RESUMO
Sex strongly impacts genome evolution via recombination and segregation. In the absence of these processes, haplotypes within lineages of diploid organisms are predicted to accumulate mutations independently of each other and diverge over time. This so-called "Meselson effect" is regarded as a strong indicator of the long-term evolution under obligate asexuality. Here, we present genomic and transcriptomic data of three populations of the asexual oribatid mite species Oppiella nova and its sexual relative Oppiella subpectinata We document strikingly different patterns of haplotype divergence between the two species, strongly supporting Meselson effect-like evolution and long-term asexuality in O. nova: I) variation within individuals exceeds variation between populations in O. nova but vice versa in O. subpectinata; II) two O. nova sublineages feature a high proportion of lineage-specific heterozygous single-nucleotide polymorphisms (SNPs), indicating that haplotypes continued to diverge after lineage separation; III) the deepest split in gene trees generally separates the two haplotypes in O. nova, but populations in O. subpectinata; and IV) the topologies of the two haplotype trees match each other. Our findings provide positive evidence for the absence of canonical sex over evolutionary time in O. nova and suggest that asexual oribatid mites can escape the dead-end fate usually associated with asexual lineages.
Assuntos
Ácaros/genética , Reprodução Assexuada/genética , Ácaros e Carrapatos/genética , Animais , Evolução Molecular , Variação Genética/genética , Haplótipos/genética , FilogeniaRESUMO
BACKGROUND: Predicted genetic consequences of asexuality include high intraindividual genetic diversity (i.e., the Meselson effect) and accumulation of deleterious mutations (i.e., Muller's Ratchet), among others. These consequences have been largely studied in parthenogenetic organisms, but studies on fissiparous species are scarce. Differing from parthenogens, fissiparous organisms inherit part of the soma of the progenitor, including somatic mutations. Thus, in the long term, fissiparous reproduction may also result in genetic mosaicism, besides the presence of the Meselson effect and Muller's Ratchet. Dugesiidae planarians show outstanding regeneration capabilities, allowing them to naturally reproduce by fission, either strictly or combined with sex (facultative). Therefore, they are an ideal model to analyze the genetic footprint of fissiparous reproduction, both when it is alternated with sex and when it is the only mode of reproduction. RESULTS: In the present study, we generate and analyze intraindividual cloned data of a nuclear and a mitochondrial gene of sexual, fissiparous and facultative wild populations of the species Dugesia subtentaculata. We find that most individuals, independently of their reproductive strategy, are mosaics. However, the intraindividual haplotype and nucleotide diversity of fissiparous and facultative individuals is significantly higher than in sexual individuals, with no signs of Muller's Ratchet. Finally, we also find that this high intraindividual genetic diversity of fissiparous and facultative individuals is composed by different combinations of ancestral and derived haplotypes of the species. CONCLUSIONS: The intraindividual analyses of genetic diversity point out that fissiparous reproduction leaves a very special genetic footprint in individuals, characterized by mosaicism combined with the Meselson effect (named in the present study as the mosaic Meselson effect). Interestingly, the different intraindividual combinations of ancestral and derivate genetic diversity indicate that haplotypes generated during periods of fissiparous reproduction can be also transmitted to the progeny through sexual events, resulting in offspring showing a wide range of genetic diversity and putatively allowing purifying selection to act at both intraindividual and individual level. Further investigations, using Dugesia planarians as model organisms, would be of great value to delve into this new model of genetic evolution by the combination of fission and sex.
Assuntos
Planárias/genética , Planárias/fisiologia , Animais , Evolução Molecular , Variação Genética , Haplótipos , Ploidias , Reprodução , Reprodução AssexuadaRESUMO
Asexual lineages are thought to be prone to extinction because of deleterious mutation accumulation (Muller's ratchet). Here, we analyse genomic effects of hybridity, polyploidy and allelic divergence in apomictic plants, and identify loci under divergent selection among sexual/apomictic lineages. RNAseq was used to sequence the flower-specific transcriptomes of five genotypes of the Ranunculus auricomus complex, representing three sexual and two apomictic reproductive biotypes. The five sequence libraries were pooled and de novo assembly performed, and the resultant assembly was used as a backbone for a subsequent alignment of each separate library. High-quality single-nucleotide (SNP) and insertion-deletion (indel) polymorphisms were mined from each library. Annotated genes for which open reading frames (ORF) could be determined were analysed for signatures of divergent versus stabilizing selection. A comparison between all genotypes supports the hypothesis of Pleistocene hybrid origin of both apomictic genotypes from R. carpaticola and R. cassubicifolius, with subsequent allelic divergence of apomictic lineages (Meselson effect). Pairwise comparisons of nonsynonymous (dN) to synonymous (dS) substitution rate ratios between apomictic and sexual genotypes for 1231 genes demonstrated similar distributions for all comparisons, although 324 genes demonstrated outlier (i.e. elevated) dN/dS ratios. Gene ontology analyses of these outliers revealed significant enrichment of genes associated with reproduction including meiosis and gametogenesis, following predictions of divergent selection between sexual and apomictic reproduction, although no significant signal of genome-wide mutation accumulation could be identified. The results suggest that gene function should be considered in order to understand effects of mutation accumulation in asexual lineages.
Assuntos
Evolução Biológica , Hibridização Genética , Mutação , Ranunculus/genética , Seleção Genética , Flores/genética , Biblioteca Gênica , Genoma de Planta , Genótipo , Mutação INDEL , Anotação de Sequência Molecular , Fases de Leitura Aberta , Polimorfismo de Nucleotídeo Único , RNA de Plantas/genética , Reprodução Assexuada/genética , TranscriptomaRESUMO
Evolutionary theory predicts that the lack of recombination and chromosomal re-assortment in strictly asexual organisms results in homologous chromosomes irreversibly accumulating mutations and thus evolving independently of each other, a phenomenon termed the Meselson effect. We apply a population genomics approach to examine this effect in an important human pathogen, Trypanosoma brucei gambiense. We determine that T.b. gambiense is evolving strictly asexually and is derived from a single progenitor, which emerged within the last 10,000 years. We demonstrate the Meselson effect for the first time at the genome-wide level in any organism and show large regions of loss of heterozygosity, which we hypothesise to be a short-term compensatory mechanism for counteracting deleterious mutations. Our study sheds new light on the genomic and evolutionary consequences of strict asexuality, which this pathogen uses as it exploits a new biological niche, the human population.
Assuntos
Evolução Molecular , Reprodução Assexuada , Trypanosoma brucei gambiense/genética , Humanos , Metagenômica , Mutação , Tripanossomíase/parasitologiaRESUMO
Genome evolution in asexual organisms is theoretically expected to be shaped by various factors: first, hybrid origin, and polyploidy confer a genomic constitution of highly heterozygous genotypes with multiple copies of genes; second, asexuality confers a lack of recombination and variation in populations, which reduces the efficiency of selection against deleterious mutations; hence, the accumulation of mutations and a gradual increase in mutational load (Muller's ratchet) would lead to rapid extinction of asexual lineages; third, allelic sequence divergence is expected to result in rapid divergence of lineages (Meselson effect). Recent transcriptome studies on the asexual polyploid complex Ranunculus auricomus using single-nucleotide polymorphisms confirmed neutral allelic sequence divergence within a short time frame, but rejected a hypothesis of a genome-wide accumulation of mutations in asexuals compared to sexuals, except for a few genes related to reproductive development. We discuss a general model that the observed incidence of facultative sexuality in plants may unmask deleterious mutations with partial dominance and expose them efficiently to purging selection. A little bit of sex may help to avoid genomic decay and extinction.