Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(17): e2319476121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621120

RESUMO

Glycerophospholipids are synthesized primarily in the cytosolic leaflet of the endoplasmic reticulum (ER) membrane and must be equilibrated between bilayer leaflets to allow the ER and membranes derived from it to grow. Lipid equilibration is facilitated by integral membrane proteins called "scramblases." These proteins feature a hydrophilic groove allowing the polar heads of lipids to traverse the hydrophobic membrane interior, similar to a credit card moving through a reader. Nevertheless, despite their fundamental role in membrane expansion and dynamics, the identity of most scramblases has remained elusive. Here, combining biochemical reconstitution and molecular dynamics simulations, we show that lipid scrambling is a general feature of protein insertases, integral membrane proteins which insert polypeptide chains into membranes of the ER and organelles disconnected from vesicle trafficking. Our data indicate that lipid scrambling occurs in the same hydrophilic channel through which protein insertion takes place and that scrambling is abolished in the presence of nascent polypeptide chains. We propose that protein insertases could have a so-far-overlooked role in membrane dynamics as scramblases.


Assuntos
Proteínas de Membrana , Peptídeos , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Peptídeos/metabolismo , Membranas/metabolismo , Lipídeos , Bicamadas Lipídicas/química
2.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983849

RESUMO

RAS is a signaling protein associated with the cell membrane that is mutated in up to 30% of human cancers. RAS signaling has been proposed to be regulated by dynamic heterogeneity of the cell membrane. Investigating such a mechanism requires near-atomistic detail at macroscopic temporal and spatial scales, which is not possible with conventional computational or experimental techniques. We demonstrate here a multiscale simulation infrastructure that uses machine learning to create a scale-bridging ensemble of over 100,000 simulations of active wild-type KRAS on a complex, asymmetric membrane. Initialized and validated with experimental data (including a new structure of active wild-type KRAS), these simulations represent a substantial advance in the ability to characterize RAS-membrane biology. We report distinctive patterns of local lipid composition that correlate with interfacially promiscuous RAS multimerization. These lipid fingerprints are coupled to RAS dynamics, predicted to influence effector binding, and therefore may be a mechanism for regulating cell signaling cascades.


Assuntos
Membrana Celular/enzimologia , Lipídeos/química , Aprendizado de Máquina , Simulação de Dinâmica Molecular , Multimerização Proteica , Proteínas Proto-Oncogênicas p21(ras)/química , Transdução de Sinais , Humanos
3.
Proc Natl Acad Sci U S A ; 119(35): e2205590119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994655

RESUMO

The endosomal sorting complex required for transport (ESCRT) machinery is centrally involved in the repair of damage to both the plasma and lysosome membranes. ESCRT recruitment to sites of damage occurs on a fast time scale, and Ca2+ has been proposed to play a key signaling role in the process. Here, we show that the Ca2+-binding regulatory protein ALG-2 binds directly to negatively charged membranes in a Ca2+-dependent manner. Next, by monitoring the colocalization of ALIX with ALG-2 on negatively charged membranes, we show that ALG-2 recruits ALIX to the membrane. Furthermore, we show that ALIX recruitment to the membrane orchestrates the downstream assembly of late-acting CHMP4B, CHMP3, and CHMP2A subunits along with the AAA+ ATPase VPS4B. Finally, we show that ALG-2 can also recruit the ESCRT-III machinery to the membrane via the canonical ESCRT-I/II pathway. Our reconstitution experiments delineate the minimal sets of components needed to assemble the entire membrane repair machinery and open an avenue for the mechanistic understanding of endolysosomal membrane repair.


Assuntos
Cálcio , Complexos Endossomais de Distribuição Requeridos para Transporte , Membranas Intracelulares , Lisossomos , ATPases Associadas a Diversas Atividades Celulares , Proteínas Reguladoras de Apoptose , Transporte Biológico , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio , Proteínas de Ciclo Celular , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Humanos , Técnicas In Vitro , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo
4.
J Bacteriol ; 203(4)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33288625

RESUMO

Characterizing the mycobacterial transporters involved in the uptake and/or catabolism of host-derived nutrients required by mycobacteria may identify novel drug targets against tuberculosis. Here, we identify and characterize a member of the amino acid-polyamine-organocation superfamily, a potential γ-aminobutyric acid (GABA) transport protein, GabP, from Mycobacterium smegmatis The protein was expressed to a level allowing its purification to homogeneity, and size exclusion chromatography coupled with multiangle laser light scattering (SEC-MALLS) analysis of the purified protein showed that it was dimeric. We showed that GabP transported γ-aminobutyric acid both in vitro and when overexpressed in E. coli Additionally, transport was greatly reduced in the presence of ß-alanine, suggesting it could be either a substrate or inhibitor of GabP. Using GabP reconstituted into proteoliposomes, we demonstrated that γ-aminobutyric acid uptake is driven by the sodium gradient and is stimulated by membrane potential. Molecular docking showed that γ-aminobutyric acid binds MsGabP, another Mycobacterium smegmatis putative GabP, and the Mycobacterium tuberculosis homologue in the same manner. This study represents the first expression, purification, and characterization of an active γ-aminobutyric acid transport protein from mycobacteria.IMPORTANCE The spread of multidrug-resistant tuberculosis increases its global health impact in humans. As there is transmission both to and from animals, the spread of the disease also increases its effects in a broad range of animal species. Identifying new mycobacterial transporters will enhance our understanding of mycobacterial physiology and, furthermore, provides new drug targets. Our target protein is the gene product of msmeg_6196, annotated as GABA permease, from Mycobacterium smegmatis strain MC2 155. Our current study demonstrates it is a sodium-dependent GABA transporter that may also transport ß-alanine. As GABA may well be an essential nutrient for mycobacterial metabolism inside the host, this could be an attractive target for the development of new drugs against tuberculosis.


Assuntos
Proteínas de Bactérias/metabolismo , Transporte Biológico/fisiologia , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Mycobacterium smegmatis/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Sódio/metabolismo , Ácido gama-Aminobutírico/metabolismo , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Regulação Bacteriana da Expressão Gênica , Metabolômica , Simulação de Acoplamento Molecular , Transportadores de Ânions Orgânicos/genética , Filogenia , Ácido gama-Aminobutírico/química , Ácido gama-Aminobutírico/genética
5.
J Biol Chem ; 295(52): 17997-18009, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33060204

RESUMO

The plasma membrane of a cell is characterized by an asymmetric distribution of lipid species across the exofacial and cytofacial aspects of the bilayer. Regulation of membrane asymmetry is a fundamental characteristic of membrane biology and is crucial for signal transduction, vesicle transport, and cell division. The type IV family of P-ATPases, or P4-ATPases, establishes membrane asymmetry by selection and transfer of a subset of membrane lipids from the lumenal or exofacial leaflet to the cytofacial aspect of the bilayer. It is unclear how P4-ATPases sort through the spectrum of membrane lipids to identify their desired substrate(s) and how the membrane environment modulates this activity. Therefore, we tested how the yeast plasma membrane P4-ATPase, Dnf2, responds to changes in membrane composition induced by perturbation of endogenous lipid biosynthetic pathways or exogenous application of lipid. The primary substrates of Dnf2 are glucosylceramide (GlcCer) and phosphatidylcholine (PC, or their lyso-lipid derivatives), and we find that these substrates compete with each other for transport. Acutely inhibiting sphingolipid synthesis using myriocin attenuates transport of exogenously applied GlcCer without perturbing PC transport. Deletion of genes controlling later steps of glycosphingolipid production also perturb GlcCer transport to a greater extent than PC transport. In contrast, perturbation of ergosterol biosynthesis reduces PC and GlcCer transport equivalently. Surprisingly, application of lipids that are poor transport substrates differentially affects PC and GlcCer transport by Dnf2, thus altering substrate preference. Our data indicate that Dnf2 exhibits exquisite sensitivity to the membrane composition, thus providing feedback onto the function of the P4-ATPases.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Metabolismo dos Lipídeos , Lipídeos de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/genética , Transporte Biológico , Modelos Moleculares , Fosfolipídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato
6.
J Lipid Res ; 61(8): 1150-1160, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32487545

RESUMO

PUFAs, such as AA and DHA, are recognized as important biomolecules, but understanding their precise roles and modes of action remains challenging. PUFAs are precursors for a plethora of signaling lipids, for which knowledge about synthetic pathways and receptors has accumulated. However, due to their extreme diversity and the ambiguity concerning the identity of their cognate receptors, the roles of PUFA-derived signaling lipids require more investigation. In addition, PUFA functions cannot be explained just as lipid mediator precursors because they are also critical for the regulation of membrane biophysical properties. The presence of PUFAs in membrane lipids also affects the functions of transmembrane proteins and peripheral membrane proteins. Although the roles of PUFAs as membrane lipid building blocks were difficult to analyze, the discovery of lysophospholipid acyltransferases (LPLATs), which are critical for their incorporation, advanced our understanding. Recent studies unveiled how LPLATs affect PUFA levels in membrane lipids, and their genetic manipulation became an excellent strategy to study the roles of PUFA-containing lipids. In this review, we will provide an overview of metabolic pathways regulating PUFAs as lipid mediator precursors and membrane components and update recent progress about their functions. Some issues to be solved for future research will also be discussed.


Assuntos
Membrana Celular/metabolismo , Ácidos Graxos Insaturados/metabolismo , Animais , Humanos , Lipídeos de Membrana/metabolismo
7.
J Biol Chem ; 294(6): 1794-1806, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30530492

RESUMO

Lipid transport is an essential process with manifest importance to human health and disease. Phospholipid flippases (P4-ATPases) transport lipids across the membrane bilayer and are involved in signal transduction, cell division, and vesicular transport. Mutations in flippase genes cause or contribute to a host of diseases, such as cholestasis, neurological deficits, immunological dysfunction, and metabolic disorders. Genome-wide association studies have shown that ATP10A and ATP10D variants are associated with an increased risk of diabetes, obesity, myocardial infarction, and atherosclerosis. Moreover, ATP10D SNPs are associated with elevated levels of glucosylceramide (GlcCer) in plasma from diverse European populations. Although sphingolipids strongly contribute to metabolic disease, little is known about how GlcCer is transported across cell membranes. Here, we identify a conserved clade of P4-ATPases from Saccharomyces cerevisiae (Dnf1, Dnf2), Schizosaccharomyces pombe (Dnf2), and Homo sapiens (ATP10A, ATP10D) that transport GlcCer bearing an sn2 acyl-linked fluorescent tag. Further, we establish structural determinants necessary for recognition of this sphingolipid substrate. Using enzyme chimeras and site-directed mutagenesis, we observed that residues in transmembrane (TM) segments 1, 4, and 6 contribute to GlcCer selection, with a conserved glutamine in the center of TM4 playing an essential role. Our molecular observations help refine models for substrate translocation by P4-ATPases, clarify the relationship between these flippases and human disease, and have fundamental implications for membrane organization and sphingolipid homeostasis.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Adenosina Trifosfatases/química , Proteínas de Membrana Transportadoras/química , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/enzimologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Transporte Biológico Ativo , Glucosilceramidas/química , Glucosilceramidas/metabolismo , Células HeLa , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutagênese Sítio-Dirigida , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
8.
Inflammopharmacology ; 28(1): 231-252, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31676982

RESUMO

Lung cancer has second highest rate of incidence and mortality around the world. Smoking cigarettes is the main stream cause of lung carcinogenesis along with other factors such as spontaneous mutations, inactivation of tumor suppressor genes. The present study was aimed to identify the mechanistic role of Imatinib in the chemoprevention of experimental lung carcinogenesis in rat model. Gross morphological observations for tumor formation, histological examinations, RT-PCR, Western blotting, fluorescence spectroscopy and molecular docking studies were performed to elucidate the chemopreventive effects of Imatinib and support our hypothesis by various experiments. It is evident that immuno-compromised microenvironment inside solid tumors is responsible for tumor progression and drug resistance. Therefore, it is inevitable to modulate the pro-inflammatory signaling inside solid tumors to restrict neoangiogenesis. In the present study, we observed that Imatinib could downregulate the inflammatory signaling and also attributed angiostatic effects. Moreover, Imatinib also altered the biophysical properties of BAL cells such as plasma membrane potential, fluidity and microviscosity to restrict their infiltration and thereby accumulation to mount immuno-compromised environment inside the solid tumors during angiogenesis. Our molecular docking studies suggest that immunomodulatory and angiostatic properties of Imatinib could be either independent of each other or just a case of synergistic pleiotropy. Imatinib was observed to activate the intrinsic or mitochondrial pathway of apoptosis to achieve desired effects in cancer cell killings. Interestingly, binding of Imatinib inside the catalytic domain of PARP-1 also suggests that it has caspase-independent properties in promoting cancer cell deaths.


Assuntos
Carcinogênese/efeitos dos fármacos , Mesilato de Imatinib/farmacologia , Inflamação/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Inflamação/metabolismo , Neoplasias Pulmonares/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neovascularização Patológica/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
9.
Adv Exp Med Biol ; 1111: 77-137, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30483964

RESUMO

Within eukaryotic cells, biochemical reactions need to be organized on the surface of membrane compartments that use distinct lipid constituents to dynamically modulate the functions of integral proteins or influence the selective recruitment of peripheral membrane effectors. As a result of these complex interactions, a variety of human pathologies can be traced back to improper communication between proteins and membrane surfaces; either due to mutations that directly alter protein structure or as a result of changes in membrane lipid composition. Among the known structural lipids found in cellular membranes, phosphatidylinositol (PtdIns) is unique in that it also serves as the membrane-anchored precursor of low-abundance regulatory lipids, the polyphosphoinositides (PPIn), which have restricted distributions within specific subcellular compartments. The ability of PPIn lipids to function as signaling platforms relies on both non-specific electrostatic interactions and the selective stereospecific recognition of PPIn headgroups by specialized protein folds. In this chapter, we will attempt to summarize the structural diversity of modular PPIn-interacting domains that facilitate the reversible recruitment and conformational regulation of peripheral membrane proteins. Outside of protein folds capable of capturing PPIn headgroups at the membrane interface, recent studies detailing the selective binding and bilayer extraction of PPIn species by unique functional domains within specific families of lipid-transfer proteins will also be highlighted. Overall, this overview will help to outline the fundamental physiochemical mechanisms that facilitate localized interactions between PPIn lipids and the wide-variety of PPIn-binding proteins that are essential for the coordinate regulation of cellular metabolism and membrane dynamics.


Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Domínios Proteicos , Humanos , Fosfatidilinositóis/metabolismo , Ligação Proteica , Transdução de Sinais
10.
Proc Natl Acad Sci U S A ; 113(3): E396-405, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26719420

RESUMO

Regulation of ion transport in plants is essential for cell function. Abiotic stress unbalances cell ion homeostasis, and plants tend to readjust it, regulating membrane transporters and channels. The plant hormone abscisic acid (ABA) and the second messenger Ca(2+) are central in such processes, as they are involved in the regulation of protein kinases and phosphatases that control ion transport activity in response to environmental stimuli. The identification and characterization of the molecular mechanisms underlying the effect of ABA and Ca(2+) signaling pathways on membrane function are central and could provide opportunities for crop improvement. The C2-domain ABA-related (CAR) family of small proteins is involved in the Ca(2+)-dependent recruitment of the pyrabactin resistance 1/PYR1-like (PYR/PYL) ABA receptors to the membrane. However, to fully understand CAR function, it is necessary to define a molecular mechanism that integrates Ca(2+) sensing, membrane interaction, and the recognition of the PYR/PYL interacting partners. We present structural and biochemical data showing that CARs are peripheral membrane proteins that functionally cluster on the membrane and generate strong positive membrane curvature in a Ca(2+)-dependent manner. These features represent a mechanism for the generation, stabilization, and/or specific recognition of membrane discontinuities. Such structures may act as signaling platforms involved in the recruitment of PYR/PYL receptors and other signaling components involved in cell responses to stress.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Multimerização Proteica , Transdução de Sinais , Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/química , Sítios de Ligação , Calorimetria , Membrana Celular/efeitos dos fármacos , Cristalografia por Raios X , Modelos Biológicos , Fenótipo , Fosfolipídeos/química , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Soluções , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo
11.
Crit Rev Biochem Mol Biol ; 51(6): 513-527, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27696908

RESUMO

Cellular membranes display a diversity of functions that are conferred by the unique composition and organization of their proteins and lipids. One important aspect of lipid organization is the asymmetric distribution of phospholipids (PLs) across the plasma membrane. The unequal distribution of key PLs between the cytofacial and exofacial leaflets of the bilayer creates physical surface tension that can be used to bend the membrane; and like Ca2+, a chemical gradient that can be used to transduce biochemical signals. PL flippases in the type IV P-type ATPase (P4-ATPase) family are the principle transporters used to set and repair this PL gradient and the asymmetric organization of these membranes are encoded by the substrate specificity of these enzymes. Thus, understanding the mechanisms of P4-ATPase substrate specificity will help reveal their role in membrane organization and cell biology. Further, decoding the structural determinants of substrate specificity provides investigators the opportunity to mutationally tune this specificity to explore the role of particular PL substrates in P4-ATPase cellular functions. This work reviews the role of P4-ATPases in membrane biology, presents our current understanding of P4-ATPase substrate specificity, and discusses how these fundamental aspects of P4-ATPase enzymology may be used to enhance our knowledge of cellular membrane biology.


Assuntos
Adenosina Trifosfatases/metabolismo , Membrana Celular/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosfolipídeos/metabolismo , Adenosina Trifosfatases/química , Animais , Membrana Celular/química , Humanos , Modelos Moleculares , Domínios Proteicos , Especificidade por Substrato
12.
J Cell Sci ; 129(22): 4175-4189, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27694211

RESUMO

Nanoclustering is an emerging organizational principle for membrane-associated proteins. The functional consequences of nanoclustering for receptor signaling remain largely unknown. Here, we applied quantitative multi-channel high- and super-resolution imaging to analyze the endothelial cell surface receptor CD36, the clustering of which upon binding to multivalent ligands, such as the anti-angiogenic factor thrombospondin-1 (TSP-1), is thought to be crucial for signaling. We found that a substantial fraction of unligated CD36 exists in nanoclusters, which not only promote TSP-1 binding but are also enriched with the downstream effector Fyn. Exposure to multivalent ligands (TSP-1 or anti-CD36 IgM) that result in larger and denser CD36 clusters activates Fyn. Conversely, pharmacological perturbations that prevent the enhancement of CD36 clustering by TSP-1 abrogate Fyn activation. In both cases, there is no detectable change in Fyn enrichment at CD36 nanoclusters. These observations reveal a crucial role for the basal organization of a receptor into nanoclusters that are enriched with the signal-transducing downstream effectors of that receptor, such that enhancement of clustering by multivalent ligands is necessary and sufficient to activate the downstream effector without the need for its de novo recruitment.


Assuntos
Antígenos CD36/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Transdução de Sinais , Actinas/metabolismo , Linhagem Celular Transformada , Colesterol/metabolismo , Células Endoteliais/metabolismo , Ativação Enzimática , Humanos , Ligantes , Microvasos/citologia , Modelos Biológicos , Ligação Proteica , Trombospondina 1/metabolismo
13.
J Lipid Res ; 55(5): 799-807, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24646950

RESUMO

Cellular membranes are composed of numerous kinds of glycerophospholipids with different combinations of polar heads at the sn-3 position and acyl moieties at the sn-1 and sn-2 positions, respectively. The glycerophospholipid compositions of different cell types, organelles, and inner/outer plasma membrane leaflets are quite diverse. The acyl moieties of glycerophospholipids synthesized in the de novo pathway are subsequently remodeled by the action of phospholipases and lysophospholipid acyltransferases. This remodeling cycle contributes to the generation of membrane glycerophospholipid diversity and the production of lipid mediators such as fatty acid derivatives and lysophospholipids. Furthermore, specific glycerophospholipid transporters are also important to organize a unique glycerophospholipid composition in each organelle. Recent progress in this field contributes to understanding how and why membrane glycerophospholipid diversity is organized and maintained.


Assuntos
Membrana Celular/metabolismo , Glicerofosfolipídeos/química , Glicerofosfolipídeos/metabolismo , Mamíferos , Animais , Ácidos Graxos Insaturados/química , Glicerofosfolipídeos/biossíntese , Humanos , Mitocôndrias/metabolismo , Transdução de Sinais
14.
J Extracell Vesicles ; 13(4): e12436, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38649339

RESUMO

Extracellular vesicles (EVs), lipid-enclosed structures released by virtually all life forms, have gained significant attention due to their role in intercellular and interorganismal communication. Despite their recognized importance in disease processes and therapeutic applications, fundamental questions about their primary function remain. Here, we propose a different perspective on the primary function of EVs, arguing that they serve as essential elements providing membrane area for long-distance, contact-dependent cellular communication based on protein-protein interaction. While EVs have been recognized as carriers of genetic information, additional unique advantages that they could provide for cellular communication remain unclear. Here, we introduce the concept that the substantial membrane area provided by EVs allows for membrane contact-dependent interactions that could be central to their function. This membrane area enables the lateral diffusion and sorting of membrane ligands like proteins, polysaccharides or lipids in two dimensions, promoting avidity-driven effects and assembly of co-stimulatory architectures at the EV-cell interface. The concept of vesicle-induced receptor sequestration (VIRS), for example, describes how EVs confine and focus receptors at the EV contact site, promoting a dense local concentration of receptors into signalosomes. This process can increase the signalling strength of EV-presented ligands by 10-1000-fold compared to their soluble counterparts. The speculations in this perspective advance our understanding of EV-biology and have critical implications for EV-based applications and therapeutics. We suggest a shift in perspective from viewing EVs merely as transporters of relevant nucleic acids and proteins to considering their unique biophysical properties as presentation platforms for long-distance, contact-dependent signalling. We therefore highlight the functional role of the EV membrane rather than their content. We further discuss how this signalling mechanism might be exploited by virus-transformed or cancer cells to enhance immune-evasive mechanisms.


Assuntos
Comunicação Celular , Vesículas Extracelulares , Transdução de Sinais , Vesículas Extracelulares/metabolismo , Humanos , Membrana Celular/metabolismo , Animais
15.
SLAS Technol ; 29(1): 100116, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37923083

RESUMO

Transepithelial electrical resistance (TEER) is a widely used technique for quantifying the permeability of epithelial and endothelial cell layers. However, traditional methods of measuring TEER are limited to single timepoint measurements and can subject cells to an altered environment during the measurement. Here, we assessed the validity of TEER measurements by the ECIS TEER96 device, which is designed to take continuous TEER measurements of a cell culture system in a standard laboratory incubator. We found that the instrument accurately measures TEER across TEER values ranging from 10 to 2050 Ω*cm2 and is more accurate than the manual epithelial voltohmmeter electrode at high TEER values. Furthermore, the high-resolution measurements provided by the device allowed for a unique insight into the mechanisms and kinetics of cells in vitro. To demonstrate the continuous measurement capability of the device, we tracked the formation of an MDCKI cell monolayer until TEER plateaued. Furthermore, we treated Caco-2 monolayers with different concentrations of DMSO and the antimicrobial and surfactant compound benzethonium chloride to measure disruptions to barrier integrity. Treatment of both compounds resulted in concentration-dependent loss of barrier integrity. Our results suggest that the ECIS TEER96 device is a reliable and convenient option for measuring TEER in cell cultures and can provide valuable insights into the behavior of cells in vitro. This technology will be especially useful for increasing throughput of drug permeability assays, inflammation studies, and gaining better understanding of disease states in a cell culture system.


Assuntos
Técnicas de Cultura de Células , Células Endoteliais , Humanos , Células CACO-2 , Impedância Elétrica
16.
FEBS Lett ; 598(10): 1143-1153, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38627196

RESUMO

Lipid droplets (LDs) are ubiquitous intracellular organelles with a central role in multiple lipid metabolic pathways. However, identifying correlations between their structural properties and their biological activity has proved challenging, owing to their unique physicochemical properties as compared with other cellular membranes. In recent years, molecular dynamics (MD) simulations, a computational methodology allowing the accurate description of molecular assemblies down to their individual components, have been demonstrated to be a useful and powerful approach for studying LD structural and dynamical properties. In this short review, we attempt to highlight, as comprehensively as possible, how MD simulations have contributed to our current understanding of multiple molecular mechanisms involved in LD biology.


Assuntos
Gotículas Lipídicas , Simulação de Dinâmica Molecular , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/química , Humanos , Animais , Metabolismo dos Lipídeos
17.
Elife ; 102021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34698632

RESUMO

A long-standing mystery in vertebrate Hedgehog signaling is how Patched 1 (PTCH1), the receptor for Hedgehog ligands, inhibits the activity of Smoothened, the protein that transmits the signal across the membrane. We previously proposed (Kinnebrew et al., 2019) that PTCH1 inhibits Smoothened by depleting accessible cholesterol from the ciliary membrane. Using a new imaging-based assay to directly measure the transport activity of PTCH1, we find that PTCH1 depletes accessible cholesterol from the outer leaflet of the plasma membrane. This transport activity is terminated by binding of Hedgehog ligands to PTCH1 or by dissipation of the transmembrane potassium gradient. These results point to the unexpected model that PTCH1 moves cholesterol from the outer to the inner leaflet of the membrane in exchange for potassium ion export in the opposite direction. Our study provides a plausible solution for how PTCH1 inhibits SMO by changing the organization of cholesterol in membranes and establishes a general framework for studying how proteins change cholesterol accessibility to regulate membrane-dependent processes in cells.


Assuntos
Membrana Celular/metabolismo , Colesterol/metabolismo , Receptor Patched-1/genética , Receptor Smoothened/genética , Animais , Escherichia coli , Humanos , Camundongos , Receptor Patched-1/metabolismo , Receptor Smoothened/metabolismo
18.
Front Chem ; 8: 603259, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33365301

RESUMO

Short-lived cell membrane complexes play a key role in regulating cell signaling and communication. Many of these complexes are formed based on low-affinity and transient interactions among various lipids and proteins. New techniques have emerged to study these previously overlooked membrane transient interactions. Exciting functions of these transient interactions have been discovered in cellular events such as immune signaling, host-pathogen interactions, and diseases such as cancer. In this review, we have summarized current experimental methods that allow us to detect and analyze short-lived cell membrane protein-protein, lipid-protein, and lipid-lipid interactions. These methods can provide useful information about the strengths, kinetics, and/or spatial patterns of membrane transient interactions. However, each method also has its own limitations. We hope this review can be used as a guideline to help the audience to choose proper approaches for studying membrane transient interactions in different membrane trafficking and cell signaling events.

19.
Gigascience ; 8(6)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31141612

RESUMO

BACKGROUND: A major challenge for lipidomic analyses is the handling of the large amounts of data and the translation of results to interpret the involvement of lipids in biological systems. RESULTS: We built a new lipid ontology (LION) that associates >50,000 lipid species to biophysical, chemical, and cell biological features. By making use of enrichment algorithms, we used LION to develop a web-based interface (LION/web, www.lipidontology.com) that allows identification of lipid-associated terms in lipidomes. LION/web was validated by analyzing a lipidomic dataset derived from well-characterized sub-cellular fractions of RAW 264.7 macrophages. Comparison of isolated plasma membranes with the microsomal fraction showed a significant enrichment of relevant LION-terms including "plasma membrane", "headgroup with negative charge", "glycerophosphoserines", "above average bilayer thickness", and "below average lateral diffusion". A second validation was performed by analyzing the membrane fluidity of Chinese hamster ovary cells incubated with arachidonic acid. An increase in membrane fluidity was observed both experimentally by using pyrene decanoic acid and by using LION/web, showing significant enrichment of terms associated with high membrane fluidity ("above average", "very high", and "high lateral diffusion" and "below average transition temperature"). CONCLUSIONS: The results demonstrate the functionality of LION/web, which is freely accessible in a platform-independent way.


Assuntos
Algoritmos , Lipidômica/métodos , Animais , Células CHO , Cricetulus/metabolismo , Internet , Lipídeos/análise , Camundongos , Células RAW 264.7
20.
Structure ; 27(6): 886-892, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31130484

RESUMO

Historically, structural biology has been largely centered on in vitro approaches as the dominant technique to obtain indispensable high-resolution data. In situ structural biology is now poised to contribute with high-precision observations in a near-physiological context. Mass spectrometry, electron tomography, and fluorescence microscopy are opening up new opportunities for structural analysis, including the study of the protein machinery in living cells. The complementarity between studies is increasingly used to reveal biologically significant observations. Here we compare two complementary studies addressing the mechanisms of vesicle tethering with in vitro and in situ approaches. Cryoelectron microscopy and live-cell imaging assisted by anchoring platforms team up to explore elusive mechanisms of exocytosis, showing directions of future research.


Assuntos
Membrana Celular/ultraestrutura , Microscopia Crioeletrônica/métodos , Citoplasma/ultraestrutura , Tomografia com Microscopia Eletrônica/métodos , Exocitose , Proteínas/química , Membrana Celular/metabolismo , Citoplasma/metabolismo , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Transporte Proteico , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa