Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.027
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Cell ; 184(1): 243-256.e18, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33417861

RESUMO

Craniosynostosis results from premature fusion of the cranial suture(s), which contain mesenchymal stem cells (MSCs) that are crucial for calvarial expansion in coordination with brain growth. Infants with craniosynostosis have skull dysmorphology, increased intracranial pressure, and complications such as neurocognitive impairment that compromise quality of life. Animal models recapitulating these phenotypes are lacking, hampering development of urgently needed innovative therapies. Here, we show that Twist1+/- mice with craniosynostosis have increased intracranial pressure and neurocognitive behavioral abnormalities, recapitulating features of human Saethre-Chotzen syndrome. Using a biodegradable material combined with MSCs, we successfully regenerated a functional cranial suture that corrects skull deformity, normalizes intracranial pressure, and rescues neurocognitive behavior deficits. The regenerated suture creates a niche into which endogenous MSCs migrated, sustaining calvarial bone homeostasis and repair. MSC-based cranial suture regeneration offers a paradigm shift in treatment to reverse skull and neurocognitive abnormalities in this devastating disease.


Assuntos
Cognição/fisiologia , Suturas Cranianas/fisiopatologia , Craniossinostoses/fisiopatologia , Regeneração/fisiologia , Crânio/fisiopatologia , Animais , Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Craniossinostoses/genética , Dura-Máter/patologia , Dura-Máter/fisiopatologia , Gelatina/farmacologia , Perfilação da Expressão Gênica , Força da Mão , Pressão Intracraniana/efeitos dos fármacos , Pressão Intracraniana/fisiologia , Locomoção/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Metacrilatos/farmacologia , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Crânio/patologia , Proteína 1 Relacionada a Twist/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
2.
Cell ; 179(6): 1289-1305.e21, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31761534

RESUMO

Adult mesenchymal stem cells, including preadipocytes, possess a cellular sensory organelle called the primary cilium. Ciliated preadipocytes abundantly populate perivascular compartments in fat and are activated by a high-fat diet. Here, we sought to understand whether preadipocytes use their cilia to sense and respond to external cues to remodel white adipose tissue. Abolishing preadipocyte cilia in mice severely impairs white adipose tissue expansion. We discover that TULP3-dependent ciliary localization of the omega-3 fatty acid receptor FFAR4/GPR120 promotes adipogenesis. FFAR4 agonists and ω-3 fatty acids, but not saturated fatty acids, trigger mitosis and adipogenesis by rapidly activating cAMP production inside cilia. Ciliary cAMP activates EPAC signaling, CTCF-dependent chromatin remodeling, and transcriptional activation of PPARγ and CEBPα to initiate adipogenesis. We propose that dietary ω-3 fatty acids selectively drive expansion of adipocyte numbers to produce new fat cells and store saturated fatty acids, enabling homeostasis of healthy fat tissue.


Assuntos
Adipogenia , Cílios/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Cílios/efeitos dos fármacos , AMP Cíclico/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/metabolismo
3.
Mol Cell ; 82(9): 1737-1750.e8, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35390276

RESUMO

Mammalian SWI/SNF (mSWI/SNF or BAF) ATP-dependent chromatin remodeling complexes play critical roles in governing genomic architecture and gene expression and are frequently perturbed in human cancers. Transcription factors (TFs), including fusion oncoproteins, can bind to BAF complex surfaces to direct chromatin targeting and accessibility, often activating oncogenic gene loci. Here, we demonstrate that the FUS::DDIT3 fusion oncoprotein hallmark to myxoid liposarcoma (MLPS) inhibits BAF complex-mediated remodeling of adipogenic enhancer sites via sequestration of the adipogenic TF, CEBPB, from the genome. In mesenchymal stem cells, small-molecule inhibition of BAF complex ATPase activity attenuates adipogenesis via failure of BAF-mediated DNA accessibility and gene activation at CEBPB target sites. BAF chromatin occupancy and gene expression profiles of FUS::DDIT3-expressing cell lines and primary tumors exhibit similarity to SMARCB1-deficient tumor types. These data present a mechanism by which a fusion oncoprotein generates a BAF complex loss-of-function phenotype, independent of deleterious subunit mutations.


Assuntos
Lipossarcoma Mixoide , Animais , Linhagem Celular Tumoral , Cromatina/genética , Lipossarcoma Mixoide/genética , Lipossarcoma Mixoide/metabolismo , Lipossarcoma Mixoide/patologia , Mamíferos/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Mol Cell ; 81(8): 1766-1780.e10, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33631105

RESUMO

Organismal development and cell differentiation critically depend on chromatin state transitions. However, certain developmentally regulated genes lack histone 3 lysine 9 and 27 acetylation (H3K9ac and H3K27ac, respectively) and histone 3 lysine 4 (H3K4) methylation, histone modifications common to most active genes. Here we describe a chromatin state featuring unique histone 3 lysine 14 acetylation (H3K14ac) peaks in key tissue-specific genes in Drosophila and human cells. Replacing H3K14 in Drosophila demonstrates that H3K14 is essential for expression of genes devoid of canonical histone modifications in the embryonic gut and larval wing imaginal disc, causing lethality and defective wing patterning. We find that the SWI/SNF protein Brahma (Brm) recognizes H3K14ac, that brm acts in the same genetic pathway as H3K14R, and that chromatin accessibility at H3K14ac-unique genes is decreased in H3K14R mutants. Our results show that acetylation of a single lysine is essential at genes devoid of canonical histone marks and uncover an important requirement for H3K14 in tissue-specific gene regulation.


Assuntos
Cromatina/genética , Regulação da Expressão Gênica/genética , Histonas/genética , Lisina/genética , Animais , Células Cultivadas , Drosophila/genética , Proteínas de Drosophila/genética , Humanos , Mutação/genética , Fatores de Transcrição/genética
5.
Genes Dev ; 33(13-14): 828-843, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31171701

RESUMO

Adenovirus transformed cells have a dedifferentiated phenotype. Eliminating E1A in transformed human embryonic kidney cells derepressed ∼2600 genes, generating a gene expression profile closely resembling mesenchymal stem cells (MSCs). This was associated with a dramatic change in cell morphology from one with scant cytoplasm and a globular nucleus to one with increased cytoplasm, extensive actin stress fibers, and actomyosin-dependent flattening against the substratum. E1A-induced hypoacetylation at histone H3 Lys27 and Lys18 (H3K27/18) was reversed. Most of the increase in H3K27/18ac was in enhancers near TEAD transcription factors bound by Hippo signaling-regulated coactivators YAP and TAZ. E1A causes YAP/TAZ cytoplasmic sequestration. After eliminating E1A, YAP/TAZ were transported into nuclei, where they associated with poised enhancers with DNA-bound TEAD4 and H3K4me1. This activation of YAP/TAZ required RHO family GTPase signaling and caused histone acetylation by p300/CBP, chromatin remodeling, and cohesin loading to establish MSC-associated enhancers and then superenhancers. Consistent results were also observed in primary rat embryo kidney cells, human fibroblasts, and human respiratory tract epithelial cells. These results together with earlier studies suggest that YAP/TAZ function in a developmental checkpoint controlled by signaling from the actin cytoskeleton that prevents differentiation of a progenitor cell until it is in the correct cellular and tissue environment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas E1A de Adenovirus/metabolismo , Diferenciação Celular/genética , Inativação Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosfoproteínas/genética , Citoesqueleto de Actina/metabolismo , Adenoviridae , Animais , Células Cultivadas , Células HEK293 , Humanos , Ratos , Transdução de Sinais , Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP
6.
EMBO J ; 41(23): e111239, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36278281

RESUMO

Bone-derived mesenchymal stem cells (MSCs) reside in a hypoxic niche that maintains their differentiation potential. While hypoxia (low oxygen concentration) was reported to critically support stem cell function and osteogenesis, the molecular events triggering changes in stem cell fate decisions in response to normoxia (high oxygen concentration) remain elusive. Here, we study the impact of normoxia on mitochondrial-nuclear communication during stem cell differentiation. We show that normoxia-cultured murine MSCs undergo profound transcriptional alterations which cause irreversible osteogenesis defects. Mechanistically, high oxygen promotes chromatin compaction and histone hypo-acetylation, particularly on promoters and enhancers of osteogenic genes. Although normoxia induces metabolic rewiring resulting in elevated acetyl-CoA levels, histone hypo-acetylation occurs due to the trapping of acetyl-CoA inside mitochondria owing to decreased citrate carrier (CiC) activity. Restoring the cytosolic acetyl-CoA pool remodels the chromatin landscape and rescues the osteogenic defects. Collectively, our results demonstrate that the metabolism-chromatin-osteogenesis axis is perturbed upon exposure to high oxygen levels and identifies CiC as a novel, oxygen-sensitive regulator of the MSC function.


Assuntos
Histonas , Osteogênese , Camundongos , Animais , Osteogênese/fisiologia , Acetilcoenzima A/metabolismo , Histonas/metabolismo , Diferenciação Celular/fisiologia , Mitocôndrias/metabolismo , Hipóxia/metabolismo , Oxigênio/metabolismo , Cromatina/metabolismo , Células Cultivadas
7.
J Cell Sci ; 137(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38108421

RESUMO

Cellular heterogeneity and extracellular matrix (ECM) stiffening have been shown to be drivers of breast cancer invasiveness. Here, we examine how stiffness-dependent crosstalk between cancer cells and mesenchymal stem cells (MSCs) within an evolving tumor microenvironment regulates cancer invasion. By analyzing previously published single-cell RNA sequencing datasets, we establish the existence of a subpopulation of cells in primary tumors, secondary sites and circulatory tumor cell clusters of highly aggressive triple-negative breast cancer (TNBC) that co-express MSC and cancer-associated fibroblast (CAF) markers. By using hydrogels with stiffnesses of 0.5, 2 and 5 kPa to mimic different stages of ECM stiffening, we show that conditioned medium from MDA-MB-231 TNBC cells cultured on 2 kPa gels, which mimic the pre-metastatic stroma, drives efficient MSC chemotaxis and induces stable differentiation of MSC-derived CAFs in a TGFß (TGFB1)- and contractility-dependent manner. In addition to enhancing cancer cell proliferation, MSC-derived CAFs on 2 kPa gels maximally boost local invasion and confer resistance to flow-induced shear stresses. Collectively, our results suggest that homing of MSCs at the pre-metastatic stage and their differentiation into CAFs actively drives breast cancer invasion and metastasis in TNBC.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Células-Tronco Mesenquimais , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Diferenciação Celular , Géis , Microambiente Tumoral/genética , Linhagem Celular Tumoral
8.
Proc Natl Acad Sci U S A ; 120(14): e2210745120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36989307

RESUMO

Cells respond to stress by synthesizing chaperone proteins that seek to correct protein misfolding and maintain function. However, abrogation of protein homeostasis is a hallmark of aging, leading to loss of function and the formation of proteotoxic aggregates characteristic of pathology. Consequently, discovering the underlying molecular causes of this deterioration in proteostasis is key to designing effective interventions to disease or to maintaining cell health in regenerative medicine strategies. Here, we examined primary human mesenchymal stem cells, cultured to a point of replicative senescence and subjected to heat shock, as an in vitro model of the aging stress response. Multi -omics analysis showed how homeostasis components were reduced in senescent cells, caused by dysregulation of a functional network of chaperones, thereby limiting proteostatic competence. Time-resolved analysis of the primary response factors, including those regulating heat shock protein 70 kDa (HSPA1A), revealed that regulatory control is essentially translational. Senescent cells have a reduced capacity for chaperone protein translation and misfolded protein (MFP) turnover, driven by downregulation of ribosomal proteins and loss of the E3 ubiquitin ligase CHIP (C-terminus of HSP70 interacting protein) which marks MFPs for degradation. This limits the cell's stress response and subsequent recovery. A kinetic model recapitulated these reduced capacities and predicted an accumulation of MFP, a hypothesis supported by evidence of systematic changes to the proteomic fold state. These results thus establish a specific loss of regulatory capacity at the protein, rather than transcript, level and uncover underlying systematic links between aging and loss of protein homeostasis.


Assuntos
Células-Tronco Mesenquimais , Proteômica , Humanos , Envelhecimento , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Biossíntese de Proteínas , Células-Tronco Mesenquimais/metabolismo
9.
J Biol Chem ; : 107494, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925326

RESUMO

The commitment of stem cells to differentiate into osteoblasts is a highly regulated and complex process that involves the coordination of extrinsic signals and intrinsic transcriptional machinery. While rodent osteoblastic differentiation has been extensively studied, research on human osteogenesis has been limited by cell sources and existing models. Here, we systematically dissect hPSC-derived osteoblasts to identify functional membrane proteins and their downstream transcriptional networks involved in human osteogenesis. Our results reveal an enrichment of type II transmembrane serine protease CORIN in humans but not rodent osteoblasts. Functional analyses demonstrated that CORIN depletion significantly impairs osteogenesis. Genome-wide ChIP enrichment and mechanistic studies show that p38 MAPK-mediated CEBPD upregulation is required for CORIN-modulated osteogenesis. Contrastingly, the type I transmembrane heparan sulfate proteoglycan SDC1 enriched in MSCs exerts a negative regulatory effect on osteogenesis through a similar mechanism. ChIP-seq, bulk and single-cell transcriptomes, and functional validations indicated that CEBPD plays a critical role in controlling osteogenesis. In summary, our findings uncover previously unrecognized CORIN-mediated CEBPD transcriptomic networks in driving human osteoblast lineage commitment.

10.
Circulation ; 149(22): 1729-1748, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38487879

RESUMO

BACKGROUND: Myocardial infarction (MI) and heart failure are associated with an increased incidence of cancer. However, the mechanism is complex and unclear. Here, we aimed to test our hypothesis that cardiac small extracellular vesicles (sEVs), particularly cardiac mesenchymal stromal cell-derived sEVs (cMSC-sEVs), contribute to the link between post-MI left ventricular dysfunction (LVD) and cancer. METHODS: We purified and characterized sEVs from post-MI hearts and cultured cMSCs. Then, we analyzed cMSC-EV cargo and proneoplastic effects on several lines of cancer cells, macrophages, and endothelial cells. Next, we modeled heterotopic and orthotopic lung and breast cancer tumors in mice with post-MI LVD. We transferred cMSC-sEVs to assess sEV biodistribution and its effect on tumor growth. Finally, we tested the effects of sEV depletion and spironolactone treatment on cMSC-EV release and tumor growth. RESULTS: Post-MI hearts, particularly cMSCs, produced more sEVs with proneoplastic cargo than nonfailing hearts did. Proteomic analysis revealed unique protein profiles and higher quantities of tumor-promoting cytokines, proteins, and microRNAs in cMSC-sEVs from post-MI hearts. The proneoplastic effects of cMSC-sEVs varied with different types of cancer, with lung and colon cancers being more affected than melanoma and breast cancer cell lines. Post-MI cMSC-sEVs also activated resting macrophages into proangiogenic and protumorigenic states in vitro. At 28-day follow-up, mice with post-MI LVD developed larger heterotopic and orthotopic lung tumors than did sham-MI mice. Adoptive transfer of cMSC-sEVs from post-MI hearts accelerated the growth of heterotopic and orthotopic lung tumors, and biodistribution analysis revealed accumulating cMSC-sEVs in tumor cells along with accelerated tumor cell proliferation. sEV depletion reduced the tumor-promoting effects of MI, and adoptive transfer of cMSC-sEVs from post-MI hearts partially restored these effects. Finally, spironolactone treatment reduced the number of cMSC-sEVs and suppressed tumor growth during post-MI LVD. CONCLUSIONS: Cardiac sEVs, specifically cMSC-sEVs from post-MI hearts, carry multiple protumorigenic factors. Uptake of cMSC-sEVs by cancer cells accelerates tumor growth. Treatment with spironolactone significantly reduces accelerated tumor growth after MI. Our results provide new insight into the mechanism connecting post-MI LVD to cancer and propose a translational option to mitigate this deadly association.


Assuntos
Vesículas Extracelulares , Insuficiência Cardíaca , Infarto do Miocárdio , Animais , Vesículas Extracelulares/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/etiologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/metabolismo , Camundongos , Humanos , Feminino , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Linhagem Celular Tumoral , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Masculino , Proliferação de Células/efeitos dos fármacos
11.
Stem Cells ; 42(5): 460-474, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38381592

RESUMO

Cell therapy based on mesenchymal stem cells (MSCs) alleviate muscle atrophy caused by diabetes and aging; however, the impact of human umbilical cord mesenchymal stem cells on muscle atrophy following nerve injury and the underlying mechanisms remain unclear. In this study, we evaluated the therapeutic efficacy of human umbilical cord MSCs (hucMSCs) and hucMSC-derived exosomes (hucMSC-EXOs) for muscle atrophy following nerve injury and identified the underlying molecular mechanisms. Sciatic nerve crush injury in rats and the induction of myotubes in L6 cells were used to determine the ameliorating effect of hucMSCs and hucMSC-EXOs on muscle atrophy. Q-PCR and Western blot analyses were used to measure the expression of muscle-specific ubiquitin ligases Fbxo32 (Atrogin1, MAFbx) and Trim63 (MuRF-1). Dual-luciferase reporter gene experiments were conducted to validate the direct binding of miRNAs to their target genes. Local injection of hucMSCs and hucMSC-EXOs mitigated atrophy in the rat gastrocnemius muscle following sciatic nerve crush injury. In vitro, hucMSC-EXOs alleviated atrophy in L6 myotubes. Mechanistic analysis indicated the upregulation of miR-23b-3p levels in L6 myotubes following hucMSC-EXOs treatment. MiR-23b-3p significantly inhibited the expression of its target genes, Fbxo32 and Trim63, and suppressed myotube atrophy. Notably, an miR-23b-3p inhibitor reversed the inhibitory effect of miR-23b-3p on myotube atrophy in vitro. These results suggest that hucMSCs and their exosomes alleviate muscle atrophy following nerve injury. MiR-23b-3p in exosomes secreted by hucMSCs contributes to this mechanism by inhibiting the muscle-specific ubiquitination ligases Fbxo32 and Trim63.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Atrofia Muscular , Traumatismos dos Nervos Periféricos , Ubiquitina-Proteína Ligases , Exossomos/metabolismo , Animais , Atrofia Muscular/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/terapia , Atrofia Muscular/genética , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Células-Tronco Mesenquimais/metabolismo , Ratos , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/patologia , Traumatismos dos Nervos Periféricos/terapia , Ratos Sprague-Dawley , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Cordão Umbilical/citologia , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo , Masculino , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia
12.
Stem Cells ; 42(2): 98-106, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37966945

RESUMO

Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into various cell types and secrete extracellular vesicles (EVs) that transport bioactive molecules and mediate intercellular communication. MSCs and MSC-derived EVs (MSC-EVs) have shown promising therapeutic effects in several diseases. However, their procoagulant activity and thrombogenic risk may limit their clinical safety. In this review, we summarize current knowledge on procoagulant molecules expressed on the surface of MSCs and MSC-EVs, such as tissue factor and phosphatidylserine. Moreover, we discuss how these molecules interact with the coagulation system and contribute to thrombus formation through different mechanisms. Additionally, various confounding factors, such as cell dose, tissue source, passage number, and culture conditions of MSCs and subpopulations of MSC-EVs, affect the expression of procoagulant molecules and procoagulant activity of MSCs and MSC-EVs. Therefore, herein, we summarize several strategies to reduce the surface procoagulant activity of MSCs and MSC-EVs, thereby aiming to improve their safety profile for clinical use.


Assuntos
Vesículas Extracelulares , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Trombose , Humanos , Células-Tronco Mesenquimais/metabolismo , Vesículas Extracelulares/metabolismo , Comunicação Celular , Transplante de Células-Tronco Mesenquimais/métodos , Trombose/metabolismo
13.
Stem Cells ; 42(1): 76-89, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37931142

RESUMO

Mesenchymal stem cells (MSCs) are widely used in therapy, but the differences between MSCs of various origins and their ability to undergo osteogenic differentiation and produce extracellular matrix are not fully understood. To address this, we conducted a comparative analysis of mesenchymal cell primary cultures from 6 human sources, including osteoblast-like cells from the adult femur, adipose-derived stem cells, Wharton's jelly-derived mesenchymal cells, gingival fibroblasts, dental pulp stem cells, and periodontal ligament stem cells. We analyzed these cells' secretome, proteome, and transcriptome under standard and osteogenic cultivation conditions. Despite the overall similarity in osteogenic differentiation, the cells maintain their embryonic specificity after isolation and differentiation in vitro. Furthermore, we propose classifying mesenchymal cells into 3 groups: dental stem cells of neural crest origin, mesenchymal stem cells, and fetal stem cells. Specifically, fetal stem cells have the most promising secretome for various applications, while mesenchymal stem cells have a specialized secretome optimal for extracellular matrix production. Nevertheless, mesenchymal cells from all sources secreted core bone extracellular matrix-associated proteins. In conclusion, our study illuminates the distinctive characteristics of mesenchymal stem cells from various sources, providing insights into their potential applications in regenerative medicine and enhancing our understanding of the inherent diversity of mesenchymal cells in vivo.


Assuntos
Células-Tronco Mesenquimais , Geleia de Wharton , Adulto , Humanos , Osteogênese , Diferenciação Celular , Técnicas de Cultura de Células , Células Cultivadas , Células-Tronco Mesenquimais/metabolismo
14.
Stem Cells ; 42(1): 64-75, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37847598

RESUMO

PURPOSE: This study aimed to investigate the effect of mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) on diabetic retinopathy (DR) and its underlying mechanism. METHODS: In vivo, MSC-sEVs were injected intravitreally into diabetic rats to determine the therapeutic efficacy. In vitro, MSC-sEVs with/without miR-22-3p inhibition were cocultured with advanced glycation end-products (AGEs)-induced microglia with/without NLRP3 overexpression to explore the molecular mechanism. RESULTS: In vivo, MSC-sEVs inhibited NLRP3 inflammasome activation, suppressed microglial activation, decreased inflammatory cytokines levels in the retina, and alleviated DR as evidenced by improved histological morphology and blood-retinal barrier function. Based on miRNA sequencing of MSC-sEVs, bioinformatic software, and dual-luciferase reporter assay, miR-22-3p stood out as the critical molecule for the role of MSC-sEVs in regulating NLRP3 inflammasome activation. Diabetic rats had lower level of miR-22-3p in their retina than those of control and sEV-treated rats. Confocal microscopy revealed that sEV could be internalized by microglia both in vivo and in vitro. In vitro, compared with sEV, the anti-inflammation effect of sEVmiR-22-3p(-) on AGEs-induced microglia was compromised, as they gave a lower suppression of NLRP3 inflammasome activation and inflammatory cytokines. In addition, NLRP3 overexpression in microglia damped the anti-inflammatory effect of sEV. CONCLUSION: These results indicated that MSC-sEVs alleviated DR via delivering miR-22-3p to inhibit NLRP3 inflammasome activation. Our findings indicate that MSC-sEVs might be a potential therapeutic method for DR.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Ratos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Inflamassomos/genética , Retinopatia Diabética/genética , Retinopatia Diabética/terapia , MicroRNAs/genética , Citocinas
15.
Stem Cells ; 42(3): 216-229, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38035715

RESUMO

The high prevalence and complex etiology of renal diseases already impose a heavy disease burden on patients and society. In certain kidney diseases such as acute kidney injury and chronic kidney disease, current treatments are limited to slowing rather than stabilizing or reversing disease progression. Therefore, it is crucial to study the pathological mechanisms of kidney disease and discover new therapeutic targets and effective therapeutic drugs. As cell-free therapeutic strategies are continually being developed, extracellular vesicles derived from mesenchymal stem cells (MSC-EVs) have emerged as a hot topic for research in the field of renal diseases. Studies have demonstrated that MSC-EVs not only reproduce the therapeutic effects of MSCs but also localize to damaged kidney tissue. Compared to MSCs, MSC-EVs have several advantages, including ease of preservation, low immunogenicity, an inability to directly form tumors, and ease of artificial modification. Exploring the detailed mechanisms of MSC-EVs by developing standardized culture, isolation, purification, and drug delivery strategies will help facilitate their clinical application in kidney diseases. Here, we provide a comprehensive overview of studies about MSC-EVs in kidney diseases and discuss their limitations at the human nephrology level.


Assuntos
Vesículas Extracelulares , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Insuficiência Renal Crônica , Humanos , Rim/patologia , Insuficiência Renal Crônica/terapia
16.
Stem Cells ; 42(6): 567-579, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38469899

RESUMO

Wnt/ß-catenin signaling plays a crucial role in the migration of mesenchymal stem cells (MSCs). However, our study has revealed an intriguing phenomenon where Dickkopf-1 (DKK1), an inhibitor of Wnt/ß-catenin signaling, promotes MSC migration at certain concentrations ranging from 25 to 100 ng/mL while inhibiting Wnt3a-induced MSC migration at a higher concentration (400 ng/mL). Interestingly, DKK1 consistently inhibited Wnt3a-induced phosphorylation of LRP6 at all concentrations. We further identified cytoskeleton-associated protein 4 (CKAP4), another DKK1 receptor, to be localized on the cell membrane of MSCs. Overexpressing the CRD2 deletion mutant of DKK1 (ΔCRD2), which selectively binds to CKAP4, promoted the accumulation of active ß-catenin (ABC), the phosphorylation of AKT (Ser473) and the migration of MSCs, suggesting that DKK1 may activate Wnt/ß-catenin signaling via the CKAP4/PI3K/AKT cascade. We also investigated the effect of the CKAP4 intracellular domain mutant (CKAP4-P/A) that failed to activate the PI3K/AKT pathway and found that CKAP4-P/A suppressed DKK1 (100 ng/mL)-induced AKT activation, ABC accumulation, and MSC migration. Moreover, CKAP4-P/A significantly weakened the inhibitory effects of DKK1 (400 ng/mL) on Wnt3a-induced MSC migration and Wnt/ß-catenin signaling. Based on these findings, we propose that DKK1 may activate the PI3K/AKT pathway via CKAP4 to balance the inhibitory effect on Wnt/ß-catenin signaling and thus regulate Wnt3a-induced migration of MSCs. Our study reveals a previously unrecognized role of DKK1 in regulating MSC migration, highlighting the importance of CKAP4 and PI3K/AKT pathways in this process.


Assuntos
Movimento Celular , Peptídeos e Proteínas de Sinalização Intercelular , Células-Tronco Mesenquimais , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Via de Sinalização Wnt , Proteína Wnt3A , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco Mesenquimais/metabolismo , Movimento Celular/efeitos dos fármacos , Proteína Wnt3A/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Humanos , Animais , beta Catenina/metabolismo , Fosforilação/efeitos dos fármacos , Camundongos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética
17.
Stem Cells ; 42(5): 475-490, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38427800

RESUMO

Cellular senescence significantly affects the proliferative and differentiation capacities of mesenchymal stem cells (MSCs). Identifying key regulators of senescence and exploring potential intervention strategies, including drug-based approaches, are active areas of research. In this context, S-adenosyl-l-methionine (SAM), a critical intermediate in sulfur amino acid metabolism, emerges as a promising candidate for mitigating MSC senescence. In a hydrogen peroxide-induced MSC aging model (100 µM for 2 hours), SAM (50 and 100 µM) was revealed to alleviate the senescence of MSCs, and also attenuated the level of reactive oxygen species and enhanced the adipogenic and osteogenic differentiation in senescent MSCs. In a premature aging mouse model (subcutaneously injected with 150 mg/kg/day d-galactose in the neck and back for 7 weeks), SAM (30 mg/kg/day by gavage for 5 weeks) was shown to delay the overall aging process while increasing the number and thickness of bone trabeculae in the distal femur. Mechanistically, activation of PI3K/AKT signaling and increased phosphorylation of forkhead box O3 (FOXO3a) was proved to be associated with the antisenescence role of SAM. These findings highlight that the PI3K/AKT/FOXO3a axis in MSCs could play a crucial role in MSCs senescence and suggest that SAM may be a potential therapeutic drug for MSCs senescence and related diseases.


Assuntos
Senescência Celular , Proteína Forkhead Box O3 , Células-Tronco Mesenquimais , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , S-Adenosilmetionina , Transdução de Sinais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Animais , Senescência Celular/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , S-Adenosilmetionina/farmacologia , S-Adenosilmetionina/metabolismo , Camundongos , Diferenciação Celular/efeitos dos fármacos , Masculino , Humanos , Camundongos Endogâmicos C57BL
18.
FASEB J ; 38(4): e23484, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38407380

RESUMO

The transcription factor RUNX2 is a key regulator of chondrocyte phenotype during development, making it an ideal target for prevention of undesirable chondrocyte maturation in cartilage tissue-engineering strategies. Here, we engineered an autoregulatory gene circuit (cisCXp-shRunx2) that negatively controls RUNX2 activity in chondrogenic cells via RNA interference initiated by a tunable synthetic Col10a1-like promoter (cisCXp). The cisCXp-shRunx2 gene circuit is designed based on the observation that induced RUNX2 silencing after early chondrogenesis enhances the accumulation of cartilaginous matrix in ATDC5 cells. We show that the cisCXp-shRunx2 initiates RNAi of RUNX2 in maturing chondrocytes in response to the increasing intracellular RUNX2 activity without interfering with early chondrogenesis. The induced loss of RUNX2 activity in turn negatively regulates the gene circuit itself. Moreover, the efficacy of RUNX2 suppression from cisCXp-shRunx2 can be controlled by modifying the sensitivity of cisCXp promoter. Finally, we show the efficacy of inhibiting RUNX2 in preventing matrix loss in human mesenchymal stem cell-derived (hMSC-derived) cartilage under conditions that induce chondrocyte hypertrophic differentiation, including inflammation. Overall, our results demonstrated that the negative modulation of RUNX2 activity with our autoregulatory gene circuit enhanced matrix synthesis and resisted ECM degradation by reprogrammed MSC-derived chondrocytes in response to the microenvironment of the degenerative joint.


Assuntos
Condrogênese , Redes Reguladoras de Genes , Humanos , Condrogênese/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Condrócitos , Diferenciação Celular/genética
19.
FASEB J ; 38(7): e23599, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38572590

RESUMO

Diabetic nephropathy (DN) is the leading cause of end-stage renal disease globally. Currently, there are no effective drugs for the treatment of DN. Although several studies have reported the therapeutic potential of mesenchymal stem cells, the underlying mechanisms remain largely unknown. Here, we report that both human umbilical cord MSCs (UC-MSCs) and UC-MSC-derived exosomes (UC-MSC-exo) attenuate kidney damage, and inhibit epithelial-mesenchymal transition (EMT) and renal fibrosis in streptozotocin-induced DN rats. Strikingly, the Hedgehog receptor, smoothened (SMO), was significantly upregulated in the kidney tissues of DN patients and rats, and positively correlated with EMT and renal fibrosis. UC-MSC and UC-MSC-exo treatment resulted in decrease of SMO expression. In vitro co-culture experiments revealed that UC-MSC-exo reduced EMT of tubular epithelial cells through inhibiting Hedgehog/SMO pathway. Collectively, UC-MSCs inhibit EMT and renal fibrosis by delivering exosomes and targeting Hedgehog/SMO signaling, suggesting that UC-MSCs and their exosomes are novel anti-fibrotic therapeutics for treating DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Exossomos , Células-Tronco Mesenquimais , Humanos , Ratos , Animais , Nefropatias Diabéticas/metabolismo , Exossomos/metabolismo , Receptor Smoothened , Proteínas Hedgehog/metabolismo , Fibrose , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/metabolismo , Diabetes Mellitus/metabolismo
20.
EMBO Rep ; 24(8): e56439, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37306027

RESUMO

Oxidative protein folding occurs in the endoplasmic reticulum (ER) to generate disulfide bonds, and the by-product is hydrogen peroxide (H2 O2 ). However, the relationship between oxidative protein folding and senescence remains uncharacterized. Here, we find that the protein disulfide isomerase (PDI), a key oxidoreductase that catalyzes oxidative protein folding, accumulated in aged human mesenchymal stem cells (hMSCs) and deletion of PDI alleviated hMSCs senescence. Mechanistically, knocking out PDI slows the rate of oxidative protein folding and decreases the leakage of ER-derived H2 O2 into the nucleus, thereby decreasing the expression of SERPINE1, which was identified as a key driver of cell senescence. Furthermore, we show that depletion of PDI alleviated senescence in various cell models of aging. Our findings reveal a previously unrecognized role of oxidative protein folding in promoting cell aging, providing a potential target for aging and aging-related disease intervention.


Assuntos
Isomerases de Dissulfetos de Proteínas , Dobramento de Proteína , Humanos , Idoso , Oxirredução , Isomerases de Dissulfetos de Proteínas/genética , Retículo Endoplasmático/metabolismo , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa