of American foulbrood (AFB) and European foulbrood (EFB) diseases in honey bees offers interesting prospects. Lactic acid bacteria (LAB) are common inhabitants of the gastrointestinal tract of the honey bee. Among LABs associated with bee gut microbiota, Lactiplantibacillus plantarum (previously Lactobacillus plantarum) and Apilactobacillus kunkeei (formerly classified as Lactobacillus kunkeei) are two of the most abundant species. In this study, four Lactiplantibacillus plantarum strains and four Apilactobacillus kunkeei strains, isolated from the gastrointestinal tract of honey bee (Apis mellifera L.) were selected for their in vitro inhibition ability of Paenibacillus larvae ATCC 9545 and Melissococccus plutonius ATCC 35311. In addition, these LABs have been characterized through some biochemical and functional characteristics: cell surface properties (hydrophobicity and auto-aggregation), carbohydrates assimilation and enzymatic activities. The antimicrobial, biochemical and cell surface properties of these LABs have been functional to their candidature as potential probiotics in beekeeping and for the biocontrol of AFB and EFB diseases.
RESUMO
European foulbrood (EFB) is an infectious disease of honey bees caused by the bacterium Melissococcus plutonius. A method for DNA isolation and conventional PCR diagnosis was developed using hive debris, which was non-invasively collected on paper sheets placed on the bottom boards of hives. Field trials utilized 23 honey bee colonies with clinically positive symptoms and 21 colonies without symptoms. Bayes statistics were applied to calculate the comparable parameters for EFB diagnostics when using honey, hive debris, or samples of adult bees. The reliability of the conventional PCR was 100% at 6.7 × 103 Colony Forming Unit of M. plutonius in 1 g of debris. The sensitivity of the method for the sampled honey, hive debris, and adult bees was 0.867, 0.714, and 1.000, respectively. The specificity for the tested matrices was 0.842, 0.800, and 0.833. The predictive values for the positive tests from selected populations with 52% prevalence were 0.813, 0.833, and 0.842, and the real accuracies were 0.853, 0.750, and 0.912, for the honey, hive debris, and adult bees, respectively. It was concluded that hive debris can effectively be utilized to non-invasively monitor EFB in honey bee colonies.
RESUMO
Apilactobacillus kunkeei FF30-6 isolated from healthy honey bees synthesizes the bacteriocin, which exhibits antimicrobial activity against Melissococcus plutonius. The bacteriocin, kunkecin A, was purified through three-step chromatography, and mass spectrometry revealed that its relative molecular mass was 4218.3. Edman degradation of purified kunkecin A showed only the N-terminal residue, isoleucine. Hence, alkaline alkylation made the subsequent amino acid residues accessible to Edman degradation, and 30 cycles were sequenced with 11 unidentified residues. Whole genome sequencing of A. kunkeei FF30-6, followed by Sanger sequencing, revealed that the genes encoding the proteins involved in lantibiotic biosynthesis were within the plasmid, pKUNFF30-6. Most of the identified proteins exhibited significant sequence similarities to the biosynthetic proteins of nisin A and its variants, such as subtilin. However, the kunkecin A gene cluster lacked the genes corresponding to nisI, nisR, and nisK of the nisin A biosynthetic gene cluster. A comparison of the gene products of kukA and nisA (kunkecin A and nisin A structural genes, respectively) suggested that they had similar post-translational modifications. Furthermore, the structure of kunkecin A was proposed based on a comparison of the observed and calculated relative molecular masses of kunkecin A. The structural analysis revealed that kunkecin A and nisin A had a similar mono-sulfide linkage pattern. Purified kunkecin A exhibited a narrow antibacterial spectrum, but high antibacterial activity against M. plutonius. Kunkecin A is the first bacteriocin to be characterized in fructophilic lactic acid bacteria and is the first nisin-type lantibiotic found in the family Lactobacillaceae.
RESUMO
Neonicotinoid and fungicide exposure has been linked to immunosuppression and increased susceptibility to disease in honeybees (Apis mellifera). European foulbrood, caused by the bacterium Melissococcus plutonius, is a disease of honeybee larvae which causes economic hardship for commercial beekeepers, in particular those whose colonies pollinate blueberries. We report for the first time in Canada, an atypical variant of M. plutonius isolated from a blueberry-pollinating colony. With this isolate, we used an in vitro larval infection system to study the effects of pesticide exposure on the development of European foulbrood disease. Pesticide doses tested were excessive (thiamethoxam and pyrimethanil) or maximal field-relevant (propiconazole and boscalid). We found that chronic exposure to the combination of thiamethoxam and propiconazole significantly decreased the survival of larvae infected with M. plutonius, while larvae chronically exposed to thiamethoxam and/or boscalid or pyrimethanil did not experience significant increases in mortality from M. plutonius infection in vitro. Based on these results, individual, calculated field-realistic residues of thiamethoxam and/or boscalid or pyrimethanil are unlikely to increase mortality from European foulbrood disease in honeybee worker brood, while the effects of field-relevant exposure to thiamethoxam and propiconazole on larval mortality from European foulbrood warrant further study.
RESUMO
MELISSOCOCCUS PLUTONIUS: is a bacterial pathogen that causes epidemic outbreaks of European foulbrood (EFB) in honey bee populations. The pathogenicity of a bacterium depends on its virulence, and understanding the mechanisms influencing virulence may allow for improved disease control and containment. Using a standardized in vitro assay, we demonstrate that virulence varies greatly among sixteen M. plutonius isolates from five European countries. Additionally, we explore the causes of this variation. In this study, virulence was independent of the multilocus sequence type of the tested pathogen, and was not affected by experimental co-infection with Paenibacillus alvei, a bacterium often associated with EFB outbreaks. Virulence in vitro was correlated with the growth dynamics of M. plutonius isolates in artificial medium, and with the presence of a plasmid carrying a gene coding for the putative toxin melissotoxin A. Our results suggest that some M. plutonius strains showed an increased virulence due to the acquisition of a toxin-carrying mobile genetic element. We discuss whether strains with increased virulence play a role in recent EFB outbreaks.
Assuntos
Abelhas/microbiologia , Enterococcaceae/genética , Enterococcaceae/patogenicidade , Infecções por Bactérias Gram-Positivas/veterinária , Animais , Toxinas Bacterianas/genética , Técnicas de Tipagem Bacteriana , Infecções por Bactérias Gram-Positivas/microbiologia , Sequências Repetitivas Dispersas , Larva/microbiologia , Tipagem de Sequências Multilocus , Plasmídeos/genética , VirulênciaRESUMO
Environmental DNA (eDNA) has been proposed as a powerful tool to detect and monitor cryptic, elusive, or invasive organisms. We recently demonstrated that honey constitutes an easily accessible source of eDNA. In this study, we extracted DNA from 102 honey samples (74 from Italy and 28 from 17 other countries of all continents) and tested the presence of DNA of nine honey bee pathogens and parasites (Paenibacillus larvae, Melissococcus plutonius, Nosema apis, Nosema ceranae, Ascosphaera apis,Lotmaria passim, Acarapis woodi, Varroa destructor, and Tropilaelaps spp.) using qualitative PCR assays. All honey samples contained DNA from V. destructor, confirming the widespread diffusion of this mite. None of the samples gave positive amplifications for N. apis, A. woodi, and Tropilaelaps spp. M. plutonius was detected in 87% of the samples, whereas the other pathogens were detected in 43% to 57% of all samples. The frequency of Italian samples positive for P. larvae was significantly lower (49%) than in all other countries (79%). The co-occurrence of positive samples for L. passim and A. apis with N. ceranae was significant. This study demonstrated that honey eDNA can be useful to establish monitoring tools to evaluate the sanitary status of honey bee populations.
RESUMO
European honey bees (Apis mellifera Linnaeus) are beneficial insects that provide essential pollination services for agriculture and ecosystems worldwide. Modern commercial beekeeping is plagued by a variety of pathogenic and environmental stressors often confounding attempts to understand colony loss. European foulbrood (EFB) is considered a larval-specific disease whose causative agent, Melissococcus plutonius, has received limited attention due to methodological challenges in the field and laboratory. Here, we improve the experimental and informational context of larval disease with the end goal of developing an EFB management strategy. We sequenced the bacterial microbiota associated with larval disease transmission, isolated a variety of M.plutonius strains, determined their virulence against larvae in vitro, and explored the potential for probiotic treatment of EFB disease. The larval microbiota was a low diversity environment similar to honey, while worker mouthparts and stored pollen contained significantly greater bacterial diversity. Virulence of M. plutonius against larvae varied markedly by strain and inoculant concentration. Our chosen probiotic, Parasaccharibacter apium strain C6, did not improve larval survival when introduced alone, or in combination with a virulent EFB strain. We discuss the importance of positive and negative controls for in vitro studies of the larval microbiome and disease.
RESUMO
Paenibacillus larvae and Melissococcus plutonius are bacterial pathogens of honey bee brood. As decontamination of beekeeping equipment, including combs, is essential to control these pathogens, we evaluated the disinfecting effects of slightly acidic hypochlorous acid water (SAHAW) and weakly acidified chlorous acid water (WACAW) on the pathogens. Both disinfectants exhibited strong disinfecting effects in suspension tests under no organic matter conditions and reduced both pathogens by >5 log10 CFU/ml. Although the microbicidal activity of SAHAW with an available chlorine concentration (ACC) of 10-30 ppm was decreased by organic matter, it reduced viable P. larvae spores in combs more efficiently than H2O when the comb was not as dirty. However, its efficacy on combs decreased at 4°C and when overused or highly contaminated combs were tested. WACAW with an ACC of ≥600 ppm had a higher disinfecting capacity than SAHAW, and efficiently removed P. larvae spores from combs even under organic matter-rich and low-temperature conditions. However, even by WACAW, the amount of viable spores in combs was not markedly reduced depending on contamination levels and P. larvae genotypes. These results suggest the usefulness of both disinfectants for decontaminating beekeeping equipment depending on the situations expected.
Assuntos
Criação de Abelhas/métodos , Cloretos/farmacologia , Enterococcaceae/efeitos dos fármacos , Ácido Hipocloroso/farmacologia , Paenibacillus larvae/efeitos dos fármacos , Criação de Abelhas/instrumentação , Desinfetantes/farmacologia , Infecções por Bactérias Gram-Positivas/prevenção & controle , Infecções por Bactérias Gram-Positivas/veterinária , Concentração de Íons de Hidrogênio , Esporos Bacterianos/efeitos dos fármacos , ÁguaRESUMO
Honey bees directly affect and are influenced by their local environment, in terms of food sources, pollinator densities, pathogen and toxin exposure and climate. Currently, there is a lack of studies analyzing these data with Geographic Information Systems (GIS) to investigate spatial relationships with the environment. Particularly for inter-colonial pathogen transmission, it is known that the likelihood of a healthy colony to become infested (e.g., Varroosis) or infected (e.g., American foulbrood-AFB, European foulbrood-EFB) increases with higher colony density. Whether these transmission paths can actually be asserted at apiary level is largely unknown. Here, we unraveled spatial distribution and high-resolution density of apiaries and bacterial honey bee brood diseases in Switzerland based on available GIS data. Switzerland as 'model country' offers the unique opportunity to get apiary data since 2010 owing to compulsory registration for every beekeeper. Further, both destructive bee brood diseases (AFB and EFB) are legally notifiable in Switzerland, and EFB has an epizootic character for the last decades. As governmental data sets have to be ameliorated, raw data from the cantonal agricultural or veterinary offices have been included. We found a mean density of 0.56 apiaries per km2, and high resolution spatial analyzes showed strong correlation between density of apiaries and human population density as well as agricultural landscape type. Concerning two bacterial bee brood diseases (AFB, EFB), no significant correlation was detectable with density of apiaries on cantonal level, though a high correlation of EFB cases and apiary density became obvious on higher resolution (district level). Hence, Swiss EFB epizootics seem to have benefited from high apiary densities, promoting the transmission of pathogens by adult bees. The GIS-based method presented here, might also be useful for other bee diseases, anthropogenic or environmental factors affecting bee colonies.