Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Fluoresc ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136909

RESUMO

Mercury (Hg), a notorious heavy metal with detrimental impacts on human health and the environment, necessitates the development of precise measurement methods. This study introduces an expeditious and straightforward photochemical approach to synthesize thioglycolic acid (TGA)-stabilized CdTe/CdS/ZnS core/multi-shell quantum dots (QDs). The synthesized CdTe/CdS/ZnS QDs were comprehensively characterized using fluorescence spectroscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), Field Emission Scanning Electron Microscopy (FESEM), and X-Ray diffraction (XRD). XRD and EDS results confirmed the successful formation of CdTe/CdS/ZnS structure. Also, FESEM and TEM results showed that CdTe/CdS/ZnS QDs were spherical. Results showed that synthesized Exhibiting vibrant green fluorescence and notable quenching in the presence of Hg2+ ions, these QDs emerge as promising candidates for fabricating a fluorescent sensor. The proposed sensor demonstrates notable sensitivity to Hg2+, featuring a detection limit of 16.32 nM and a linear range from 20 nM to 70 nM. The sensor's selectivity was confirmed by analyzing various anions and cations. Moreover, when tested with tap water, river water, and agricultural samples, the sensor exhibited reliable performance, validated by Inductively Coupled Plasma (ICP) analysis. Additionally, CdTe/CdS/ZnS QDs immobilized on micro pads proved effective for on-site water sample analysis, presenting a versatile solution for environmental monitoring.

2.
Anal Bioanal Chem ; 416(4): 1001-1010, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38097760

RESUMO

A novel portable smartphone-assisted colorimetric method was reported for the determination of Hg2+ with good analytical performance. A Zr(IV)-based metal-organic framework functionalized with amino groups (NH2-UiO-66) has been adopted as a supporting platform to anchor gold nanoparticles (AuNPs), avoiding the migration and aggregation of AuNPs. With the addition of Hg2+, the formation of gold amalgam proved possible to enhance peroxidase-like activity of the composite (AuNPs/NH2-UiO-66), accelerating the oxidization of zymolyte 3,3',5,5'-tetramethylbenzidine (TMB). In the meantime, the color of the reaction solution turned a vivid blue, and the red, green, and blue (RGB) values of the solution color changed accordingly. On account of this strategy, the quantitative detection of Hg2+ could be achieved. After the optimization of the experiment conditions, the average color intensity (Ic) resulting from RGB values was linear related to the concentration of Hg2+ from 10 to 100 nM, accompanied with a detection limit (LOD) down to 5.4 nM calculated by 3σ/S. The successful application of the designed method has been promoted to detect Hg2+ in some water samples, displaying a great potential in practical application. Furthermore, the use of a smartphone made our proposed method simple and accurate, and thus puts forward a possible way for in situ and real-time monitoring.

3.
Macromol Rapid Commun ; 45(6): e2300631, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38158931

RESUMO

A water-soluble polymeric pyrene-based polythioacetal (PTA-Py) with thioacetal units in the main chain is simply synthesized by direct polycondensation of 3, 6-dioxa-1, 8-octanedithiol, 1-pyrene formaldehyde, and mPEG2k-SH. The probe PTA-Py shows a good fluorescence response to Hg2+ ions due to the Hg2+-promoted deprotection reaction of thioacetal groups to regenerate the original 1-pyrene formaldehyde compound. After adding Hg2+ to the PTA-Py solution, the fluorescence intensity (FI) gradually increases with increasing concentrations of Hg2+. Compared with other metal ions, the probe exhibits high sensitivity, good selectivity, and rapid response to Hg2+. The low detection limits are 12.3 nm in ethanol-PBS buffer and 13.3 nm in water, respectively. The results imply that the simply synthesized water-soluble polymeric probe had potential applications in the rapid detection of Hg2+ ions in aqueous solutions. Moreover, the polymeric PTA-Py shows high sensitivity for CH3Hg+ with detection limits of 26.5 nm in ethanol/PBS buffer. In addition, PTA-Py can efficiently detect Hg2+ ions in HeLa cells. The results demonstrate that a valuable method is developed for biocompatible polymeric sensors for Hg2+ ions in biological and environmental samples.


Assuntos
Mercúrio , Humanos , Corantes Fluorescentes , Células HeLa , Água , Pirenos , Polímeros , Íons , Espectrometria de Fluorescência , Etanol , Formaldeído
4.
Molecules ; 29(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38202584

RESUMO

The excessive concentration of heavy-metal mercury ions (Hg2+) in the environment seriously affects the ecological environment and even threatens human health. Therefore, it is necessary to develop rapid and low-cost determination methods to achieve trace detection of Hg2+. In this paper, an Electrochemiluminescence (ECL) sensing platform using a functionalized rare-earth material (cerium oxide, CeO2) as the luminescent unit and an aptamer as a capture unit was designed and constructed. Using the specific asymmetric matching between Hg2+ and thymine (T) base pairs in the deoxyribonucleic acid (DNA) single strand, the "T-Hg-T" structure was formed to change the ECL signal, leading to a direct and sensitive response to Hg2+. The results show a good linear relationship between the concentration and the response signal within the range of 10 pM-100 µM for Hg2+, with a detection limit as low as 0.35 pM. In addition, the ECL probe exhibits a stable ECL performance and excellent specificity for identifying target Hg2+. It was then successfully used for spiked recovery tests of actual samples in the environment. The analytical method solves the problem of poor Hg2+ recognition specificity, provides a new idea for the efficient and low-cost detection of heavy-metal pollutant Hg2+ in the environment, and broadens the prospects for the development and application of rare-earth materials.

5.
Chemosphere ; 352: 141409, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346515

RESUMO

In this paper, we present a novel fluorescent material based on the herbal tea of Lavandula multifida (Lm). The fluorescence properties of Lm aqueous extract were analyzed under various excitation wavelengths in the range of 290-450 nm. The Lm herbal infusion was found to be highly fluorescent, with an emission maximum at 450 nm under excitation at 390 nm. Consequently, it was exploited to develop a fluorescence method for detecting metal ions. Results obtained upon the addition of Hg2+, Na+, K+, Ca2+, Mg2+, Pb2+, Cd2+, Cu2+, Ni2+, Bi3+, Mn2+, Fe3+ and Co2+ ions showed that the fluorescence intensity of the Lm aqueous extract decreased strongly with the presence of mercury ions. A solid-state fluorescent sensor, based on Lm embedded into a Nafion membrane and deposited on a transparent polyethylene terephthalate (PET) sheet, has also been developed for the effective detection of Hg2+ ions. The Lm-Nafion-PET sensor exhibited good stability, high repeatability, and reproducibility. Furthermore, the Lm-Nafion/PET sensor demonstrated remarkable sensitivity to Hg2+ in sea water, with a limit of detection of 0.25 fM. To our knowledge, this is the first study which reports Lavandula multifida plant for making a novel eco-friendly fluorescent solid-state sensor for the detection of mercury ions at femto-molar concentrations in seawater.


Assuntos
Polímeros de Fluorcarboneto , Lavandula , Mercúrio , Reprodutibilidade dos Testes , Limite de Detecção , Corantes , Água , Água do Mar , Íons , Corantes Fluorescentes
6.
ACS Appl Mater Interfaces ; 16(8): 10805-10812, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38380891

RESUMO

Utilizing the mercury (Hg2+)-triggered deprotection of thioacetals to aldehyde groups, we constructed a water-soluble triphenylamine (TPA)-based polythioacetal PTA-TPA with thioacetal groups in the backbones for efficient sensing of Hg2+ in aqueous solutions. PTA-TPA is conveniently prepared by polycondensation of 3, 6-dioxa-1,8-octanedithiol (DODT) with 4-(N,N-diphenylamino) benzaldehyde (TPA-CHO) using thiol-terminated mPEG2k-SH as a capping agent. The interaction of Hg2+ with PTA-TPA activates the aggregation-induced emission (AIE) process of TPA-CHO molecules, which makes the emission enhanced, and the emission color changes to sky blue, while other metal ions do not interfere with the sensing process. PTA-TPA can be used as a highly selective and ultrafast detection system for Hg2+ with a low detection limit (LOD) of 9.88 nM and a fast response of less than 1 min. In addition, the prepared test strips report the presence of Hg2+ with an LOD as low as 1 × 10-5 M. Intracellular imaging applications have demonstrated that PTA-TPA acts as a biocompatible fluorescent probe for efficient Hg2+ sensing in HeLa cells. Overall, the PTA-TPA fluorescence probes have the characteristics of easy synthesis, cost-effective, ultrafast detection speed, high selectivity, and high sensitivity, which can be used in practical applications.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 123999, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38340449

RESUMO

Rhodamine derivatives possessing spiroring-closing structures exhibit colorlessness, while the induction of spiroring-opening by metal ions results in notable color changes, rendering them as ideal platform for the development of functional probes with broad applications. However, the spiroring-closing form of rhodamine-based probes exhibits limited water solubility due to its neutral character, necessitating the incorporation of organic solvents to enhance solubility, which may adversely affect the natural system. Designing rhodamine probes with high solubility in both the zwitterionic and neutral form is of utmost importance and presents a significant challenge. This study presents a sulfone-rhodamine-based probe that exhibits good water solubility both in the spiroring opening and closing for detecting Hg2+. Upon the presence of Hg2+, the color undergoes a noticeable change from colorless to pink, with a response time of less than 1 min. probe 1 demonstrates an excellent linear relationship with Hg2+ concentrations within the range of 0-8 µM, and achieves a detection limit is 17.26 nM. The effectiveness of probe 1 was confirmed through the analysis of mercury ions in cosmetic products. Utilizing this probe, test paper strips have been developed to enhance the portability of Hg2+ detection naked eyes.


Assuntos
Cosméticos , Mercúrio , Rodaminas/química , Mercúrio/análise , Água/química , Corantes Fluorescentes/química , Solubilidade , Íons/análise , Cosméticos/análise , Espectrometria de Fluorescência
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124522, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38838599

RESUMO

Detection of highly toxic mercury ions (Hg2+) in actual environmental and biological samples is of significant importance for protecting environment and human health. In this paper, a new ratiometric fluorescent probe BTIA was designed and synthesized from 3-pinone based on Internal Charge Transfer (ICT) mechanism. BTIA could selectively recognize Hg2+ over other competitive analytes with short reaction time (5 s), distinct ratiometric response, strong anti-interference ability, large Stokes shift (200 nm), and low detection limit (2.36 × 10-7 M). Furthermore, BTIA was applicable for detecting Hg2+ in actual water samples and it also performed an excellent imaging capability in living RAW264.7 cells, zebrafish and onion tissue.


Assuntos
Corantes Fluorescentes , Limite de Detecção , Mercúrio , Espectrometria de Fluorescência , Poluentes Químicos da Água , Peixe-Zebra , Animais , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Mercúrio/análise , Camundongos , Células RAW 264.7 , Poluentes Químicos da Água/análise , Cebolas/química , Água/química
9.
Food Res Int ; 180: 114058, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395579

RESUMO

In this work, we developed a novel label-free fluorescent sensor for the highly sensitive detection of mercury ions (Hg2+) based on the coordination chemistry of thymine-Hg2+-thymine (T-Hg2+-T) structures and the properties of CRISPR-Cas12a systems. Most notably, two T-rich sequences (a blocker and an activator) were designed to form stable double-stranded structures in the presence of Hg2+ via the T-Hg2+-T base pairing. The formation of T-T mismatched double-stranded DNA between the blocker and the activator prevented the cleavage of G-rich sequences by Cas12a, allowing them to fold into G-quadruplex-thioflavin T complexes, resulting in significantly enhanced fluorescence. Under the optimized conditions, the developed sensor showed an excellent response for Hg2+ detection in the linear range of 0.05 to 200 nM with a detection limit of 23 pM. Moreover, this fluorescent sensor exhibited excellent selectivity and was successfully used for the detection of Hg2+ in real samples of Zhujiang river water and tangerine peel, demonstrating its potential in environmental monitoring and food safety applications.


Assuntos
Mercúrio , Timina , Espectrometria de Fluorescência/métodos , Timina/química , Sistemas CRISPR-Cas , Mercúrio/química , Íons/química
10.
J Hazard Mater ; 465: 133331, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38142657

RESUMO

Mercury is a harmful heavy metal that seriously threatens the environment and organisms. In this study, we combined the aggregation-induced emission mechanism and the advantages of peptides to design a novel tetraphenylene (TPE)-based peptide fluorescent probe, TPE-Cys-Pro-Gly-His (TPE-CPGH), in which the sulfhydryl group of Cys in the peptide chain and the imidazolium nitrogen provided by His were used to mimic the Hg2+ binding site of metalloproteins. The ß-fold formed by Pro-Gly was used to promote the spatial coordination of the probe with Hg2+ and the formation of the coordination complex aggregates, these changes led to the "turn on" response to Hg2+. The detection of Hg2+ by TPE-CPGH not only showed high specificity and sensitivity (LOD=46.2 nM), but also had the advantages of fast response and applicability for detection over a wide pH range. Additionally, TPE-CPGH effectively detected Hg2+ in environmental samples, living cells and organisms due to its low cytotoxicity, high water solubility and cell membrane permeability. More interestingly, TPE-CPGH was also mitigated Hg2+ exposure-induced oxidative stress toxicity in vitro and in vivo.


Assuntos
Mercúrio , Metais Pesados , Corantes Fluorescentes/química , Limite de Detecção , Peptídeos/química , Espectrometria de Fluorescência
11.
Anal Chim Acta ; 1321: 343039, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39155104

RESUMO

BACKGROUND: In recent years, environmental pollution has attracted widespread global attention. Among them, environmental problems caused by heavy metal pollution pose a serious threat to human health and ecosystems. Mercury is a common heavy metal pollutant with high toxicity and wide distribution. Excessive intake of Hg2+ can cause permanent and severe damage to the nervous system, respiratory system, and kidneys in the human body. Therefore, developing both accurate and fast detection methods for Hg2+ is of great significance. RESULTS: A sensitive Hg2+ colorimetric sensor is designed based on PtNi nanowires (NWs) and Pt NWs with peroxidase-mimetic activity. PtNi NWs and Pt NWs catalyze the reaction of 3,3', 5,5'-tetramethylbenzidine (TMB) with hydrogen peroxide (H2O2) to produce blue oxidized TMB (oxTMB). The specific interaction of Pt-Hg significantly inhibits the peroxidase-mimetic activity of PtNi NW and Pt NW nanozymes, resulting in a lighter blue color. It is worth noting that compared with specific activity (SA) of Pt NWs (3.31 U/mg), PtNi NWs own superior SA (10.43 U/mg), which inevitably leads to a wider linear range of Hg2+ analysis (1 nM-200 µM) and a lower detection limit (0.6748 nM) for PtNi NWs-based colorimetric sensor, versus linear range (4 nM-5 µM) and LOD of 1.198 nM for Pt NWs-based colorimetric sensor, which are far below the Hg2+ threshold (10 nM) for drinking water set by the US Environmental Protection Agency. SIGNIFICANCE: The two nanozyme colorimetric sensors have been successfully used for the evaluation of Hg2+ in complex river water and tap water. Due to the advantages of simple operation, fast response, and high sensitivity, colorimetric sensors have broad application prospects in environmental monitoring.


Assuntos
Colorimetria , Mercúrio , Nanofios , Níquel , Platina , Mercúrio/análise , Platina/química , Nanofios/química , Níquel/química , Poluentes Químicos da Água/análise , Limite de Detecção , Benzidinas/química , Catálise , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise
12.
Artigo em Inglês | MEDLINE | ID: mdl-38376741

RESUMO

Terbium vanadate nanowires were synthesized via a facile chemical approach using sodium vanadate and terbium chloride. Morphology, structure, composition, and electrochemical characteristics of the terbium vanadate nanowires were investigated by different techniques. Terbium vanadate nanowires with single crystalline tetragonal TbVO4 phase possess smooth surface and flat tips. The length of the nanowires is longer than 5 µm, and diameter is 40-100 nm. Terbium vanadate nanowires modified electrode was used for trace-level mercury ions (Hg2+) detection. One well-defined stripping peak exists at - 0.34 V at the terbium vanadate nanowires modified electrode in 0.1 mM Hg2+ solution. Buffer solution pH value, deposition time, deposition potential, and standing time are pH = 1, 150 s, - 1.5 V, and 60 s, respectively. Detection limit for Hg2+ detection is 0.18 nM, and linear range is 0.01-100 µM. The proposed terbium vanadate nanowires modified electrode exhibits significant selectivity, stability, and reproducibility toward Hg2+. The usefulness of the developed sensor based on the terbium vanadate nanowires modified electrode was verified by Hg2+ detection in real samples.

13.
Anal Chim Acta ; 1292: 342259, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38309842

RESUMO

BACKGROUND: Heavy metal pollution has become one of the world's most important environmental pollution, especially Hg2+ is enriched, it is easy to enter the human body through the food chain, bind to the sulfhydryl group in the protein, cause mercury poisoning. Traditional methods for detecting Hg2+ have obvious drawbacks, such as poor selectivity and long detection time. Fluorescence detection has attracted attention because of its good sensitivity and specificity detection ability. In previously reported probes for detecting Hg2+, Cu2+ often interferes. Therefore, it is of great practical significance to synthesize a fluorescent probe that can distinguish between Hg2+ and Cu2+. RESULTS: We have successfully synthesized the probe DFS, a fluorescent probe that can differentially detect Hg2+ and Cu2+, and the probe DFS has good selectivity and anti-interference ability for Hg2+ and Cu2+. The fluorescence intensity at 530 nm increased rapidly when Hg2+ was detected; during the Cu2+ detection, the fluorescence intensity at 636 nm gradually decreased, fluorescence quenching occurred, and the detection limits of Hg2+ and Cu2+ were 7.29 × 10-9 M and 2.13 × 10-9 M, respectively. Through biological experiments, it was found that probe DFS can complete the fluorescence imaging of Hg2+ and Cu2+ in Staphylococcus aureus and HUVEC cells, which has certain research value in the field of environmental monitoring and microbiology, and the probe DFS has low cytotoxicity, so it also has broad application prospects in the field of biological imaging. In addition, the probe DFS also has good applicability for Hg2+ and Cu2+ detection in actual samples. SIGNIFICANCE AND NOVELTY: This is a fluorescent probe that can distinguish between Hg2+ and Cu2+, the fluorescence emission peak appears at 530 nm when Hg2+ is detected; when detecting Cu2+, fluorescence quenching occurs at 636 nm, the fluorescence emission peak distance between Hg2+ and Cu2+ differs by 106 nm. This reduces mutual interference between Hg2+ and Cu2+ during detection, it provides a new idea for the detection of Hg2+ and Cu2+.


Assuntos
Corantes Fluorescentes , Mercúrio , Humanos , Corantes Fluorescentes/análise , Análise de Alimentos , Mercúrio/análise , Sensibilidade e Especificidade , Bactérias , Espectrometria de Fluorescência
14.
Sci Total Environ ; 921: 171085, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387584

RESUMO

The development of both detection and removal technologies for heavy metal ions is of great importance. Most of the existing adsorbents that contain oxygen, nitrogen or sulfur functional groups can remove heavy metals, but achieving both selective detection and removal of a single metal ion is difficult because they bind to a wide range of heavy metal ions. Herein, we selected zeolite imidazolium hydrochloride framework-71 (ZIF-71) with sufficient chlorine functional groups to fabricate magnetic ZIF-71 multifunctional composites (M-ZIF-71). M-ZIF-71 had a large specific surface area, excellent water stability, and good magnetic properties, which made M-ZIF-71 conducive to the separation and recovery of adsorbents and the assembly of electrodes. M-ZIF-71 exhibited high selectivity, wide linear range (1-500 µg/L), and low detection limit (0.32 µg/L) for electrochemical detection of mercury ions (Hg2+). Meanwhile, M-ZIF-71 demonstrated rapid Hg2+ adsorption with a high capacity of 571.2 mg/g and excellent recyclability. The high selectivity for Hg2+ was attributed to the powerful affinity of highly electronegative chlorine and Hg2+. Moreover, XPS spectra demonstrated the interaction between chlorine and Hg2+. This work provides a new inspiration for applications in the targeted monitoring and removal of heavy metal pollution.

15.
Anal Chim Acta ; 1303: 342525, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38609266

RESUMO

Mercury ions can cause serious damage to the ecological environment, and it is necessary to develop reliable and elegant mercury ion sensors. In this protocol, a label-free photothermal/electrochemical dual-mode strategy for Hg2+ is proposed based on delaminated Ti3C2 MXene nanosheets (DL-Ti3C2 MXene). Hg2+ exists in water in the form of HgCl2, Hg(OH)2, and HgClOH, and the electron-rich elements O and Cl can specifically bind to the positively charged DL-Ti3C2 MXene at the edge, and further oxidation-reduction reaction occurs to obtain TiO2/C and Hg2Cl2. In view of the reduction activity and the performance of photothermal conversion of DL-Ti3C2 MXene itself, the electrochemical and photothermal responses decrease with the increase of the logarithm of Hg2+ concentration. The corresponding linear ranges are 50 pmol L-1-500 nmol L-1 and 1 nmol L-1-50 µmol L-1, and their detection limits calculated at 3 S/N are 17.2 pmol L-1 and 0.43 nmol L-1, respectively. DL-Ti3C2 MXene has the characteristics of a wide range of raw materials, low cost, and easy preparation. In addition, the design takes full advantage of the properties of the material itself, avoids the complex assembly and detection process of conventional sensors, and enables high selectivity and sensitivity for mercury detection. In particular, the dual-mode sensing endows self-confirmation of mercury ion detection results, thereby improving the reliability of the sensor.

16.
J Hazard Mater ; 465: 133424, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38185088

RESUMO

Heavy metal pollution poses a major threat to human health, and developing a user-deliverable heavy metal detection strategy remains a major challenge. In this work, two-mode Hg2+ sensing platforms based on the tunable cobalt metal-organic framework (Co-MOF) active site strategy are constructed, including a colorimetric, and an electrochemical assay using a personal glucose meter (PGM) as the terminal device. Specifically, thymine (T), a single, adaptable nucleotide, is chosen to replace typical T-rich DNA aptamers. The catalytic sites of Co-MOF are tuned competitively by the specific binding of T-Hg2+-T, and different signal output platforms are developed based on the different enzyme-like activities of Co-MOF. DFT calculations are utilized to analyze the interaction mechanism between T and Co-MOF with defect structure. Notably, the two-mode sensing platforms exhibit outstanding detection performance, with LOD values as low as 0.5 nM (colorimetric) and 3.69 nM (PGM), respectively, superior to recently reported nanozyme-based Hg2+ sensors. In real samples of tap water and lake water, this approach demonstrates an effective recovery rate and outstanding selectivity. Surprisingly, the method is potentially versatile and, by exchanging out T-Hg2+-T, can also detect Ag+. This simple, portable, and user-friendly Hg2+ detection approach shows plenty of promise for application in the future.


Assuntos
Mercúrio , Estruturas Metalorgânicas , Humanos , Estruturas Metalorgânicas/química , Domínio Catalítico , Cobalto/química , Água/química , Mercúrio/química , Colorimetria
17.
Artigo em Chinês | WPRIM | ID: wpr-452337

RESUMO

An ultrasensitive immunoassay was developed based on As3+ and Hg2+ labeled SiO2 @ Au nanoparticles signal tags and hydride generation-atomic fluorescence spectrometry (HG-AFS) for the detection of carcinoembryonic antigen(CEA) and carbohydrate antigen 19-9 (CA 19-9) respectively. Firstly, amino SiO2@ Au NPs were synthesized for selective absorption of As3+ and Hg2+ ions respectively. Subsequently,the secondary antibody (Ab2) of CEA and CA 19-9 was respectively labeled on As3+ or Hg2+-SiO2 @ Au NPs to prepare the corresponding signal tags for CEA and CA 19-9. Based on the sandwich immunoassay scheme, the tags, two antigen and corresponding first antibodies were bio-conjugated on the bottom of 96-well plate at room temperature to form the immunocomplex. After it was dissolved in alkali solution, As3+ and Hg2+ ions were released in solution and detected by HG-AFS, which concentration was proportional with logarithms of CEA and CA 19-9. The reaction conditions were optimized and the tags were characterized. This assay was based on determination of the concentration of As3+ and Hg2+ for quantization of the corresponding CEA and CA 19-9 antigen. The assay showed a wide linear range from 0. 001 to 100. 0 μg / L for CEA and 0. 01-80 U/ mL for CA 19-9, and a lower detection limit of 0. 5 ng / L and 0. 005 U/ mL respectively. This proposed method was used in real serums samples, the results were consistence with that by ELISA. The immunoassay showed three orders of magnitude of sensitivity lower than that of ELISA, which provides a promising simultaneous immunoassay for the early diagnosis of cancer .

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa