Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 393
Filtrar
1.
Cell ; 187(3): 692-711.e26, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38262408

RESUMO

Transcription factors (TFs) can define distinct cellular identities despite nearly identical DNA-binding specificities. One mechanism for achieving regulatory specificity is DNA-guided TF cooperativity. Although in vitro studies suggest that it may be common, examples of such cooperativity remain scarce in cellular contexts. Here, we demonstrate how "Coordinator," a long DNA motif composed of common motifs bound by many basic helix-loop-helix (bHLH) and homeodomain (HD) TFs, uniquely defines the regulatory regions of embryonic face and limb mesenchyme. Coordinator guides cooperative and selective binding between the bHLH family mesenchymal regulator TWIST1 and a collective of HD factors associated with regional identities in the face and limb. TWIST1 is required for HD binding and open chromatin at Coordinator sites, whereas HD factors stabilize TWIST1 occupancy at Coordinator and titrate it away from HD-independent sites. This cooperativity results in the shared regulation of genes involved in cell-type and positional identities and ultimately shapes facial morphology and evolution.


Assuntos
Proteínas de Ligação a DNA , Desenvolvimento Embrionário , Fatores de Transcrição , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Mesoderma/metabolismo , Fatores de Transcrição/metabolismo , Humanos , Animais , Camundongos , Extremidades/crescimento & desenvolvimento
2.
Cell ; 184(12): 3281-3298.e22, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34019796

RESUMO

Organs are composed of diverse cell types that traverse transient states during organogenesis. To interrogate this diversity during human development, we generate a single-cell transcriptome atlas from multiple developing endodermal organs of the respiratory and gastrointestinal tract. We illuminate cell states, transcription factors, and organ-specific epithelial stem cell and mesenchyme interactions across lineages. We implement the atlas as a high-dimensional search space to benchmark human pluripotent stem cell (hPSC)-derived intestinal organoids (HIOs) under multiple culture conditions. We show that HIOs recapitulate reference cell states and use HIOs to reconstruct the molecular dynamics of intestinal epithelium and mesenchyme emergence. We show that the mesenchyme-derived niche cue NRG1 enhances intestinal stem cell maturation in vitro and that the homeobox transcription factor CDX2 is required for regionalization of intestinal epithelium and mesenchyme in humans. This work combines cell atlases and organoid technologies to understand how human organ development is orchestrated.


Assuntos
Anatomia Artística , Atlas como Assunto , Desenvolvimento Embrionário , Endoderma/embriologia , Modelos Biológicos , Organoides/embriologia , Fator de Transcrição CDX2/metabolismo , Linhagem Celular , Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/citologia , Feminino , Gastrulação , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Intestinos/embriologia , Masculino , Mesoderma/embriologia , Pessoa de Meia-Idade , Neuregulina-1/metabolismo , Especificidade de Órgãos , Células-Tronco Pluripotentes/citologia
3.
Cell ; 175(6): 1620-1633.e13, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30415836

RESUMO

Fibroblasts are an essential cellular and structural component of our organs. Despite several advances, the critical behaviors that fibroblasts utilize to maintain their homeostasis in vivo have remained unclear. Here, by tracking the same skin fibroblasts in live mice, we show that fibroblast position is stable over time and that this stability is maintained despite the loss of neighboring fibroblasts. In contrast, fibroblast membranes are dynamic during homeostasis and extend to fill the space of lost neighboring fibroblasts in a Rac1-dependent manner. Positional stability is sustained during aging despite a progressive accumulation of gaps in fibroblast nuclei organization, while membrane occupancy continues to be maintained. This work defines positional stability and cell occupancy as key principles of skin fibroblast homeostasis in vivo, throughout the lifespan of mice, and identifies membrane extension in the absence of migration as the core cellular mechanism to carry out these principles.


Assuntos
Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Fibroblastos/metabolismo , Homeostase/fisiologia , Pele/metabolismo , Animais , Membrana Celular/genética , Núcleo Celular/genética , Células Cultivadas , Fibroblastos/citologia , Camundongos , Camundongos Transgênicos , Pele/citologia
4.
Cell ; 175(2): 372-386.e17, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30270042

RESUMO

Intestinal mesenchymal cells play essential roles in epithelial homeostasis, matrix remodeling, immunity, and inflammation. But the extent of heterogeneity within the colonic mesenchyme in these processes remains unknown. Using unbiased single-cell profiling of over 16,500 colonic mesenchymal cells, we reveal four subsets of fibroblasts expressing divergent transcriptional regulators and functional pathways, in addition to pericytes and myofibroblasts. We identified a niche population located in proximity to epithelial crypts expressing SOX6, F3 (CD142), and WNT genes essential for colonic epithelial stem cell function. In colitis, we observed dysregulation of this niche and emergence of an activated mesenchymal population. This subset expressed TNF superfamily member 14 (TNFSF14), fibroblastic reticular cell-associated genes, IL-33, and Lysyl oxidases. Further, it induced factors that impaired epithelial proliferation and maturation and contributed to oxidative stress and disease severity in vivo. Our work defines how the colonic mesenchyme remodels to fuel inflammation and barrier dysfunction in IBD.


Assuntos
Doenças Inflamatórias Intestinais/fisiopatologia , Mesoderma/fisiologia , Animais , Proliferação de Células , Colite/genética , Colite/fisiopatologia , Colo/fisiologia , Células Epiteliais/metabolismo , Fibroblastos/fisiologia , Heterogeneidade Genética , Homeostase , Humanos , Inflamação , Mucosa Intestinal/imunologia , Mucosa Intestinal/fisiologia , Intestinos/imunologia , Intestinos/fisiologia , Células-Tronco Mesenquimais/fisiologia , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos , Pericitos , Células RAW 264.7 , Fatores de Transcrição SOXD/fisiologia , Análise de Célula Única/métodos , Tromboplastina/fisiologia , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Via de Sinalização Wnt/fisiologia
5.
Cell ; 170(6): 1134-1148.e10, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28886382

RESUMO

The lung is an architecturally complex organ comprising a heterogeneous mixture of various epithelial and mesenchymal lineages. We use single-cell RNA sequencing and signaling lineage reporters to generate a spatial and transcriptional map of the lung mesenchyme. We find that each mesenchymal lineage has a distinct spatial address and transcriptional profile leading to unique niche regulatory functions. The mesenchymal alveolar niche cell is Wnt responsive, expresses Pdgfrα, and is critical for alveolar epithelial cell growth and self-renewal. In contrast, the Axin2+ myofibrogenic progenitor cell preferentially generates pathologically deleterious myofibroblasts after injury. Analysis of the secretome and receptome of the alveolar niche reveals functional pathways that mediate growth and self-renewal of alveolar type 2 progenitor cells, including IL-6/Stat3, Bmp, and Fgf signaling. These studies define the cellular and molecular framework of lung mesenchymal niches and reveal the functional importance of developmental pathways in promoting self-renewal versus a pathological response to tissue injury.


Assuntos
Pulmão/citologia , Mesoderma/citologia , Algoritmos , Animais , Células Epiteliais/metabolismo , Fibrose/metabolismo , Perfilação da Expressão Gênica , Pulmão/patologia , Pulmão/fisiologia , Lesão Pulmonar/patologia , Camundongos , Organoides/citologia , Comunicação Parácrina , Regeneração , Transdução de Sinais , Análise de Célula Única , Células-Tronco/metabolismo
6.
Annu Rev Cell Dev Biol ; 34: 427-450, 2018 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-30125139

RESUMO

The nephron is a multifunctional filtration device equipped with an array of sophisticated sensors. For appropriate physiological function in the human and mouse, nephrons must be stereotypically arrayed in large numbers, and this essential structural property that defines the kidney is determined during its fetal development. This review explores the process of nephron determination in the fetal kidney, providing an overview of the foundational literature in the field as well as exploring new developments in this dynamic research area. Mechanisms that ensure that a large number of nephrons can be formed from a small initial number of progenitor cells are central to this process, and the question of how the nephron progenitor cell population balances epithelial differentiation with renewal in the progenitor state is a subject of particular interest. Key growth factor signaling pathways and transcription factor networks are discussed.


Assuntos
Diferenciação Celular/genética , Desenvolvimento Fetal/genética , Rim/crescimento & desenvolvimento , Néfrons/crescimento & desenvolvimento , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Rim/metabolismo , Néfrons/metabolismo , Organogênese/genética , Transdução de Sinais/genética , Células-Tronco/citologia
7.
Development ; 151(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38602485

RESUMO

Alveologenesis, the final stage in lung development, substantially remodels the distal lung, expanding the alveolar surface area for efficient gas exchange. Secondary crest myofibroblasts (SCMF) exist transiently in the neonatal distal lung and are crucial for alveologenesis. However, the pathways that regulate SCMF function, proliferation and temporal identity remain poorly understood. To address this, we purified SCMFs from reporter mice, performed bulk RNA-seq and found dynamic changes in Hippo-signaling components during alveologenesis. We deleted the Hippo effectors Yap/Taz from Acta2-expressing cells at the onset of alveologenesis, causing a significant arrest in alveolar development. Using single cell RNA-seq, we identified a distinct cluster of cells in mutant lungs with altered expression of marker genes associated with proximal mesenchymal cell types, airway smooth muscle and alveolar duct myofibroblasts. In vitro studies confirmed that Yap/Taz regulates myofibroblast-associated gene signature and contractility. Together, our findings show that Yap/Taz is essential for maintaining functional myofibroblast identity during postnatal alveologenesis.


Assuntos
Diferenciação Celular , Via de Sinalização Hippo , Morfogênese , Miofibroblastos , Proteínas Serina-Treonina Quinases , Alvéolos Pulmonares , Transdução de Sinais , Proteínas de Sinalização YAP , Animais , Camundongos , Miofibroblastos/metabolismo , Miofibroblastos/citologia , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/citologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Morfogênese/genética , Mesoderma/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Pulmão/metabolismo , Organogênese/genética , Regulação da Expressão Gênica no Desenvolvimento
8.
Development ; 151(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38451068

RESUMO

The first hematopoietic stem and progenitor cells (HSPCs) emerge in the Aorta-Gonad-Mesonephros (AGM) region of the mid-gestation mouse embryo. However, the precise nature of their supportive mesenchymal microenvironment remains largely unexplored. Here, we profiled transcriptomes of laser micro-dissected aortic tissues at three developmental stages and individual AGM cells. Computational analyses allowed the identification of several cell subpopulations within the E11.5 AGM mesenchyme, with the presence of a yet unidentified subpopulation characterized by the dual expression of genes implicated in adhesive or neuronal functions. We confirmed the identity of this cell subset as a neuro-mesenchymal population, through morphological and lineage tracing assays. Loss of function in the zebrafish confirmed that Decorin, a characteristic extracellular matrix component of the neuro-mesenchyme, is essential for HSPC development. We further demonstrated that this cell population is not merely derived from the neural crest, and hence, is a bona fide novel subpopulation of the AGM mesenchyme.


Assuntos
Células-Tronco Mesenquimais , Peixe-Zebra , Camundongos , Animais , Peixe-Zebra/genética , Células-Tronco Hematopoéticas/metabolismo , Hematopoese , Embrião de Mamíferos , Mesonefro , Gônadas
9.
Development ; 150(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37497580

RESUMO

Earlier data on liver development demonstrated that morphogenesis of the bile duct, portal mesenchyme and hepatic artery is interdependent, yet how this interdependency is orchestrated remains unknown. Here, using 2D and 3D imaging, we first describe how portal mesenchymal cells become organised to form hepatic arteries. Next, we examined intercellular signalling active during portal area development and found that axon guidance genes are dynamically expressed in developing bile ducts and portal mesenchyme. Using tissue-specific gene inactivation in mice, we show that the repulsive guidance molecule BMP co-receptor A (RGMA)/neogenin (NEO1) receptor/ligand pair is dispensable for portal area development, but that deficient roundabout 2 (ROBO2)/SLIT2 signalling in the portal mesenchyme causes reduced maturation of the vascular smooth muscle cells that form the tunica media of the hepatic artery. This arterial anomaly does not impact liver function in homeostatic conditions, but is associated with significant tissular damage following partial hepatectomy. In conclusion, our work identifies new players in development of the liver vasculature in health and liver regeneration.


Assuntos
Orientação de Axônios , Artéria Hepática , Animais , Camundongos , Ductos Biliares , Morfogênese , Inativação Gênica
10.
Development ; 150(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37902109

RESUMO

Multinucleated cells, or syncytia, are found in diverse taxa. Their biological function is often associated with the compartmentalization of biochemical or cellular activities within the syncytium. How such compartments are generated and maintained is poorly understood. The sea urchin embryonic skeleton is secreted by a syncytium, and local patterns of skeletal growth are associated with distinct sub-domains of gene expression within the syncytium. For such molecular compartments to be maintained and to control local patterns of skeletal growth: (1) the mobility of TFs must be restricted to produce stable differences in the transcriptional states of nuclei within the syncytium; and (2) the mobility of biomineralization proteins must also be restricted to produce regional differences in skeletal growth. To test these predictions, we expressed fluorescently tagged forms of transcription factors and biomineralization proteins in sub-domains of the skeletogenic syncytium. We found that both classes of proteins have restricted mobility within the syncytium and identified motifs that limit their mobility. Our findings have general implications for understanding the functional and molecular compartmentalization of syncytia.


Assuntos
Ouriços-do-Mar , Fatores de Transcrição , Animais , Fatores de Transcrição/metabolismo , Células Gigantes/metabolismo , Mesoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
11.
Development ; 150(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37497597

RESUMO

Morphological development of the lung requires complex signal crosstalk between the mesenchymal and epithelial progenitors. Elucidating the genetic cascades underlying signal crosstalk is essential to understanding lung morphogenesis. Here, we identified Nolz1 as a mesenchymal lineage-specific transcriptional regulator that plays a key role in lung morphogenesis. Nolz1 null mutation resulted in a severe hypoplasia phenotype, including a decreased proliferation of mesenchymal cells, aberrant differentiation of epithelial cells and defective growth of epithelial branches. Nolz1 deletion also downregulated Wnt2, Lef1, Fgf10, Gli3 and Bmp4 mRNAs. Mechanistically, Nolz1 regulates lung morphogenesis primarily through Wnt2 signaling. Loss-of-function and overexpression studies demonstrated that Nolz1 transcriptionally activated Wnt2 and downstream ß-catenin signaling to control mesenchymal cell proliferation and epithelial branching. Exogenous Wnt2 could rescue defective proliferation and epithelial branching in Nolz1 knockout lungs. Finally, we identified Fgf9 as an upstream regulator of Nolz1. Collectively, Fgf9-Nolz1-Wnt2 signaling represents a novel axis in the control of lung morphogenesis. These findings are relevant to lung tumorigenesis, in which a pathological function of Nolz1 is implicated.


Assuntos
Pulmão , Transdução de Sinais , Transdução de Sinais/fisiologia , Diferenciação Celular/genética , Células Epiteliais , Morfogênese/genética , Mesoderma , Regulação da Expressão Gênica no Desenvolvimento
12.
Development ; 150(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36762637

RESUMO

Members of the Sp family of transcription factors regulate gene expression via binding GC boxes within promoter regions. Unlike Sp1, which stimulates transcription, the closely related Sp3 can either repress or activate gene expression and is required for perinatal survival in mice. Here, we use RNA-seq and cellular phenotyping to show how Sp3 regulates murine fetal cell differentiation and proliferation. Homozygous Sp3-/- mice were smaller than wild-type and Sp+/- littermates, died soon after birth and had abnormal lung morphogenesis. RNA-seq of Sp3-/- fetal lung mesenchymal cells identified alterations in extracellular matrix production, developmental signaling pathways and myofibroblast/lipofibroblast differentiation. The lungs of Sp3-/- mice contained multiple structural defects, with abnormal endothelial cell morphology, lack of elastic fiber formation, and accumulation of lipid droplets within mesenchymal lipofibroblasts. Sp3-/- cells and mice also displayed cell cycle arrest, with accumulation in G0/G1 and reduced expression of numerous cell cycle regulators including Ccne1. These data detail the global impact of Sp3 on in vivo mouse gene expression and development.


Assuntos
Desenvolvimento Embrionário , Fatores de Transcrição , Animais , Camundongos , Divisão Celular , Pulmão , Regiões Promotoras Genéticas , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Fatores de Transcrição/metabolismo
13.
EMBO Rep ; 25(1): 428-454, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177914

RESUMO

Mutations in genes that disrupt centrosome structure or function can cause congenital kidney developmental defects and lead to fibrocystic pathologies. Yet, it is unclear how defective centrosome biogenesis impacts renal progenitor cell physiology. Here, we examined the consequences of impaired centrosome duplication on kidney stromal progenitor cell growth, differentiation, and fate. Conditional deletion of the ciliopathy gene Cep120, which is essential for centrosome duplication, in the stromal mesenchyme resulted in reduced abundance of interstitial lineages including pericytes, fibroblasts and mesangial cells. These phenotypes were caused by a combination of delayed mitosis, activation of the mitotic surveillance pathway leading to apoptosis, and changes in both Wnt and Hedgehog signaling that are key for differentiation of stromal cells. Cep120 ablation resulted in small hypoplastic kidneys with medullary atrophy and delayed nephron maturation. Finally, Cep120 and centrosome loss in the interstitium sensitized kidneys of adult mice, causing rapid fibrosis after renal injury via enhanced TGF-ß/Smad3-Gli2 signaling. Our study defines the cellular and developmental defects caused by loss of Cep120 and aberrant centrosome biogenesis in the embryonic kidney stroma.


Assuntos
Proteínas Hedgehog , Rim , Camundongos , Animais , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Rim/patologia , Diferenciação Celular/genética , Células Estromais , Células-Tronco , Proteínas de Ciclo Celular/metabolismo
14.
Bioessays ; 46(3): e2300189, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38161234

RESUMO

Isthmin-1 (Ism1) was first described to be syn-expressed with Fgf8 in Xenopus. However, its biological role has not been elucidated until recent years. Despite of accumulated evidence that Ism1 participates in angiogenesis, tumor invasion, macrophage apoptosis, and glucose metabolism, the cognate receptors for Ism1 remain largely unknown. Ism1 deficiency in mice results in renal agenesis (RA) with a transient loss of Gdnf transcription and impaired mesenchyme condensation at E11.5. Ism1 binds to and activates Integrin α8ß1 to positively regulate Gdnf/Ret signaling, thus promoting mesenchyme condensation and ureteric epithelium branching morphogenesis. Here, we propose the hypothesis underlying the mechanism by which Ism1 regulates branching morphogenesis during early kidney development.


Assuntos
Estruturas Embrionárias , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Néfrons/embriologia , Ureter , Camundongos , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Rim/anormalidades , Rim/metabolismo , Rim/patologia , Ureter/metabolismo , Morfogênese
15.
Genes Dev ; 32(23-24): 1461-1471, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30509948

RESUMO

Tissue regeneration involves various types of cellular and molecular responses depending on the type of tissue and the injury or disease that is inflicted. While many tissues contain dedicated stem/progenitor cell lineages, many others contain cells that, during homeostasis, are considered physiologically functional and fully differentiated but, after injury or in disease states, exhibit stem/progenitor-like activity. Recent identification of subsets of defined cell types as facultative stem/progenitor cells has led to a re-examination of how certain tissues respond to injury to mount a regenerative response. In this review, we focus on lung regeneration to explore the importance of facultative regeneration controlled by functional and differentiated cell lineages as well as how they are positioned and regulated by distinct tissue niches. Additionally, we discuss the molecular signals to which cells respond in their differentiated state during homeostasis and those signals that promote effective regeneration of damaged or lost cells and structures after injury.


Assuntos
Pulmão/fisiologia , Regeneração , Animais , Diferenciação Celular , Linhagem da Célula , Homeostase , Humanos , Pulmão/citologia , Regeneração/genética , Transdução de Sinais , Células-Tronco/citologia
16.
Development ; 149(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35905011

RESUMO

Smooth muscle cells (SMCs) are a crucial component of the mesenchymal wall of the ureter, as they account for the efficient removal of the urine from the renal pelvis to the bladder by means of their contractile activity. Here, we show that the zinc-finger transcription factor gene Gata6 is expressed in mesenchymal precursors of ureteric SMCs under the control of BMP4 signaling. Mice with a conditional loss of Gata6 in these precursors exhibit a delayed onset and reduced level of SMC differentiation and peristaltic activity, as well as dilatation of the ureter and renal pelvis (hydroureternephrosis) at birth and at postnatal stages. Molecular profiling revealed a delayed and reduced expression of the myogenic driver gene Myocd, but the activation of signaling pathways and transcription factors previously implicated in activation of the visceral SMC program in the ureter was unchanged. Additional gain-of-function experiments suggest that GATA6 cooperates with FOXF1 in Myocd activation and SMC differentiation, possibly as pioneer and lineage-determining factors, respectively.


Assuntos
Ureter , Animais , Diferenciação Celular/genética , Camundongos , Desenvolvimento Muscular , Músculo Liso , Miócitos de Músculo Liso/fisiologia , Ureter/metabolismo
17.
Development ; 149(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36408946

RESUMO

Craniofacial development requires precise spatiotemporal regulation of multiple signaling pathways that crosstalk to coordinate the growth and patterning of the skull with surrounding tissues. Recent insights into these signaling pathways and previously uncharacterized progenitor cell populations have refined our understanding of skull patterning, bone mineralization and tissue homeostasis. Here, we touch upon classical studies and recent advances with an emphasis on developmental and signaling mechanisms that regulate the osteoblast lineage for the calvaria, which forms the roof of the skull. We highlight studies that illustrate the roles of osteoprogenitor cells and cranial suture-derived stem cells for proper calvarial growth and homeostasis. We also discuss genes and signaling pathways that control suture patency and highlight how perturbing the molecular regulation of these pathways leads to craniosynostosis. Finally, we discuss the recently discovered tissue and signaling interactions that integrate skull and cerebrovascular development, and the potential implications for both cerebrospinal fluid hydrodynamics and brain waste clearance in craniosynostosis.


Assuntos
Craniossinostoses , Crânio , Humanos , Crânio/metabolismo , Suturas Cranianas/metabolismo , Craniossinostoses/genética , Craniossinostoses/metabolismo , Homeostase , Transdução de Sinais
18.
Development ; 149(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35037942

RESUMO

Generating comprehensive image maps, while preserving spatial three-dimensional (3D) context, is essential in order to locate and assess quantitatively specific cellular features and cell-cell interactions during organ development. Despite recent advances in 3D imaging approaches, our current knowledge of the spatial organization of distinct cell types in the embryonic pancreatic tissue is still largely based on two-dimensional histological sections. Here, we present a light-sheet fluorescence microscopy approach to image the pancreas in three dimensions and map tissue interactions at key time points in the mouse embryo. We demonstrate the utility of the approach by providing volumetric data, 3D distribution of three main cellular components (epithelial, mesenchymal and endothelial cells) within the developing pancreas, and quantification of their relative cellular abundance within the tissue. Interestingly, our 3D images show that endocrine cells are constantly and increasingly in contact with endothelial cells forming small vessels, whereas the interactions with mesenchymal cells decrease over time. These findings suggest distinct cell-cell interaction requirements for early endocrine cell specification and late differentiation. Lastly, we combine our image data in an open-source online repository (referred to as the Pancreas Embryonic Cell Atlas).


Assuntos
Imageamento Tridimensional/métodos , Pâncreas/anatomia & histologia , Animais , Embrião de Mamíferos/anatomia & histologia , Desenvolvimento Embrionário , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Epitélio/anatomia & histologia , Proteína Homeobox Nkx-2.5/deficiência , Proteína Homeobox Nkx-2.5/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência
19.
Stem Cells ; 42(3): 230-250, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38183264

RESUMO

Chronic inflammation and dysregulated repair mechanisms after epithelial damage have been implicated in chronic obstructive pulmonary disease (COPD). However, the lack of ex vivo-models that accurately reflect multicellular lung tissue hinders our understanding of epithelial-mesenchymal interactions in COPD. Through a combination of transcriptomic and proteomic approaches applied to a sophisticated in vitro iPSC-alveolosphere with fibroblasts model, epithelial-mesenchymal crosstalk was explored in COPD and following SARS-CoV-2 infection. These experiments profiled dynamic changes at single-cell level of the SARS-CoV-2-infected alveolar niche that unveiled the complexity of aberrant inflammatory responses, mitochondrial dysfunction, and cell death in COPD, which provides deeper insights into the accentuated tissue damage/inflammation/remodeling observed in patients with SARS-CoV-2 infection. Importantly, this 3D system allowed for the evaluation of ACE2-neutralizing antibodies and confirmed the potency of this therapy to prevent SARS-CoV-2 infection in the alveolar niche. Thus, iPSC-alveolosphere cultured with fibroblasts provides a promising model to investigate disease-specific mechanisms and to develop novel therapeutics.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Doença Pulmonar Obstrutiva Crônica , Humanos , SARS-CoV-2 , Proteômica , Imunoterapia , Inflamação
20.
Proc Natl Acad Sci U S A ; 119(24): e2201707119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35671428

RESUMO

A number of inflammatory lung diseases, including chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and pneumonia, are modulated by WNT/ß-catenin signaling. However, the underlying molecular mechanisms remain unclear. Here, starting with a forward genetic screen in mouse, we identify the WNT coreceptor Related to receptor tyrosine kinase (RYK) acting in mesenchymal tissues as a cell survival and antiinflammatory modulator. Ryk mutant mice exhibit lung hypoplasia and inflammation as well as alveolar simplification due to defective secondary septation, and deletion of Ryk specifically in mesenchymal cells also leads to these phenotypes. By analyzing the transcriptome of wild-type and mutant lungs, we observed the up-regulation of proapoptotic and inflammatory genes whose expression can be repressed by WNT/RYK signaling in vitro. Moreover, mesenchymal Ryk deletion at postnatal and adult stages can also lead to lung inflammation, thus indicating a continued role for WNT/RYK signaling in homeostasis. Our results indicate that RYK signaling through ß-catenin and Nuclear Factor kappa B (NF-κB) is part of a safeguard mechanism against mesenchymal cell death, excessive inflammatory cytokine production, and inflammatory cell recruitment and accumulation. Notably, RYK expression is down-regulated in the stromal cells of pneumonitis patient lungs. Altogether, our data reveal that RYK signaling plays critical roles as an antiinflammatory modulator during lung development and homeostasis and provide an animal model to further investigate the etiology of, and therapeutic approaches to, inflammatory lung diseases.


Assuntos
Pneumonia , Receptores Proteína Tirosina Quinases , Via de Sinalização Wnt , beta Catenina , Animais , Humanos , Pulmão/enzimologia , Pulmão/crescimento & desenvolvimento , Mesoderma/metabolismo , Camundongos , NF-kappa B/metabolismo , Pneumonia/enzimologia , Pneumonia/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Células Estromais/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa