Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mater Sci Mater Med ; 34(11): 53, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37855952

RESUMO

In the present study, we investigated commercial dental floss coated with chitosan or chitosan + mesoporous bioactive glass nanoparticles (MBGNs) in order to determine the antimicrobial and mechanical properties of the newly fabricated flosses. Whereas these coatings showed notable ability to inhibit growth of both Gram (+) and Gram (-) bacteria after 24 h, the impact was negligible at 3 h. Furthermore, the tensile strength of the floss was improved by the addition of these layers, making it more durable and effective for cleaning between teeth. We therefore propose enhanced investigations of these composites since they demonstrate enormous potential in promoting oral health.


Assuntos
Quitosana , Nanopartículas , Dispositivos para o Cuidado Bucal Domiciliar , Antibacterianos/farmacologia , Vidro
2.
Dent Mater ; 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39183074

RESUMO

OBJECTIVE: Calcium silicate cements (CSCs) are often used in endodontics despite some limitations related to their physical properties and antibacterial efficacy. This study aimed to develop and demonstrate the viability of a series of CSCs that were produced by sol-gel method and further modified with mesoporous bioactive glass nanoparticles (MBGNs) and collagen, for endodontic therapy. METHODS: Calcium silicate (CS) particles and MBGNs were synthesized by the sol-gel method, and their elemental, molecular, and physical microstructure was characterized. Three CSCs were developed by mixing the CS with distilled water (CS+H2O), 10 mg/mL collagen solution (CS+colH2O), and MBGNs (10 %) (CSmbgn+colH2O). The mixing (MT) and setting (ST) times of the CSCs were determined, while the setting reaction was monitored in real-time. Antibacterial efficacy against Enterococcus faecalis (E. faecalis) and regenerative potential on dental pulp stem cells (DPSCs) were also analyzed. RESULTS: The CS+H2O displayed a ST comparable to commercial products, while CSmbgn+colH2O achieved the longest MT of 68 s and the shortest ST of 8 min. All the experimental CSCs inhibited the growth of E. faecalis. Additionally, compared to the control group, CSCs supported cell proliferation and spreading and mineralized matrix production, regardless of their composition. SIGNIFICANCE: Tested CSCs presented potential as candidates for pulp therapy procedures. Future research should investigate the pulp regeneration mechanisms alongside rigorous antibacterial evaluations, preferably with multi-organism biofilms, executed over extended periods.

3.
Heliyon ; 9(11): e21636, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027746

RESUMO

Globally, there is an increase in a number of bone disorders including osteoarthritis (OA), osteomyelitis, bone cancer, and etc., which has led to a demand for bone tissue regeneration. In order to take use of the osteogenic potential of natural herbs, mesoporous bioactive glass nanoparticles (MBGNs) have the ability to deliver therapeutically active chemicals locally. MBGNs influence bioactivity and osteointegration of materials making them suitable for bone tissue engineering (BTE). In the present study, we developed Peganum Harmala (P. harmala) loaded MBGNs (PH-MBGNs) synthesized via modified Stöber process. The MBGNs were analyzed in terms of surface morphology, chemical make-up, amorphous nature, chemical interaction, pore size, and surface area before and after loading with P. harmala. A burst release of drug from PH-MBGNs was observed within 8 h immersion in phosphate buffer saline (PBS). PH-MBGNs effectively prevented Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) from spreading. Furthermore, PH-MBGNs developed a hydroxyapatite (HA) layer in the presence of simulated body fluid (SBF) after 21 days, which confirmed the in-vitro bioactivity of MBGNs. In conclusion, PH-MBGNs synthesized in this work are potential candidate for scaffolding or a constituent in the coatings for BTE applications.

4.
Biomater Adv ; 144: 213198, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36424276

RESUMO

Successful treatment of infected bone defects caused by multi-drug resistant bacteria (MDR) has become a major clinical challenge, stressing the urgent need for effective antibacterial bone graft substitutes. Mesoporous bioactive glass nanoparticles (MBGNs), a rapidly emerging class of nanoscale biomaterials, offer specific advantages for the development of biomaterials to treat bone infection due to endowed antibacterial features. Herein, we propose a facile post-modification sol-gel strategy to synthesize effective antibacterial MBGNs doped with copper ions (Cu-PMMBGNs). In this strategy, amine functional groups as chelating agents were introduced to premade mesoporous silica nanoparticles (MSNs) which further facilitate the incorporation of high content of calcium (∼17 mol%) and copper ions (∼8 mol%) without compromising nanoparticle shape, mesoporosity, and homogeneity. The resulting nanoparticles were degradable and showed rapidly induce abundant deposition of apatite crystals on their surface upon soaking in simulated body fluids (SBF) after 3 days. Cu-PMMBGNs exhibited a dose-dependent inhibitory effect on Methicillin-resistant Staphylococcus aureus (MRSA) bacteria, which are common pathogens causing severe bone infections. Most importantly, the nanoparticles containing 5 mol% copper ions at concentrations of 500 and 1000 µg.mL-1 showed highly effective antibacterial performance as reflected by a 99.9 % reduction of bacterial viability. Nanoparticles at a concentration of 500 µg.mL-1 showed no significant cytotoxicity toward preosteoblast cells (∼85-89 % cell viability) compared to the control group. In addition, the nanoscale properties of synthesized Cu-PMMBGNs (∼100 nm in size) facilitated their internalization into preosteoblast cells, which highlights their potential as intracellular carriers in combating intracellular bacteria. Therefore, these copper-doped nanoparticles hold strong promise for use as an antibacterial component in antibacterial bone substitutes such as hydrogels, nanocomposites, and coatings.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Cobre/farmacologia , Materiais Biocompatíveis , Antibacterianos/farmacologia , Íons
5.
Front Bioeng Biotechnol ; 11: 1288393, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239917

RESUMO

Healing of severe fractures and bone defects involves many complex biological processes, including angiogenesis and osteogenesis, presenting significant clinical challenges. Biomaterials used for bone tissue engineering often possess multiple functions to meet these challenges, including proangiogenic, proosteogenic, and antibacterial properties. We fabricated lithium and cobalt co-doped mesoporous bioactive glass nanoparticles (Li-Co-MBGNs) using a modified sol-gel method. Physicochemical analysis revealed that the nanoparticles had high specific surface areas (>600 m2/g) and a mesoporous structure suitable for hydroxyapatite (HA) formation and sustained release of therapeutic ions. In vitro experiments with Li-Co-MBGNs showed that these promoted angiogenic properties in HUVECs and pro-osteogenesis abilities in BMSCs by releasing Co2+ and Li+ ions. We observed their antibacterial activity against Staphylococcus aureus and Escherichia coli, indicating their potential applications in bone tissue engineering. Overall, our findings indicate the feasibility of its application in bone tissue engineering.

6.
Materials (Basel) ; 16(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37895672

RESUMO

Multifunctional substitutes for bone tissue engineering have gained significant interest in recent years in the aim to address the clinical challenge of treating large bone defects resulting from surgical procedures. Sol-gel mesoporous bioactive glass nanoparticles (MBGNs) have emerged as a promising solution due to their high reactivity and versatility. The effect of calcium content on MBGNs textural properties is well known. However, the relationship between their composition, textural properties, and reactivity has not yet been thoroughly discussed in existing studies, leading to divergent conclusions. In this study, pristine and copper-doped binary MGBNs were synthesized by a modified Stöber method, using a cationic surfactant as pore-templating agent. An opposite evolution between calcium content (12-26 wt%) and specific surface area (909-208 m2/g) was evidenced, while copper introduction (8.8 wt%) did not strongly affect the textural properties. In vitro bioactivity assessments conducted in simulated body fluid (SBF) revealed that the kinetics of hydroxyapatite (HAp) crystallization are mainly influenced by the specific surface area, while the composition primarily controls the quantity of calcium phosphate produced. The MBGNs exhibited a good bioactivity within 3 h, while Cu-MBGNs showed HAp crystallization after 48 h, along with a controlled copper release (up to 84 ppm at a concentration of 1 mg/mL). This comprehensive understanding of the interplay between composition, textural properties, and bioactivity, offers insights for the design of tailored MBGNs for bone tissue regeneration with additional biological and antibacterial effects.

7.
Bioact Mater ; 25: 239-255, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36817824

RESUMO

Type II diabetes mellitus (TIIDM) remains a challenging clinical issue for both dentists and orthopedists. By virtue of persistent hyperglycemia and altered host metabolism, the pathologic diabetic micromilieu with chronic inflammation, advanced glycation end products accumulation, and attenuated biomineralization severely impairs bone regeneration efficiency. Aiming to "remodel" the pathologic diabetic micromilieu, we 3D-printed bioscaffolds composed of Sr-containing mesoporous bioactive glass nanoparticles (Sr-MBGNs) and gelatin methacrylate (GelMA). Sr-MBGNs act as a biomineralization precursor embedded in the GelMA-simulated extracellular matrix and release Sr, Ca, and Si ions enhancing osteogenic, angiogenic, and immunomodulatory properties. In addition to angiogenic and anti-inflammatory outcomes, this innovative design reveals that the nanocomposites can modulate extracellular matrix reconstruction and simulate biomineralization by activating lysyl oxidase to form healthy enzymatic crosslinked collagen, promoting cell focal adhesion, modulating osteoblast differentiation, and boosting the release of OCN, the noncollagenous proteins (intrafibrillar mineralization dependent), and thus orchestrating osteogenesis through the Kindlin-2/PTH1R/OCN axis. This 3D-printed bioscaffold provides a multifunctional biomineralization-inspired system that remodels the "barren" diabetic microenvironment and sheds light on the new bone regeneration approaches for TIIDM.

8.
J Funct Biomater ; 13(3)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35893465

RESUMO

In recent years, natural polymers have replaced synthetic polymers for antibacterial orthopedic applications owing to their excellent biocompatibility and biodegradability. Zein is a biopolymer found in corn. The lacking mechanical stability of zein is overcome by incorporating bioceramics, e.g., mesoporous bioactive glass nanoparticles (MBGNs). In the present study, pure zein and zein/Zn-Mn MBGN composite coatings were deposited via electrophoretic deposition (EPD) on 316L stainless steel (SS). Zn and Mn were co-doped in MBGNs in order to make use of their antibacterial and osteogenic potential, respectively. A Taguchi design of experiment (DoE) study was established to evaluate the effect of various working parameters on the morphology of the coatings. It was observed that coatings deposited at 20 V for 5 min with 4 g/L concentration (conc.) of Zn-Mn MBGNs showed the highest deposition yield. Uniform coatings with highly dispersed MBGNs were obtained adopting these optimized parameters. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were employed to investigate the morphology and elemental composition of zein/Zn-Mn MBGN composite coatings. Surface properties, i.e., coating roughness and wettability analysis, concluded that composite coatings were appropriate for cell attachment and proliferation. For adhesion strength, various techniques, including a tape test, bend test, pencil hardness test, and tensile test, were performed. Wear and corrosion analysis highlighted the mechanical and chemical stability of the coatings. The colony forming unit (CFU) test showed that the zein/Zn-Mn MBGN composite coating was highly effective against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) due to the presence of Zn. The formation of a hydroxyapatite (HA)-like structure upon immersion in the simulated body fluid (SBF) validated the in vitro bioactivity of the coating. Moreover, a WST-8 assay depicted that the MG-63 cells proliferate on the composite coating. It was concluded that the zein/Zn-Mn MBGN coating synthesized in this work can be used for bioactive and antibacterial orthopedic applications.

9.
ACS Appl Mater Interfaces ; 14(49): 54488-54499, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36461925

RESUMO

Bioadhesives are widely used in a variety of medical settings due to their ease of use and efficient wound closure and repair. However, achieving both strong adhesion and removability/reusability is highly needed but challenging. Here, we reported an injectable mesoporous bioactive glass nanoparticle (MBGN)-incorporated biopolymer hydrogel bioadhesive that demonstrates a strong adhesion strength (up to 107.55 kPa) at physiological temperatures that is also removable and reusable. The incorporation of MBGNs in the biopolymer hydrogel significantly enhances the tissue adhesive strength due to an increased cohesive and adhesive property compared to the hydrogel adhesive alone. The detachment of bioadhesive results from temperature-induced weakening of interfacial adhesive strength. Moreover, the bioadhesive displays injectability, self-healing, and excellent biocompatibility. We demonstrate potential applications of the bioadhesive in vitro, ex vivo, and in vivo for hemostasis and intestinal leakage closure and accelerated skin wound healing compared to surgical wound closures. This work provides a novel design of strong and removable bioadhesives.


Assuntos
Adesivos , Adesivos Teciduais , Adesivos/farmacologia , Nanogéis , Hidrogéis/farmacologia , Adesivos Teciduais/farmacologia , Biopolímeros/farmacologia
10.
Colloids Surf B Biointerfaces ; 217: 112650, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35763895

RESUMO

Calcium phosphate cement (CPC) is a self-setting, biocompatible and osteoconductive bone cement, however its use as a bone substitute is still limited owing to its low bioactivity (i.e. its slow in vivo resorption and slow new bone formation rate) which is a challenging issue to be addressed. Herein, we report for the first time highly bioactive bone cement microspheres formulated from a cement paste containing α-tricalcium phosphate microparticles (α-TCP) and mesoporous calcium silicate bioactive glass nanoparticles (mesoporous BGn) using a water-in-oil emulsion method. Indeed, bioactive microspheres possess high potential as bone defect fillers for bone regeneration. The α-TCP microparticles were prepared by a solid state synthesis at 1400 ºC while mesoporous BGn were synthesized by template-assissted ultrasound-mediated sol-gel method. The particle size distribution of as-prepared cement microspheres was in the range of 200 - 450 µm with a sphericity index in the range of 0.92 - 0.94. The surface morphology of α-TCP microspheres revealed α-TCP micoparticles with smooth surfaces whereas α-TCP/BGn microspheres unveiled nano-roughened α-TCP microparticles. The as-prepared α-TCP/BGn cement microspheres exhibited larger specific surface area ca 18.6 m2/g, sustained release of soluble silicate (SiO44-) ions (118 ppm within a week) and high protein adsorption capacity (252 mg/g). Notably, the α-TCP/BGn cement microspheres showed excellent in vitro surface bioactivity via formation of massive amounts of bone-like hydroxyapatite spherules and aggregates on their surfaces after soaking in simulated body fluid. Importantly, the in vivo implantation of as-prepared α-TCP/BGn cement microspheres in rat calvarial critical size bone defects for 6 weeks unveiled high in vivo bioactivity in terms of substantial new bone ingrowth and significant new bone formation within the bone defect as evidenced by histological analyses, X-ray radiography and micro-computed tomography evaluations.


Assuntos
Cimentos Ósseos , Nanopartículas , Animais , Materiais Biocompatíveis/química , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Regeneração Óssea , Fosfatos de Cálcio/química , Microesferas , Nanopartículas/química , Ratos , Microtomografia por Raio-X
11.
Gels ; 7(2)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805013

RESUMO

Biomedical implants are the need of this era due to the increase in number of accidents and follow-up surgeries. Different types of bone diseases such as osteoarthritis, osteomalacia, bone cancer, etc., are increasing globally. Mesoporous bioactive glass nanoparticles (MBGNs) are used in biomedical devices due to their osteointegration and bioactive properties. In this study, silver (Ag)- and strontium (Sr)-doped mesoporous bioactive glass nanoparticles (Ag-Sr MBGNs) were prepared by a modified Stöber process. In this method, Ag+ and Sr2+ were co-substituted in pure MBGNs to harvest the antibacterial properties of Ag ions, as well as pro-osteogenic potential of Sr2 ions. The effect of the two-ion concentration on morphology, surface charge, composition, antibacterial ability, and in-vitro bioactivity was studied. Scanning electron microscopy (SEM), X-Ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) confirmed the doping of Sr and Ag in MBGNs. SEM and EDX analysis confirmed the spherical morphology and typical composition of MBGNs, respectively. The Ag-Sr MBGNs showed a strong antibacterial effect against Staphylococcus carnosus and Escherichia coli bacteria determined via turbidity and disc diffusion method. Moreover, the synthesized Ag-Sr MBGNs develop apatite-like crystals upon immersion in simulated body fluid (SBF), which suggested that the addition of Sr improved in vitro bioactivity. The Ag-Sr MBGNs synthesized in this study can be used for the preparation of scaffolds or as a filler material in the composite coatings for bone tissue engineering.

12.
Materials (Basel) ; 14(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918612

RESUMO

Mesoporous bioactive glass nanoparticles (MBGNs) have gained relevance in bone tissue engineering, especially since they can be used as vectors for therapeutically active ions like zinc (Zn) or copper (Cu). In this study, the osteogenic properties of the ionic dissolution products (IDPs) of undoped MBGNs (composition in mol%: 70 SiO2, 30 CaO) and MBGNs doped with 5 mol% of either Zn (5Zn-MBGNs) or Cu (5Cu-MBGNs; compositions in mol%: 70 SiO2, 25 CaO, 5 ZnO/CuO) on human bone marrow-derived mesenchymal stromal cells were evaluated. Extracellular matrix (ECM) formation and calcification were assessed, as well as the IDPs' influence on viability, cellular osteogenic differentiation and the expression of genes encoding for relevant members of the ECM. The IDPs of undoped MBGNs and 5Zn-MBGNs had a comparable influence on cell viability, while it was enhanced by IDPs of 5Cu-MBGNs compared to the other MBGNs. IDPs of 5Cu-MBGNs had slightly positive effects on ECM formation and calcification. 5Zn-MBGNs provided the most favorable pro-osteogenic properties since they increased not only cellular osteogenic differentiation and ECM-related gene expression but also ECM formation and calcification significantly. Future studies should analyze other relevant properties of MBGNs, such as their impact on angiogenesis.

13.
Materials (Basel) ; 14(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202013

RESUMO

Self-adhesive resins (SARs) contain adhesives, which simplify the procedures of resin application, and primers, which provide sufficient bonding ability. In this study, mesoporous bioactive glass nanoparticles (MBN) were added to a SAR to easily improve the physical properties and remineralization ability. The experimental resins comprised 1%, 3%, and 5% MBN mixed in Ortho Connect Flow (GC Corp, Tokyo, Japan). As the MBN content in the SAR increased, the microhardness increased, and a statistically significant difference was observed between the cases of 1% and 5% MBN addition. Shear bond strength increased for 1% and 3% MBN samples and decreased for 5% MBN. The addition of MBN indicated a statistically significant antibacterial effect on both gram-negative and gram-positive bacteria. The anti-demineralization experiment showed that the remineralization length increased with the MBN content of the sample. Through the above results, we found that SAR containing MBN has antibacterial and remineralization effects. Thus, by adding MBN to the SAR, we investigated the possibility of orthodontic resin development, wherein the strength is enhanced and the drawbacks of the conventional SAR addressed.

14.
Mater Sci Eng C Mater Biol Appl ; 124: 112050, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33947544

RESUMO

In recent years, mesoporous bioactive glass nanoparticles (MBGNPs) have generated great attention in biomedical applications. In this study, cerium and gallium doped MBGNPs were prepared by microemulsion assisted sol-gel method in the binary SiO2-CaO system. MBGNPs with spheroidal and pineal shaped morphology were obtained. Nitrogen sorption analysis elucidated the mesoporous structure of synthesized nanoparticles with high specific surface area. X-ray diffraction analysis confirmed the amorphous nature of the nanoparticles. The chemical compositions of all samples were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES), which revealed that the contents of cerium and gallium could be tailored by adjusting the concentrations of the precursors used for the synthesis. All MBGNPs exhibited in vitro bioactivity when immersed in simulated body fluid, except the particles doped with higher amounts than 1 mol% of cerium. MBGNPs showed antibacterial activity against S. aureus and E. coli without exhibiting cytotoxicity towards MG-63 osteoblast-like cells. Mentioned features of the obtained Ce and Ga-doped MBGNPs make them useful for multifunctional applications such as drug delivery carriers or bioactive fillers for bone tissue engineering applications.


Assuntos
Cério , Gálio , Nanopartículas , Antibacterianos/farmacologia , Regeneração Óssea , Escherichia coli , Gálio/farmacologia , Vidro , Dióxido de Silício , Staphylococcus aureus
15.
J Biomed Mater Res A ; 109(8): 1457-1467, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33289275

RESUMO

Mesoporous bioactive glass nanoparticles (MBGNs) have demonstrated promising properties for the local delivery of therapeutically active ions with the aim to improve their osteogenic properties. Manganese (Mn), zinc (Zn), and copper (Cu) ions have already shown promising pro-osteogenic properties. Therefore, the concentration-dependent impact of MBGNs (composition in mol%: 70 SiO2 , 30 CaO) and MBGNs containing 5 mol% of either Mn, Zn, or Cu (composition in mol%: 70 SiO2 , 25 CaO, 5 MnO/ZnO/CuO) on the viability and osteogenic differentiation of human marrow-derived mesenchymal stromal cells (BMSCs) was assessed in this study. Mn-doped MBGNs (5Mn-MBGNs) showed a small "therapeutic window" with a dose-dependent negative impact on cell viability but increasing pro-osteogenic features alongside increasing Mn concentrations. Due to a constant release of Zn, 5Zn-MBGNs showed good cytocompatibility and upregulated the expression of genes encoding for relevant members of the osseous extracellular matrix during the later stages of cultivation. In contrast to all other groups, BMSC viability increased with increasing concentration of Cu-doped MBGNs (5Cu-MBGNs). Furthermore, 5Cu-MBGNs induced an increase in alkaline phosphatase activity. In conclusion, doping with Mn, Zn, or Cu can enhance the biological properties of MBGNs in different ways for their potential use in bone regeneration approaches.


Assuntos
Cobre/farmacologia , Manganês/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanopartículas/química , Osteogênese/efeitos dos fármacos , Zinco/farmacologia , Células Cultivadas , Cobre/administração & dosagem , Vidro/química , Humanos , Manganês/administração & dosagem , Células-Tronco Mesenquimais/citologia , Alicerces Teciduais/química , Zinco/administração & dosagem
16.
Biomed Mater ; 16(3)2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33260163

RESUMO

Cerium (Ce) is a promising candidate ion for application in bone tissue engineering (BTE) since it reduces the presence of reactive oxygen species. Ce-doped mesoporous bioactive glass nanoparticles (MBGNs) serving as vectors for the local application of Ce already demonstrated stimulating effects on the expression of pro-osteogenic genes in Saos-2 cells. So far, there is no evidence available about the effects of Ce-doped MBGNs on the viability, osteogenic differentiation and the formation of the osseous extracellular matrix (ECM) of primary human bone marrow-derived mesenchymal stromal cells (BMSCs). Therefore, in this study, the biocompatibility of the ionic dissolution products (IDPs) of MBGNs containing increasing concentrations of CeO2(0.05 MCe-MBGNs, composition in mol%: 86.6SiO2-12.1CaO-1.3CeO2; and 0.2 MCe-MBGNs, composition in mol%: 86.0SiO2-11.8CaO-2.2CeO2) and unmodified MBGNs (composition in mol%: 86SiO2-14CaO) was evaluated using human BMSCs. Eventually, the impact of the MBGNs' IDPs on the cellular osteogenic differentiation and their ability to build and mature a primitive osseous ECM was assessed. The Ce-doped MBGNs had a positive influence on the viability and stimulated the cellular osteogenic differentiation of human BMSCs evaluated by analyzing the activity of alkaline phosphate as a marker enzyme for osteoblasts in the present setting. Furthermore, the formation and calcification of a primitive osseous ECM was significantly stimulated in the presence of Ce-doped MBGNs in a positive concentration-dependent manner as demonstrated by an elevated presence of collagen and increased ECM calcification. The results of thisin-vitrostudy show that Ce-doped MBGNs are attractive candidates for further application in BTE.


Assuntos
Materiais Biocompatíveis , Cério , Células-Tronco Mesenquimais , Nanopartículas , Osteogênese/efeitos dos fármacos , Adulto , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Cério/química , Cério/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Vidro/química , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanopartículas/química , Nanopartículas/metabolismo , Engenharia Tecidual/métodos , Adulto Jovem
17.
J Biomed Mater Res A ; 108(9): 1806-1815, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32276292

RESUMO

Mesoporous bioactive glass nanoparticles (MBGNs) based on the SiO2 -P2 O5 -CaO system have demonstrated promising properties for the local delivery of therapeutically active ions with the aim to improve their osteogenic properties. Manganese (Mn) has been identified as a candidate ion for local application in bone tissue engineering applications. It remains unknown how SiO2 -P2 O5 -CaO-based MBGNs influence human bone marrow-derived mesenchymal stromal cells (BMSCs) in terms of viability, proliferation, and differentiation and how these features can be modified by the addition of Mn to the MBGNs' composition. Therefore, in this study, MBGNs (composition in mol%: 50 SiO2 , 40 CaO, 10 P2 O5 ) and its Mn-doped derivate 5Mn-MBGNs (composition in mol%: 50 SiO2 , 35 CaO, 10 P2 O5 , 5 MnO) were applied to a culture of BMSCs in two different concentrations. With increasing concentration, 5Mn-MBGNs supported osteogenic differentiation and enhanced the upregulation of genes encoding for extracellular matrix proteins but also negatively influenced cell viability and proliferation. When applied in lower concentrations, MBGNs showed not only viability- and growth-enhancing effects but also significant pro-osteogenic features-however, these positive properties deteriorated with increasing concentration. Two major conclusions can be drawn from this study: (a) supplementation with Mn enhances the osteogenic properties of MBGNs in a dose-dependent manner and (b) MBGNs constitute an attractive vector for therapeutically active ions since it exhibits an intrinsic pro-osteogenic potential that can be improved and/or modified by incorporation of therapeutically active ions. Future studies should focus on the evaluation of further candidate ions that are known to influence osteogenic differentiation positively.


Assuntos
Materiais Biocompatíveis/farmacologia , Cerâmica/farmacologia , Manganês/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Materiais Biocompatíveis/química , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cerâmica/química , Humanos , Manganês/química , Células-Tronco Mesenquimais/citologia , Nanopartículas/química
18.
Nanomaterials (Basel) ; 10(10)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003534

RESUMO

The purpose of this study was to assess the effects in the dentin bond strength of dental adhesives (DAs) and biological effects using zinc (Zn)-doped mesoporous bioactive glass nanoparticles (MBN-Zn). Synthesized MBN and MBN-Zn were characterized by scanning electron microscopy (SEM), X-ray diffraction and the Brunauer, Emmett and Teller (BET) method. The matrix metalloproteinases (MMP) inhibition effects of DA-MBN and DA-MBN-Zn were analyzed. The microtensile bond strength (MTBS) test was conducted before and after thermocycling to investigate the effects of MBN and MBN-Zn on the MTBS of DAs. The biological properties of DA-MBN and DA-MBN-Zn were analyzed with human dental pulp stem cells (hDPSCs). Compared with the DA, only the DA-1.0% MBN and DA-1.0% MBN-Zn exhibited a statistically significant decrease in MMP activity. The MTBS values after thermocycling were significantly increased in DA-1.0% MBN and DA-1.0% MBN-Zn compared with the DA (p < 0.05). It was confirmed via the MTT assay that there was no cytotoxicity for hDPSCs at 50% extract. In addition, significant increases in the alkaline phosphatase activity and Alizarin Red S staining were observed only in DA-1.0%MBN-Zn. These data suggest the 1.0% MBN and 1.0% MBN-Zn enhance the remineralization capability of DAs and stabilize the long-term MTBS of DAs by inhibiting MMPs.

19.
J Biomater Appl ; 29(6): 854-66, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25098335

RESUMO

The aim of the present study was to investigate the effects of a composite nanofibrous matrix made of biopolymer blend polycaprolactone-gelatin (BP) and mesoporous bioactive glass nanoparticles (BGNs) on the odontogenic differentiation of human dental pulp cells (HDPCs). BGN-BP nanomatrices, with BGN content of up to 20 wt%, were produced via electrospinning. The differentiation of the HDPCs was evaluated by using an ALP activity assay, calcified nodule formation, and mRNA expression for markers. Integrin and its underlying signal pathways were assessed via reverse transcriptase-polymerase chain reaction and Western blot analysis. Although cell growth and attachment on the BGN-BP nanomatrix was similar to that on BP, ALP activity, mineralized nodule formation, and mRNA, expressions involving ALP, osteocalcin, osteopontin, dentin sialophosphoprotein, and dentin matrix protein-1 were greater on BGN-BP. BGN-BP upregulated the key adhesion receptors (integrin components α1, α2, α5, and ß1) and activated integrin downstream pathways, such as phosphorylated-focal adhesion kinase (p-FAK), and p-paxillin. In addition, BGN-BP activated BMP receptors, BMP-2 mRNA, and p-Smad 1/5/8, and such activation was blocked by the BMP antagonist, noggin. Furthermore, BGN-BP induced phosphorylation of extracellular signal-regulated kinase, protein kinase 38, and c-Jun-N-terminal kinase mitogen-activated protein kinases and activated expression of the transcription factors Runx2 and Osterix in HDPCs. Collectively, the results indicated for the first time that a BGN-BP composite nanomatrix promoted odontogenic differentiation of HDPCs through the integrin, BMP, and mitogen-activated protein kinases signaling pathway. Moreover, the nanomatrix is considered to be promising scaffolds for the culture of HDPCs and dental tissue engineering.


Assuntos
Polpa Dentária/citologia , Polpa Dentária/fisiologia , Nanocompostos/química , Nanofibras/química , Odontogênese/fisiologia , Alicerces Teciduais , Adesão Celular/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Materiais Dentários/síntese química , Planejamento de Prótese Dentária , Análise de Falha de Equipamento , Humanos , Teste de Materiais , Nanocompostos/ultraestrutura , Nanofibras/ultraestrutura , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa