RESUMO
BACKGROUND: As a dual-function metabolite, succinate has emerged in cell function and plays a key signaling role in linking mitochondrial function to other cellular functions. Succinate accumulation in the cytoplasm is commonly associated with hypoxia in the microenvironment and immune cell activation. Extracellular succinate released into the microenvironment is considered an inflammatory alarm that can be sensed by its membrane receptor SUCNR1, which boosts proinflammatory responses and acts akin to classical hormones and cytokines. Succinate plays an important role in the development of inflammatory diseases. Whether succinate facilitates the progression of endometriosis (EMs), characterized by chronic inflammation and peritoneal adhesion, is worth exploring. OBJECTIVE: We mimicked the ectopic milieu in vitro and in vivo to evaluate the main source and potential role of succinate in endometriosis. We assessed the molecular and functional effects of succinate on macrophages and peritoneal mesothelial cells in peritoneal cavity. The effect of succinate/SUCNR1 signaling on ectopic endometrial stromal cells (ESCs) was further explored in this study. METHODS: In this study, we used targeted organic acid metabolomics analysis and in vitro assays to assess the potential accumulation of succinate in the peritoneal fluid of EMs patients. We examined its correlation with disease severity, Visual Analogue Scale, and the Endometriosis Fertility Index. Flow cytometry, enzyme linked immunosorbent assay, western blot assay, quantitative real-time PCR, and other molecular biology techniques were used to explore the potential mechanisms. RESULTS: By mimicking the ectopic milieu, we constructed an in vitro co-culture system and found that M1 polarized macrophages and that the peritoneal mesothelial cell line (HMrSV5) mainly released succinate into their microenvironment and activated the succinate receptor (SUCNR1) signal, which further polarized the macrophages and significantly enhanced the invasive survival of ESCs, and the adhesion to the peritoneum. We further investigated the pathological effects of extracellular succinate in vivo using a xenograft mouse models of endometriosis. CONCLUSIONS: Succinate-SUCNR1 signaling facilitates the creation of inflammatory cells and plays a vital role in EMs progression and peritoneal adhesion. Our work on the molecular mechanisms underlying succinate accumulation and function will help elucidate the phenotypic mysteries of pain and infertility in EMs. Video Abstract.
Assuntos
Endometriose , Ácido Succínico , Feminino , Humanos , Animais , Camundongos , Ácido Succínico/metabolismo , Endometriose/metabolismo , Técnicas de Cocultura , Succinatos , Células Estromais/metabolismoRESUMO
Small extracellular vesicles (sEV) contain various microRNAs (miRNAs) and play crucial roles in the tumor metastatic process. Although miR-29b levels in peritoneal exosomes were markedly reduced in patients with peritoneal metastases (PM), their role has not been fully clarified. In this study, we asked whether the replacement of miR-29b can affect the development of PM in a murine model. UE6E7T-12, human bone marrow-derived mesenchymal stem cells (BMSCs), were transfected with miR-29b-integrating recombinant lentiviral vector and sEV were isolated from culture supernatants using ultracentrifugation. The sEV contained markedly increased amounts of miR-29b compared with negative controls. Treatment with transforming growth factor-ß1 decreased the expression of E-cadherin and calretinin with increased expression of vimentin and fibronectin on human omental tissue-derived mesothelial cells (HPMCs). However, the effects were totally abrogated by adding miR-29b-rich sEV. The sEV inhibited proliferation and migration of HPMCs by 15% (p < 0.005, n = 6) and 70% (p < 0.005, n = 6), respectively, and inhibited adhesion of NUGC-4 and MKN45 to HPMCs by 90% (p < 0.0001, n = 5) and 77% (p < 0.0001, n = 5), respectively. MicroRNA-29b-rich murine sEV were similarly obtained using mouse BMSCs and examined for in vivo effects with a syngeneic murine model using YTN16P, a highly metastatic clone of gastric cancer cell. Intraperitoneal (IP) transfer of the sEV every 3 days markedly reduced the number of PM from YTN16P in the mesentery (p < 0.05, n = 6) and the omentum (p < 0.05, n = 6). Bone marrow mesenchymal stem cell-derived sEV are a useful carrier for IP administration of miR-29b, which can suppress the development of PM of gastric cancer.
Assuntos
Exossomos , Vesículas Extracelulares , MicroRNAs , Neoplasias Peritoneais , Neoplasias Gástricas , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/metabolismo , Neoplasias Gástricas/patologiaRESUMO
One of the most common causes of discontinued peritoneal dialysis is impaired peritoneal function. However, its molecular mechanisms remain unclear. Previously, by microarray analysis of mouse peritoneum, we showed that MMP (matrix metalloproteinase)-10 expression is significantly increased in mice with peritoneal fibrosis, but its function remains unknown. Chlorhexidine gluconate (CG) was intraperitoneally injected to wild-type and MMP-10 knockout mice to induce fibrosis to elucidate the role of MMP-10 on peritoneal injury. We also examined function of peritoneal macrophages and mesothelial cells obtained from wild-type and MMP-10 knockout mice, MMP-10-overexpressing macrophage-like RAW 264.7 cells and MeT-5A mesothelial cells, investigated MMP-10 expression on peritoneal biopsy specimens, and the association between serum proMMP-10 and peritoneal solute transfer rates determined by peritoneal equilibration test on patients. MMP-10 was expressed in cells positive for WT1, a mesothelial marker, and for MAC-2, a macrophage marker, in the thickened peritoneum of both mice and patients. Serum proMMP-10 levels were well correlated with peritoneal solute transfer rates. Peritoneal fibrosis, inflammation, and high peritoneal solute transfer rates induced by CG were all ameliorated by MMP-10 deletion, with reduction of CD31-positive vessels and VEGF-A-positive cells. Expression of inflammatory mediators and phosphorylation of NFκΒ subunit p65 at S536 were suppressed in both MMP-10 knockout macrophages and mesothelial cells in response to lipopolysaccharide stimulation. Overexpression of MMP-10 in RAW 264.7 and MeT-5A cells upregulated pro-inflammatory cytokines with phosphorylation of NFκΒ subunit p65. Thus, our results suggest that inflammatory responses induced by MMP-10 are mediated through the NFκΒ pathway, and that systemic deletion of MMP-10 ameliorates peritoneal inflammation and fibrosis caused by NFκΒ activation of peritoneal macrophages and mesothelial cells.
Assuntos
Metaloproteinase 10 da Matriz , Fibrose Peritoneal , Peritonite , Animais , Humanos , Camundongos , Inflamação/metabolismo , Metaloproteinase 10 da Matriz/genética , Metaloproteinase 10 da Matriz/metabolismo , Camundongos Knockout , Subunidade p50 de NF-kappa B/metabolismo , Fibrose Peritoneal/genética , Peritônio/patologia , Peritonite/etiologia , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND: Profibrotic properties of pleural mesothelial cells may play an important role in the fibrosis activity in idiopathic pulmonary fibrosis (IPF). The purpose of this study was to compare the expression of pleural mesothelial cell markers in IPF and cryptogenic organizing pneumonia (COP), with an assumption that increased expression implies increase in fibrosis. METHODS: Twenty IPF lung samples were stained by immunohistochemistry for the pleural mesothelial cell markers: leucine rich repeat neuronal 4 (LRRN4), uroplakin 3B, CC-chemokine ligand 18, and laminin-5. Nine COP lung samples were used as controls. A semi-quantitative analysis was performed to compare markers expression in IPF and COP. RESULTS: LRRN4 expression was found in epithelial lining cells along the honeycombing and fibroblastic foci in IPF, but not in the fibrotic interstitial lesion and airspace filling fibrous tufts in COP. We found a significant decrease in baseline forced vital capacity when LRRN4 expression was increased in honeycombing epithelial cells and fibroblastic foci. CONCLUSION: LRRN4 expression patterns in IPF are distinct from those in COP. Our findings suggest that mesothelial cell profibrotic property may be an important player in IPF pathogenesis and may be a clue in the irreversibility of fibrosis in IPF.
Assuntos
Pneumonia em Organização Criptogênica , Fibrose Pulmonar Idiopática , Pneumonia em Organização , Humanos , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Pneumonia em Organização Criptogênica/diagnóstico , Pneumonia em Organização Criptogênica/metabolismo , Pneumonia em Organização Criptogênica/patologia , FibroseRESUMO
Toll-like receptor (TLR) is essential for the immune response to Mycobacterium tuberculosis (MTB) infection. However, the mechanism whereby TLR mediates the MTB-induced pleural mesothelial hyperpermeability in tuberculous pleural effusion (TBPE) remains unclear. Pleural effusion size and pleural fluid levels of vascular endothelial growth factor (VEGF) and soluble TLR2 (sTLR2) in patients with TBPE (n = 36) or transudative pleural effusion (TPE, n = 16) were measured. The effects of MTB H37Ra (MTBRa) on pleural mesothelial permeability and the expression of VEGF and zonula occludens (ZO)-1 in human pleural mesothelial cells (PMCs) were assessed. Levels of VEGF and sTLR2 were significantly elevated in TBPE compared to TPE. Moreover, effusion VEGF levels correlated positively, while sTLR2 values correlated negatively, with pleural effusion size in TBPE. In human PMCs, MTBRa substantially activated JNK/AP-1 signaling and upregulated VEGF expression, whereas knockdown of TLR2 remarkably inhibited MTBRa-induced JNK phosphorylation and VEGF overexpression. Additionally, both MTBRa and VEGF markedly reduced ZO-1 expression and induced pleural mesothelial permeability, while TLR2 silencing or pretreatment with anti-VEGF antibody significantly attenuated the MTBRa-triggered effects. Collectively, TLR2 mediates VEGF overproduction and downregulates ZO-1 expression in human PMCs, leading to mesothelial hyperpermeability in TBPE. Targeting TLR2/VEGF pathway may confer a potential treatment strategy for TBPE.
Assuntos
Derrame Pleural , Tuberculose , Humanos , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 Toll-Like/genética , Fatores de Crescimento do Endotélio VascularRESUMO
Idiopathic pulmonary fibrosis (IPF) is defined as a specific form of chronic, progressive fibrosing interstitial pneumonia. It is unknown why fibrosis in IPF distributes in the peripheral or named sub-pleural area. Migration of pleural mesothelial cells (PMC) should contribute to sub-pleural fibrosis. Calpain is known to be involved in cell migration, but the role of calpain in PMC migration has not been investigated. In this study, we found that PMCs migrated into lung parenchyma in patients with IPF. Then using Wt1tm1(EGFP/Cre)Wtp /J knock-in mice, we observed PMC migration into lung parenchyma in bleomycin-induced pleural fibrosis models, and calpain inhibitor attenuated pulmonary fibrosis with prevention of PMC migration. In vitro studies revealed that bleomycin and transforming growth factor-ß1 increased calpain activity in PMCs, and activated calpain-mediated focal adhesion (FA) turnover as well as cell migration, cell proliferation, and collagen-I synthesis. Furthermore, we determined that calpain cleaved FA kinase in both C-terminal and N-terminal regions, which mediated FA turnover. Lastly, the data revealed that activated calpain was also involved in phosphorylation of cofilin-1, and p-cofilin-1 induced PMC migration. Taken together, this study provides evidence that calpain mediates PMC migration into lung parenchyma to promote sub-pleural fibrosis in IPF.
Assuntos
Fibrose Pulmonar Idiopática , Fatores de Despolimerização de Actina/metabolismo , Animais , Bleomicina/farmacologia , Calpaína/metabolismo , Movimento Celular , Fibrose , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/patologia , Camundongos , Fator de Crescimento Transformador beta1/metabolismoRESUMO
High glucose (HG)-induced epithelial-mesenchymal transition (EMT) and oxidative stress play an important role in peritoneal fibrosis, which could be regulated by the nuclear factor erythroid-2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. This study aimed to investigate whether empagliflozin could inhibit HG-induced EMT and oxidative stress via activating the Nrf2/HO-1 signaling pathway. We used HG-based peritoneal dialysis (PD) solution in rats and HG in human peritoneal mesothelial cells (HPMCs) to induce EMT in vivo and in vitro respectively. The peritoneal structure and function were evaluated by hematoxylin and eosin, Masson's trichrome staining, and the peritoneal equilibrium test. Oxidative stress was measured by assay kits. EMT was analyzed using immunohistochemistry and western blot. The PD rats showed decreased ultrafiltration capacity and increased levels of oxidative stress. Histopathological analysis revealed markedly peritoneal thickening, excessive collagen deposition, increased expression of α-SMA, Collagen-I, and Fibronectin, and decreased expression of Ecadherin. Empagliflozin significantly ameliorated the aforementioned changes. The protein expression levels of nuclear Nrf2 (N-Nrf2) and HO-1 increased in PD rats, which were further promoted by treatment with empagliflozin. In in vitro experiments, the EMT of HPMCs was induced with 60 mM glucose for 24 h and inhibited by empagliflozin. Empagliflozin suppressed oxidative stress and promoted the protein expression of N-Nrf2 and HO-1 in HGstimulated HPMCs, which was reversed by the Nrf2 inhibitor. In conclusion, empagliflozin exerted a protective effect against HG-induced EMT and suppressed oxidative stress in PMCs by activating the Nrf2/HO-1 signaling pathway.
Assuntos
Transição Epitelial-Mesenquimal , Heme Oxigenase-1 , Animais , Humanos , Ratos , Antioxidantes/farmacologia , Compostos Benzidrílicos , Soluções para Diálise/farmacologia , Glucose/metabolismo , Glucosídeos , Heme Oxigenase-1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de SinaisRESUMO
Plasminogen (Plg) activation to the serine protease plasmin (Pla) plays a key role in regulating wound healing and fibrotic responses, particularly when bound to cell surface receptors. Our previous work suggested that mesothelial cells bind Plg at the cell surface, though no Plg receptors were described for these cells. Since mesothelial cells contribute to injury responses, including cellular differentiation to a mesenchymal-like phenotype and extracellular matrix remodeling, we hypothesized that Plg binding would promote these responses. Here, we confirm that Plg binds to both pleural and peritoneal mesothelial cells via the lysine-binding domain present in Plg, and we demonstrate the presence of three Plg receptors on the mesothelial cell surface: α-Enolase, Annexin A2, and Plg-RKT. We further show that bound-Plg is activated to Pla on the cell surface and that activation is blocked by an inhibitor of urokinase plasminogen activator or by the presence of animal-derived FBS. Lastly, we demonstrate that Plg promotes mesothelial cell invasion through a type I collagen matrix but does not promote cellular differentiation or proliferation. These data demonstrate for the first time that mesothelial cells bind and activate Plg at the cell surface and that active Pla is involved in mesothelial cell invasion without cell differentiation.
Assuntos
Fibrinolisina , Plasminogênio , Animais , Colágeno , Fibrinolisina/metabolismo , Plasminogênio/metabolismo , Receptores de Superfície Celular/metabolismo , Ativador de Plasminogênio Tipo UroquinaseRESUMO
Mesothelial cells (MCs) play a classic role in maintaining homeostasis in pleural, peritoneal, and pericardial cavities. MCs work as lubricants to reduce friction between organs, as regulators of fluid transport, and as regulators of defense mechanisms in inflammation. MCs can differentiate into various cells, exhibiting epithelial and mesenchymal characteristics. MCs have a high potential for differentiation during the embryonic period when tissue development is active, and this potential decreases through adulthood. The expression of the Wilms' tumor suppressor gene (Wt1), one of the MC markers, decreased uniformly and significantly from the embryonic period to adulthood, suggesting that it plays a major role in the differentiation potential of MCs. Wt1 deletion from the embryonic period results in embryonic lethality in mice, and even Wt1 knockout in adulthood leads to death with rapid organ atrophy. These findings suggest that MCs expressing Wt1 have high differentiation potential and contribute to the formation and maintenance of various tissues from the embryonic period to adulthood. Because of these properties, MCs dynamically transform their characteristics in the tumor microenvironment as cancer-associated MCs. This review focuses on the relationship between the differentiation potential of MCs and Wt1, including recent reports using lineage tracing using the Cre-loxP system.
Assuntos
Lubrificantes , Pleura , Adulto , Animais , Diferenciação Celular , Humanos , CamundongosRESUMO
Pleural mesothelial cells (PMCs) play a central role in the progression of pleural fibrosis. As pleural injury progresses to fibrosis, PMCs transition to mesenchymal myofibroblast via mesothelial mesenchymal transition (MesoMT), and produce extracellular matrix (ECM) proteins including collagen and fibronectin (FN1). FN1 plays an important role in ECM maturation and facilitates ECM-myofibroblast interaction, thus facilitating fibrosis. However, the mechanism of FN1 secretion is poorly understood. We report here that myosin 5b (Myo5b) plays a critical role in the transportation and secretion of FN1 from human pleural mesothelial cells (HPMCs). TGF-ß significantly increased the expression and secretion of FN1 from HPMCs and facilitates the close association of Myo5B with FN1 and Rab11b. Moreover, Myo5b directly binds to GTP bound Rab11b (Rab11b-GTP) but not GDP bound Rab11b. Myo5b or Rab11b knockdown via siRNA significantly attenuated the secretion of FN1 without changing FN1 expression. TGF-ß also induced Rab11b-GTP formation, and Rab11b-GTP but not Rab11b-GDP significantly activated the actin-activated ATPase activity of Myo5B. Live cell imaging revealed that Myo5b- and FN1-containing vesicles continuously moved together in a single direction. These results support that Myo5b and Rab11b play an important role in FN1 transportation and secretion from HPMCs, and consequently may contribute to the development of pleural fibrosis.
Assuntos
Fibronectinas , Miosina Tipo V , Fibrose , Guanosina Trifosfato , Humanos , Cadeias Pesadas de Miosina , Miosinas , Fator de Crescimento Transformador beta/metabolismoRESUMO
Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy and has a unique metastatic route using ascites, known as the transcoelomic root. However, studies on ascites and contained cellular components have not yet been sufficiently clarified. In this review, we focus on the significance of accumulating ascites, contained EOC cells in the form of spheroids, and interaction with non-malignant host cells. To become resistant against anoikis, EOC cells form spheroids in ascites, where epithelial-to-mesenchymal transition stimulated by transforming growth factor-ß can be a key pathway. As spheroids form, EOC cells are also gaining the ability to attach and invade the peritoneum to induce intraperitoneal metastasis, as well as resistance to conventional chemotherapy. Recently, accumulating evidence suggests that EOC spheroids in ascites are composed of not only cancer cells, but also non-malignant cells existing with higher abundance than EOC cells in ascites, including macrophages, mesothelial cells, and lymphocytes. Moreover, hetero-cellular spheroids are demonstrated to form more aggregated spheroids and have higher adhesion ability for the mesothelial layer. To improve the poor prognosis, we need to elucidate the mechanisms of spheroid formation and interactions with non-malignant cells in ascites that are a unique tumor microenvironment for EOC.
Assuntos
Neoplasias Epiteliais e Glandulares , Neoplasias Ovarianas , Ascite/patologia , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Ovarianas/patologia , Esferoides Celulares/metabolismo , Microambiente TumoralRESUMO
The distribution of fibrosis in idiopathic pulmonary fibrosis (IPF) is subpleural with basal predominance. Alveolar epithelial cell was considered as the key cell in the initial phase of IPF. However, the idea of activation and damage of alveolar epithelial cells is very difficult to explain why fibrosis distributes in the subpleural area. In this study, human pleural mesothelial cell (PMC) line and primary rat PMC was used as in vitro model. Intraperitoneal injection of bleomycin was used for making a pulmonary fibrosis model. The integrity of cultured monolayer PMCs was determined by transepithelial electric resistance (TEER). Pleural permeability was estimated by measuring paracellular transport of fluorescein isothiocyanate (FITC)-conjugated dextran. Changes in lung tissue of patients with IPF were analyzed by Masson's and immunofluorescence staining. We found bleomycin induced PMCs damage and increased PMCs permeability; increased PMCs permeability aggravated bleomycin-induced subpleural inflammation and pulmonary fibrosis. Moreover, bleomycin was found to activate VEGF/Src signaling which increased PMCs permeability. In vivo, inhibition of VEGF/Src signaling prevented bleomycin-induced subpleural pulmonary fibrosis. At last, activation of VEGF/Src signaling was confirmed in subpleural area in patients with IPF. Taken together, our findings indicate that VEGF/Src signaling mediated pleural barrier damage and increased permeability which contributes to subpleural pulmonary fibrosis.
Assuntos
Fibrose Pulmonar Idiopática/patologia , Permeabilidade/efeitos dos fármacos , Pleura/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Bleomicina/farmacologia , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Epitélio/patologia , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pleura/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacosRESUMO
BACKGROUND: Malignant mesothelioma (MM) is a very aggressive tumor that develops from mesothelial cells, mainly due to asbestos exposure. MM is categorized into three major histological subtypes: epithelioid, sarcomatoid, and biphasic, with the biphasic subtype containing both epithelioid and sarcomatoid components. Patients with sarcomatoid mesothelioma usually show a poorer prognosis than those with epithelioid mesothelioma, but it is not clear how these morphological phenotypes are determined or changed during the oncogenic transformation of mesothelial cells. METHODS: We introduced the E6 and E7 genes of human papillomavirus type 16 and human telomerase reverse transcriptase gene in human peritoneal mesothelial cells and established three morphologically different types of immortalized mesothelial cell lines. RESULTS: HOMC-B1 cells exhibited epithelioid morphology, HOMC-A4 cells were fibroblast-like, spindle-shaped, and HOMC-D4 cells had an intermediate morphology, indicating that these three cell lines closely mimicked the histological subtypes of MM. Gene expression profiling revealed increased expression of NOD-like receptor signaling-related genes in HOMC-A4 cells. Notably, the combination treatment of HOMC-D4 cells with TGF-ß and IL-1ß induced a morphological change from intermediate to sarcomatoid morphology. CONCLUSIONS: Our established cell lines are useful for elucidating the fundamental mechanisms of mesothelial cell transformation and mesothelial-to-mesenchymal transition.
RESUMO
Peritoneal dissemination of ovarian cancer (OvCa) arises from the surface of the peritoneum, covered by monolayer of mesothelial cells (MCs). Given that both OvCa cells and MCs are present in the same peritoneal metastatic microenvironment, they may establish cell-to-cell crosstalk or phenotypic alterations including the acquisition of platinum-resistance in OvCa cells. Herein, we report how OvCa-associated mesothelial cells (OCAMs) induce platinum-resistance in OvCa cells through direct cell-to-cell crosstalk. We evaluated mutual associations between OvCa cells and human primary MCs with in vitro coculturing experimental models and in silico omics data analysis. The role of OCAMs was also investigated using clinical samples and in vivo mice models. Results of in vitro experiments show that mesenchymal transition is induced in OCAMs primarily by TGF-ß1 stimulation. Furthermore, OCAMs influence the behavior of OvCa cells as a component of the tumor microenvironment of peritoneal metastasis. Mechanistically, OCAMs can induce decreased platinum-sensitivity in OvCa cells via induction of the FN1/Akt signaling pathway via cell-to-cell interactions. Histological analysis of OvCa peritoneal metastasis also illustrated FN1 expression in stromal cells that are supposed to originate from MCs. Further, we also confirmed the activation of Akt signaling in OvCa cells in contact with TGF-ß1 stimulated peritoneum, using an in vivo mice model. Our results suggest that the tumor microenvironment, enhanced by direct cell-to-cell crosstalk between OvCa cells and OCAMs, induces acquisition of platinum-resistance in OvCa cells, which may serve as a novel therapeutic target for prevention of OvCa peritoneal dissemination.
Assuntos
Cisplatino/farmacologia , Fibronectinas/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Peritoneais/secundário , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Compostos Organoplatínicos/farmacologia , Neoplasias Ovarianas/metabolismo , Neoplasias Peritoneais/metabolismo , Transdução de Sinais , Microambiente Tumoral , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Macrophages play a central role during infection, inflammation and tissue homeostasis maintenance. Macrophages have been identified in all organs and their core transcriptomic signature and functions differ from one tissue to another. Interestingly, macrophages have also been identified in the peritoneal cavity and these cells have been extensively used as a model for phagocytosis, efferocytosis and polarization. Peritoneal macrophages are involved in B-cell IgA production, control of inflammation and wound healing following thermal-induced liver surface injury. These cells presumably require and interact with the omentum, where milky spot stromal cells have been proposed to secrete CSF1 (colony stimulating factor 1). Peritoneal macrophages depend on CSF1 for their generation and survival, but the identity of CSF1 producing cells inside the large peritoneal cavity remains unknown. Here we investigated peritoneal macrophage localization and their interaction with mesothelial cells, the major cell type predicted to secrete CSF1. Our data revealed that mesothelial cells produce membrane bound and secreted CSF1 that both sustain peritoneal macrophage growth.
Assuntos
Células Epiteliais/metabolismo , Epitélio/metabolismo , Fator Estimulador de Colônias de Macrófagos/genética , Macrófagos Peritoneais/metabolismo , Células Estromais/metabolismo , Animais , Comunicação Celular/genética , Comunicação Celular/imunologia , Membrana Celular/imunologia , Membrana Celular/metabolismo , Sobrevivência Celular , Técnicas de Cocultura , Células Epiteliais/citologia , Células Epiteliais/imunologia , Epitélio/imunologia , Espaço Extracelular/imunologia , Espaço Extracelular/metabolismo , Expressão Gênica , Fator Estimulador de Colônias de Macrófagos/imunologia , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/imunologia , Camundongos , Camundongos Transgênicos , Cavidade Peritoneal/citologia , Transdução de Sinais , Células Estromais/citologia , Células Estromais/imunologiaRESUMO
Thrombin is an essential procoagulant and profibrotic mediator. However, its implication in tuberculous pleural effusion (TBPE) remains unknown. The effusion thrombin and plasminogen activator inhibitor-1 (PAI-1) levels were measured among transudative pleural effusion (TPE, n = 22) and TBPE (n = 24) patients. Pleural fibrosis, identified as radiological residual pleural thickening (RPT) and shadowing, was measured at 12-month follow-up. Moreover, in vivo and in vitro effects of thrombin on PAI-1 expression and mesothelial-mesenchymal transition (MMT) were assessed. We demonstrated the effusion thrombin levels were significantly higher in TBPE than TPE, especially greater in TBPE patients with RPT > 10mm than those without, and correlated positively with PAI-1 and pleural fibrosis area. In carbon black/bleomycin-treated mice, knockdown of protease-activated receptor-1 (PAR-1) markedly downregulated α-smooth muscle actin (α-SMA) and fibronectin, and attenuated pleural fibrosis. In pleural mesothelial cells (PMCs), thrombin concentration-dependently increased PAI-1, α-SMA, and collagen I expression. Specifically, Mycobacterium tuberculosis H37Ra (MTBRa) induced thrombin production by PMCs via upregulating tissue factor and prothrombin, and PAR-1 silencing considerably abrogated MTBRa-stimulated PAI-1 expression and MMT. Consistently, prothrombin/PAR-1 expression was evident in the pleural mesothelium of TBPE patients. Conclusively, thrombin upregulates PAI-1 and MMT and may contribute to tuberculous pleural fibrosis. Thrombin/PAR-1 inhibition may confer potential therapy for pleural fibrosis.
Assuntos
Inibidor 1 de Ativador de Plasminogênio/metabolismo , Pleura/patologia , Receptor PAR-1/metabolismo , Trombina/metabolismo , Tuberculose/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Modelos Animais de Doenças , Exsudatos e Transudatos/metabolismo , Feminino , Fibrose , Seguimentos , Humanos , Masculino , Mesoderma/efeitos dos fármacos , Mesoderma/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mycobacterium tuberculosis/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Derrame Pleural/metabolismo , Derrame Pleural/patologia , Transdução de Sinais , Tuberculose/patologia , Adulto JovemRESUMO
Adhesive small bowel obstruction remains a common problem for surgeons. After surgery, platelet aggregation contributes to coagulation cascade and fibrin clot formation. With clotting, fibrin degradation is simultaneously enhanced, driven by tissue plasminogen activator-mediated cleavage of plasminogen to form plasmin. The aim of this study was to investigate the cellular events and proteolytic responses that surround plasminogen activator inhibitor (PAI-1; Serpine1) inhibition of postoperative adhesion. Peritoneal adhesion was induced by gauze deposition in the abdominal cavity in C57BL/6 mice and those that were deficient in fibrinolytic factors, such as Plat-/- and Serpine1-/- In addition, C57BL/6 mice were treated with the novel PAI-1 inhibitor, TM5275. Some animals were treated with clodronate to deplete macrophages. Epidermal growth factor (EGF) experiments were performed to understand the role of macrophages and how EGF contributes to adhesion. In the early phase of adhesive small bowel obstruction, increased PAI-1 activity was observed in the peritoneal cavity. Genetic and pharmacologic PAI-1 inhibition prevented progression of adhesion and increased circulating plasmin. Whereas Serpine1-/- mice showed intra-abdominal bleeding, mice that were treated with TM5275 did not. Mechanistically, PAI-1, in combination with tissue plasminogen activator, served as a chemoattractant for macrophages that, in turn, secreted EGF and up-regulated the receptor, HER1, on peritoneal mesothelial cells, which led to PAI-1 secretion, further fueling the vicious cycle of impaired fibrinolysis at the adhesive site. Controlled inhibition of PAI-1 not only enhanced activation of the fibrinolytic system, but also prevented recruitment of EGF-secreting macrophages. Pharmacologic PAI-1 inhibition ameliorated adhesion formation in a macrophage-dependent manner.-Honjo, K., Munakata, S., Tashiro, Y., Salama, Y., Shimazu, H., Eiamboonsert, S., Dhahri, D., Ichimura, A., Dan, T., Miyata, T., Takeda, K., Sakamoto, K., Hattori, K., Heissig, B. Plasminogen activator inhibitor-1 regulates macrophage-dependent postoperative adhesion by enhancing EGF-HER1 signaling in mice.
Assuntos
Receptores ErbB/metabolismo , Macrófagos/fisiologia , Piperazinas/uso terapêutico , Serpina E2/antagonistas & inibidores , Aderências Teciduais/patologia , para-Aminobenzoatos/uso terapêutico , Animais , Antígeno CD11b , Ensaios de Migração Celular , Movimento Celular/efeitos dos fármacos , Cetuximab/farmacologia , Fator de Crescimento Epidérmico , Receptores ErbB/genética , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Complicações Pós-Operatórias/prevenção & controle , Células RAW 264.7 , Serpina E2/genética , Serpina E2/metabolismo , Transdução de Sinais , Aderências Teciduais/metabolismo , Ativador de Plasminogênio Tecidual/genética , Ativador de Plasminogênio Tecidual/metabolismoRESUMO
Pleural fibrosis is associated with various inflammatory processes such as tuberculous pleurisy and bacterial empyema. There is currently no ideal therapeutic to attenuate pleural fibrosis. Some pro-fibrogenic mediators induce fibrosis through inflammatory processes, suggesting that blockage of these mediators might prevent pleural fibrosis. The MeT-5A human pleural mesothelial cell line (PMC) was used in this study as an in vitro model of fibrosis; and intra-pleural injection of bleomycin with carbon particles was used as an in vivo mouse model of pleural fibrosis. Calpain knockout mice, calpain inhibitor (calpeptin), and angiotensin (Ang) II type 1 receptor (AT1R) antagonist (losartan) were evaluated in prevention of experimental pleural fibrosis. We found that bleomycin and carbon particles induced calpain activation in cultured PMCs. This in vitro response was associated with increased collagen-I synthesis, and was blocked by calpain inhibitor or AT1R antagonist. Calpain genetic or treatment with calpeptin or losartan prevented pleural fibrosis in a mouse model induced by bleomycin and carbon particles. Our findings indicate that Ang II signaling and calpain activation induce collagen-I synthesis and contribute to fibrotic alterations in pleural fibrosis. Inhibition of Ang II and calpain might therefore be a novel strategy in treatment of pleural fibrosis.
Assuntos
Calpaína/genética , Dipeptídeos/farmacologia , Losartan/farmacologia , Doenças Pleurais/tratamento farmacológico , Angiotensina II/efeitos dos fármacos , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Bleomicina/toxicidade , Calpaína/antagonistas & inibidores , Carbono/toxicidade , Linhagem Celular , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Fibrose , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Pleurais/fisiopatologiaRESUMO
In previous studies we showed that during Freund's adjuvant induced inflammation rat mesenteric mesothelial cells undergo epithelial-mesenchymal transition type II (EMT). This process was characterized by a dramatic increase of the number of cell organelles and volume of mesothelial cells. After the inflammation reached its maximum, the mesenchymal-like cells gradually regained their epithelial phenotype (mesenchymal-epithelial transition, MET). During the recovery process, the decrease of the number of cell organelles was accompanied by an increasing number of autophagic structures in the cytoplasm, indicating that autophagy might play crucial role in MET. Morphometric data of this study showed that the number of the autophagic organelles increased by the time of inflammation and was the highest at day 7-8, when regeneration started. These morphological observations were supported by immunocytochemistry and Western blot analyses with various markers, directly or indirectly involved in this process. Endocytic markers were expressed at high level during both EMT and MET, while the expression of factors regulating autophagy simultaneously changed with the morphology: p-Akt and p-mTOR level was high at day 3-5 and significantly decreased when autophagy speeded up. The Beclin-1, which is the key factor of initiating autophagy, was expressed at the early time of inflammation. These results strongly suggest that autophagy plays important role in regeneration (MET), and it is regulated and synchronized by various signalling events during inflammation.
Assuntos
Autofagia , Transição Epitelial-Mesenquimal , Fenótipo , Animais , Proteína Beclina-1/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fator de Crescimento Transformador beta/metabolismoRESUMO
We estimated the telomere lengths of neoplastic and non-neoplastic mesothelial cells and examined their correlation with asbestos exposure and the expression of markers of mesothelial malignancy. Cell blocks of pleural effusion obtained from 35 cases of non-neoplastic disease (NN), 12 cases of malignant mesothelioma (MM) and 12 cases of carcinomatous effusion due to lung adenocarcinoma (LA) were examined. Fifteen of the 35 NN cases had pleural plaques (NNpp+) suggestive of asbestos exposure, and the other 20 cases had no pleural plaques (NNpp-). Telomere length was measured using the tissue quantitative fluorescence in situ hybridization method, and expressed as normalized telomere-to-centromere ratio. NN cases had significantly longer telomeres than MM (P < 0.001) and LA (P < 0.001) cases. Telomeres in NNpp+ cases were slightly shorter than those of NNpp- cases (P = 0.047). MM and LA showed almost the same telomere length. NN cases with shorter telomeres tended to show aberrant expression of epithelial membrane antigen (EMA), CD146, glucose transporter 1 (GLUT1) and IGF-II messenger RNA-binding protein 3 (IMP3). These results suggest that telomere shortening and subsequent genetic instability play an important role in the development of MM. Measurement of telomere length of cells in pleural effusion might be helpful for earlier detection of MM.