Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chem Biodivers ; : e202401210, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007531

RESUMO

Four novel Mesona chinensis Benth polysaccharides were isolated using aqueous alcohol precipitation. Their molecular weights were determined using high-performance gel permeation chromatography: MA1 (2.3 kDa), MA2 (80.5 kDa), MA3 (180.9 kDa), and MA4 (635.2 kDa), and their compositions were analyzed using GC-MS. The polysaccharides were mainly D-glucose, D-galactose, L-Rhamnose, D-arabinose, D-xylose, and D-mannose. The structural characteristics were further analyzed using infrared spectrophotometry and were identified as a type of pyrrhic sugar. An insulin-induced insulin resistance model of HepG2 cells and oleic acid-induced fat accumulation model of insulin were established to evaluate the hypolipidemic effects. Three Bacteroides spp. [Bacteroides thetaiotaomicron (BT), B. ovatus (BO), and B. cellulosilyticus (BC)] that were negatively correlated with lipid-lowering activity were used to evaluate the lipid-lowering activity of polysaccharides. The Bacteroides metabolites of MA1 and MA2 exhibited hypolipidemic effects and antioxidant activities and could potentially be used as lipid-lowering supplements.

2.
Funct Integr Genomics ; 22(4): 467-479, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35318559

RESUMO

Mesona chinensis Benth (MCB) is an important medicinal and edible plant in Southern China and Southeast Asian countries. Chloroplast (cp) genome is usually used for plant phylogeny, species identification, and chloroplast genetic engineering. To characterize the cp genome and determine the evolutionary position and perform the genetic diversity analysis of MCB, we sequence and characterize the MCB cp genome. The results show that the cp genome of MCB is a single circular molecule with a length of 152,635 bp. It is a typical quadripartite structure, comprising a large single-copy region (LSC, 83,514 bp) and a small single-copy region (SSC, 17,751 bp) separated by two inverted repeat regions (IRs, 51,370 bp). It encodes 129 unique genes, including 84 protein-coding genes (PCGs), 37 transfer RNAs (tRNAs), and 8 ribosomal RNAs (rRNAs). Altogether 127 simple sequence repeats (SSRs) are identified in the MCB cp genome with 86.61% of mononucleotide repeats. Phylogenetic analysis reveals that MCB is most closely related to Ocimum basilicum based on the whole cp genomes. Several highly divergent regions are found, such as trnH_psbA, rps16_trnQ, trnS_trnG, trnE_trnT, psaA_ycf3, rpl32_trnL, ccsA_ndhD, ndhG_ndhI, and rps15_ycf1, which can be proposed for use as DNA barcode regions. Genetic diversity analysis unveils a relatively narrow genetic basis of MCB germplasm resources. Therefore, the innovative breeding of MCB is very urgent and necessary in future research.


Assuntos
Genoma de Cloroplastos , Lamiaceae , Código de Barras de DNA Taxonômico , Lamiaceae/genética , Filogenia , Melhoramento Vegetal
3.
Molecules ; 27(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35684361

RESUMO

In this study, the antioxidant and hypolipidemic effects of Mesona Chinensis Benth (MCB) extracts were evaluated. Seven fractions (F0, F10, F20, F30, F40, F50 and MTF) were obtained from the MCB ethanol extracts. Compared to the commercial antioxidants (vitamin C), MTF and F30 exhibited higher antioxidant activities in the antiradical activity test and the FRAP assay. The half-inhibition concentration (IC50) for MTF and F30 were 5.323 µg/mL and 5.278 µg/mL, respectively. MTF at 200 µg/mL significantly decreased the accumulation of TG in oleic acid (OA)-induced HepG2 cells and reversed the inhibitory effect of Compound C on AMPK (MTF and F30 significantly increased the glucose utilization of insulin-induced HepG2 cells). In addition, the components of MTF were identified by HPLC-MS, which were caffeic acid, quercetin 3-O-galactoside, isoquercetin, astragalin, rosmarinic acid, aromadendrin-3-O-rutinoside, rosmarinic acid-3-O-glucoside and kaempferol-7-O-glucoside. Through statistical correlations by Simca P software, it was found that the main antioxidant and hypolipidemic components of MCB might be caffeic acid, kaempferol-7-O-glucoside, rosmarinic acid-3-O-glucoside and aromadendrin-3-O-rutinoside, which may play important roles in the AMPK pathway. MTF and F30 in MCB could be potential health products for the treatment of hyperlipidemia.


Assuntos
Antioxidantes , Lamiaceae , Proteínas Quinases Ativadas por AMP , Antioxidantes/farmacologia , Glucosídeos , Quempferóis , Extratos Vegetais/farmacologia
4.
Dev Genes Evol ; 231(1-2): 1-9, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33180191

RESUMO

Mesona chinensis Benth (MCB) is one of the main economic crops in tropical and subtropical areas. To understand the codon usage bias (CUB) in M. chinensis Benth, chloroplast genome is essential to study its genetic law, molecular phylogenetic relationships, and exogenous gene expression. Results showed that the GC content of 53 CDS sequences was 37.95%, and GC1, GC2, and GC3 content were 46.02%, 38.26%, and 29.85%, respectively. The general GC content order was GC1>GC2>GC3. Moreover, the majority of genes had an effective number of codon (ENC) value greater than 40, except ndhE, rps8, and rps18. Correlation analysis results revealed that the GC content was significantly correlated with GC1, GC2, GC3, and ENC. Neutrality plot analysis, ENC-plot analysis, and PR2-plot analysis presented that the CUB of M. chinensis Benth chloroplast genome was mainly affected by mutation and selection. In addition, GGG, GCA, and TCC were found to be the optimal codons. Furthermore, results of cluster analysis and evolutionary tree showed that M. chinensis Benth was closely related to Ocimum basilicum, indicating that there was a certain correlation between the CUB of the chloroplast gene and the genetic relationship of plant species. Overall, the study on the CUB of chloroplast genome laid a basis for genetic modification and phylogenetic research of M. chinensis Benth chloroplast genome.


Assuntos
Uso do Códon , Evolução Molecular , Genoma de Cloroplastos , Lamiaceae/genética , Composição de Bases , Lamiaceae/classificação , Filogenia , Seleção Genética
5.
J Ethnopharmacol ; 326: 117979, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38412892

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Mesona chinensis Benth. (or Platostoma palustre (Blume) A. J. Paton) is an important medicinal and edible plant also known as the Hsian-tsao in China and Southeast Asian countries. It is cold in nature and sweet in taste, with the effects of clearing heat, relieving heatstroke and diuretic, and traditionally used to treat heatstroke, erysipelas, hypertension, joint pain and other diseases in folk medicine. It is also a popular supplement with the function of detoxifying and heat-clearing use in Asia. It is used to be processed into the popular tea, Bean jelly, and so on. Published studies have demonstrated that polysaccharides from M. chinensis (MCPs) are one of the principal bioactive ingredients with a variety of health-promoting effects in the prevention and treatment of diseases, including antioxidant, immunomodulation, anti-inflammatory, hepatoprotective, anti-tumor, hypoglycemic, regulation of gut microbiota, and other pharmacological properties. AIM OF THE REVIEW: This review aims to compile the extraction and purification methods, structural characteristics, pharmacological activities including the mechanism of action of MCPs, and to further understand the applications of M. chinensis in order to lay the foundation for the development of MCPs. MATERIALS AND METHODS: By inputting the search term "Mesona chinensis polysaccharides", relevant research information was obtained from databases such as PubMed, Google Scholar, Web of Science, and China National Knowledge Infrastructure (CNKI). RESULTS: More than 40 polysaccharides have been extracted from M. chinensis, different extraction and purification methods have been described, as well as the structural features and pharmacological activities of MCPs have been systematically reviewed. Polysaccharides, as important components of M. chinensis, were mainly extracted by methods such as hot water dipping method, hot alkali extraction method, enzyme-assisted extraction method and ultrasonic-assisted extraction method, subsequently obtained by decolorization, deproteinization, removal of other small molecules and separation on various chromatographic columns. The chemical composition and structure of MCPs show diversity and have a variety of pharmacological activities, including antioxidant, immunomodulation, anti-inflammatory, hepatoprotective, anti-tumor, hypoglycemic, regulation of gut microbiota, and so on. CONCLUSIONS: This article systematically reviews the research progress of MCPs in terms of extraction and purification, structural characteristics, rheological gel properties, pharmacological properties, and safety assessment. The potentials and roles of M. chinensis in the field of medicine, functional food, and materials are further highlighted to provide references and bases for the high-value processing and utilization of MCPs.


Assuntos
Lamiaceae , Polissacarídeos , Animais , Humanos , Lamiaceae/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Polissacarídeos/química
6.
J Food Sci ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150703

RESUMO

Mesona chinensis Benth (MCB) is the source of the most commonly consumed herbal beverage in Southeast Asia and China and is thus an economically important agricultural plant. Therefore, optimal extraction and production procedures have significant commercial value. Currently, in terms of green chemistry, researchers are investigating the use of greener solvents and innovative extraction techniques to increase extract yields. This study represents the first investigation of the optimal conditions for ultrasound-assisted deep eutectic solvent (DES) extraction from MCB. The major factors influencing ultrasound-assisted DESs were optimized using the response surface methodcentral-genetic algorithm-back propagation neural networks. This model demonstrated superior predictability and accuracy compared to the RSM model. Various types of DESs were used for the extraction of MCB constituents, with choline chloride-ethylene glycol resulting in the highest yield. The optimal conditions for maximal extraction were the use of choline chloride-ethylene glycol (1:4) as the solvent with a 40% water content, an extraction duration of 60 min at 60°C, and maintaining a leaf-to-solvent ratio of 20 mL/g. Noticeable enhancements in Van der Waals forces and more robust interactions between DESs and the target chemicals were observed relative to those seen with ethanol (70%, v/v) or water. This investigation not only introduced an environmentally friendly approach for highly efficient extraction from MCB but also identified the mechanisms underlying the improved extraction efficacy. These findings have the potential to contribute to the broader utilization of MCB and provide valuable insights into the extraction mechanisms utilizing deep eutectic solvents. PRACTICAL APPLICATION: This work describes an efficient and green ultrasound-assisted deep eutectic solvent (DES) method for Mesona chinensis Benth (MCB) extraction. Molecular dynamics was used to examine the intermolecular interactions between the solvent and the extracted compounds. It is anticipated that green and environmentally friendly solvents, such as DESs, will be used in further research on foods and their bioactive components. With the development of the herbal tea industry, new products made of MCB are becoming increasingly popular, thus gradually making it a research hotspot.

7.
Food Chem ; 407: 135149, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493475

RESUMO

The effects of enzyme hydrolysis treatment, Aspergillus niger fermentation treatment, Trichoderma reesei fermentation treatment, Aspergillus niger-enzyme hydrolysis treatment and Trichoderma reesei-enzyme hydrolysis treatment on structural properties and adsorption capacities of soluble dietary fiber from Mesona chinensis Benth residues were evaluated and compared. The Aspergillus niger-enzyme hydrolysis treatment sample possessed more diverse structure, lower crystallinity and thermal stability than other modified samples. Meanwhile, it also observed the highest soluble dietary fiber yield (20.76 ± 0.31 %), water-holding capacity and glucose adsorption capacity (38.03 ± 0.28 mg/g). The Aspergillus niger fermentation treatment sample generated a high oil-holding capacity, nitrite ion adsorption capacity (181.84 ± 6.67 ug/g), cholesterol adsorption capacity (16.40 ± 0.37 mg/g) and sodium cholate adsorption capacity (94.80 ± 1.41 mg/g). Additionally, different monosaccharide composition was exhibited due to diverse extraction methods. Our finding revealed that these two modification methods could effectively enhance the economic value of Mesona chinensis Benth residues.


Assuntos
Celulase , Trichoderma , Aspergillus niger , Celulase/química , Adsorção , Fibras na Dieta , Hidrólise
8.
Curr Res Food Sci ; 5: 392-400, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35243352

RESUMO

Mesona chinensis Benth has been consumed as a functional food for many years. It is widely believed that storage times affect its health benefits. In this study, Mesona chinensis Benth polysaccharides with two different storage times (fresh and storage for 1 year) were prepared, namely, FMP and AMP. The physicochemical properties and bioactivity were comparatively assessed. Results indicated that FMP was mainly composed of galacturonic acid, galactose, and glucose with a molecular weight of 44.39 kDa. AMP was composed of galacturonic acid, galactose, and fructose with a molecular weight of 64.34 kDa. However, the principal structural characteristics of polysaccharides remained stable. Furthermore, assays of antioxidant activity showed that Mesona chinensis Benth polysaccharide had an antioxidant effect against DPPH radical, ABTS radical cation, among which FMP was stronger. Additionally, flow cytometry indicated that the apoptosis rate of FMP and AMP on HepG2 tumor cells was 22.50 ± 1.25% and 15.49 ± 1.30%, respectively. In general, antioxidant and antitumor activities of Mesona chinensis Benth polysaccharides were decreased as the storage for 1 year. The change of physicochemical properties was responsible for the enhanced bioactivities. These results explained how polysaccharides contributed to the decreased health benefits of Mesona chinensis Benth during storage.

9.
Curr Res Food Sci ; 5: 2287-2293, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439644

RESUMO

The effect of Mesona chinensis Benth gum (MCG) on pasting, rheological and texture properties of different types of starches (tubers, cereals, and beans) were investigated. Pasting results showed that the pasting temperatures (PT) of native cereal and beans starch were higher, and MCG decreased the PT of starch granules by competing water with starch granules for water. MCG increased the peak viscosity and breakdown viscosity of native starches except potato starch, and effectively promoted the short-term retrogradation of all kinds of starches. Rheological results also revealed MCG increased apparent viscosity and dynamic modulus of native starch gels, given that the compacter network structures could be formed after adding MCG. The compacter network structures also contribute to the enhancement of gel strength and hardness, and the decreased spin relaxation time of starch gels. The information provided in this paper could help people to understand the different effects of MCG on the various starch, which had certain significance for starch-MCG product development.

10.
Front Genet ; 13: 1056389, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36712846

RESUMO

Mesona chinensis Benth (MCB) (or Platostoma palustre or Platostoma chinense) is an important edible and medicinal plant in China. However, the mitochondrial genome (mitogenome, or mtDNA) of MCB has not been characterized or reported yet. In this study, we first sequenced and characterized the complete mitogenome of MCB. The MCB mitogenome was 494,599 bp in length and encoded 59 genes containing 37 protein-coding genes (PCGs), 19 tRNAs, and 3 rRNAs. Gene transfer analysis revealed that a total of 12 transfer segments with more than 93% identity (total length of 25,427 bp) were detected in the MCB mitogenome. Simple sequence repeats (SSR) analysis showed that 212 simple sequence repeats (SSR) were identified. Repeat sequence analysis revealed 305 repeat sequences (158 forward and 147 palindromic repeats) ranging from 30 bp to 48,383 bp and the 30-39 bp repeats were the majority type. Relative synonymous codon usage (RSCU) analysis uncovered that in total, 9,947 codons were encoding the protein-coding genes (PCGs). Serine (909, 9.1%) and leucine (879, 8.8%) were the two most abundant amino acids, while terminator (32, .3%) was the least abundant amino acid. Ka/Ks analysis indicated that almost all genes were subject to purification selection, except ccmB. Analysis of Lamiaceae mitogenomes constitution revealed that atpB and atpE were unique to the Rotheca serrata and Salvia miltiorrhiza mitogenomes. mttB gene loss was unique to the Boea hygrometrica mitogenome. The core fragments of the Lamiaceae mitogenomes harbored a higher GC content than the specific and variable fragments. In addition, phylogenetic analysis revealed that MCB was closely related to Salvia miltiorrhiza based on the mitogenomes. The current study provided valuable genomic resources for understanding and utilizing this important medicinal plant in the future.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa