Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Headache Pain ; 25(1): 85, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783191

RESUMO

The trigeminal system is key to the pathophysiology of migraine and cluster headache, two primary headache disorders that share many features. Recently, MER proto-oncogene tyrosine kinase (MERTK), a cell surface receptor, was strongly associated with cluster headache through genetic studies. Further, the MERTK ligand galectin-3 has been found to be elevated in serum of migraine patients. In this study, MERTK and MERTK ligands were investigated in key tissue to better understand their potential implication in the pathophysiology of primary headache disorders. Immunohistochemistry was used to map MERTK and galectin-3 expression in rat trigeminal ganglia. RT-qPCR was used to assess MERTK gene expression in blood, and ELISA immunoassays were used for MERTK ligand quantification in serum from study participants with and without cluster headache. MERTK gene expression was elevated in blood samples from study participants with cluster headache compared to controls. In addition, MERTK ligand galectin-3 was found at increased concentration in the serum of study participants with cluster headache, whereas the levels of MERTK ligands growth arrest specific 6 and protein S unaffected. MERTK and galectin-3 were both expressed in rat trigeminal ganglia. Galectin-3 was primarily localized in smaller neurons and to a lesser extent in C-fibres, while MERTK was found in satellite glia cells and in the outer membrane of Schwann cells. Interestingly, a strong MERTK signal was found specifically in the region proximal to the nodes of Ranvier. The overexpression of MERTK and galectin-3 in tissue from study participants with cluster headache, as well as the presence of MERTK in rat peripheral satellite glia cells and Schwann cells in the trigeminal ganglia, further highlights MERTK signalling as an interesting potential future therapeutic target in primary headache.


Assuntos
Cefaleia Histamínica , Gânglio Trigeminal , c-Mer Tirosina Quinase , Animais , Cefaleia Histamínica/metabolismo , Cefaleia Histamínica/sangue , c-Mer Tirosina Quinase/metabolismo , c-Mer Tirosina Quinase/genética , Gânglio Trigeminal/metabolismo , Humanos , Masculino , Ratos , Feminino , Proto-Oncogene Mas , Adulto , Pessoa de Meia-Idade , Ratos Sprague-Dawley , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Sanguíneas , Galectinas
2.
BMC Immunol ; 22(1): 21, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33761885

RESUMO

BACKGROUND: Differential polarization of macrophage into M1 and M2 mediates atherosclerotic plaque clearance through efferocytosis. Higher expression of Mer proto-oncogene tyrosine kinase (MerTK) on M2 macrophage helps in maintaining macrophage efferocytic efficiency. In healthy individuals, macrophage polarization into M1 and M2 occurs in tissues in concomitance with the acquisition of functional phenotypes depending on specific microenvironment stimuli. However, whether the macrophage differential polarization and MerTK expression vary in coronary artery disease (CAD) patients remain unknown. OBJECTIVE: This study aimed to elucidate the polarization of M1 and M2 macrophage from CAD patients as well as to investigate the expression of MerTK in these macrophage phenotypes. METHODS: A total of 14 (n) CAD patients were recruited and subsequently grouped into "no apparent CAD", "non-obstructive CAD" and "obstructive CAD" according to the degree of stenosis. Thirty ml of venous blood was withdrawn to obtain monocyte from the patients. The M1 macrophage was generated by treating the monocyte with GMCSF, LPS and IFN-γ while MCSF, IL-4 and IL-13 were employed to differentiate monocyte into M2 macrophage. After 7 days of polarization, analysis of cell surface differentiation markers (CD86+/CD80+ for M1 and CD206+/CD200R+ for M2) and measurement of MerTK expression were performed using flow cytometry. RESULTS: Both M1 and M2 macrophage expressed similar level of CD86, CD80 and CD206 in all groups of CAD patients. MerTK expression in no apparent CAD patients was significantly higher in M2 macrophage compared to M1 macrophage [12.58 ± 4.40 vs. 6.58 ± 1.37, p = 0.040]. CONCLUSION: Differential polarization of macrophage into M1 and M2 was highly dynamic and can be varied due to the microenvironment stimuli in atherosclerotic plaque. Besides, higher expression of MerTK in patients with the least coronary obstructive suggest its vital involvement in efferocytosis.


Assuntos
Doença da Artéria Coronariana/imunologia , Vasos Coronários/patologia , Macrófagos/imunologia , c-Mer Tirosina Quinase/metabolismo , Adulto , Diferenciação Celular , Microambiente Celular , Citocinas/metabolismo , Feminino , Citometria de Fluxo , Humanos , Masculino , Pessoa de Meia-Idade , Fagocitose , Células Th1/imunologia , Células Th2/imunologia , Regulação para Cima
3.
JACC Basic Transl Sci ; 3(2): 230-244, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30062209

RESUMO

Although chronic inflammation is a central feature of heart failure (HF), the immune cell profiles differ with different underlying causes. This suggests that for immunomodulatory therapy in HF to be successful, it needs to be tailored to the specific etiology. Here, the authors demonstrate that monocyte-derived C-C chemokine receptor 2 (CCR2)+ macrophages infiltrate the heart early during pressure overload in mice, and that blocking this response either pharmacologically or with antibody-mediated CCR2+ monocyte depletion alleviates late pathological left ventricular remodeling and dysfunction, T-cell expansion, and cardiac fibrosis. Hence, suppression of CCR2+ monocytes/macrophages may be an important immunomodulatory therapeutic target to ameliorate pressure-overload HF.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa