Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cytotherapy ; 22(2): 114-121, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31987755

RESUMO

Clinical hepatocyte transplantation short-term efficacy has been demonstrated; however, some major limitations, mainly due to the shortage of organs, the lack of quality of isolated cells and the low cell engraftment after transplantation, should be solved for increasing its efficacy in clinical applications. Cellular stress during isolation causes an unpredictable loss of attachment ability of the cells, which can be aggravated by cryopreservation and thawing. In this work, we focused on the use of a Good Manufacturing Practice (GMP) solution compared with the standard cryopreservation medium, the University of Wisconsin medium, for the purpose of improving the functional quality of cells and their ability to engraft in vivo, with the idea of establishing a biobank of cryopreserved human hepatocytes available for their clinical use. We evaluated not only cell viability but also specific hepatic function indicators of the functional performance of the cells such as attachment efficiency, ureogenic capability, phase I and II enzymes activities and the expression of specific adhesion molecules in vitro. Additionally, we also assessed and compared the in vivo efficacy of human hepatocytes cryopreserved in different media in an animal model of acute liver failure. Human hepatocytes cryopreserved in the new GMP solution offered better in vitro and in vivo functionality compared with those cryopreserved in the standard medium. Overall, the results indicate that the new tested GMP solution maintains better hepatic functions and, most importantly, shows better results in vivo, which could imply an increase in long-term efficacy when used in patients.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Criopreservação/métodos , Crioprotetores/farmacologia , Hepatócitos/transplante , Falência Hepática Aguda/terapia , Animais , Moléculas de Adesão Celular/metabolismo , Separação Celular , Sobrevivência Celular , Modelos Animais de Doenças , Hepatócitos/citologia , Humanos , Fígado/citologia , Fígado/patologia , Masculino , Camundongos , Bancos de Tecidos
2.
Am J Physiol Regul Integr Comp Physiol ; 313(2): R120-R131, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28438763

RESUMO

Using red knots (Calidris canutus) as a model, we determined how changes in mass and metabolic activity of organs relate to temperature-induced variation in metabolic performance. In cold-acclimated birds, we expected large muscles and heart as well as improved oxidative capacity and lipid transport, and we predicted that this would explain variation in maximal thermogenic capacity (Msum). We also expected larger digestive and excretory organs in these same birds and predicted that this would explain most of the variation in basal metabolic rate (BMR). Knots kept at 5°C were 20% heavier and maintained 1.5 times more body fat than individuals kept in thermoneutral conditions (25°C). The birds in the cold also had a BMR up to 32% higher and a Msum 16% higher than birds at 25°C. Organs were larger in the cold, with muscles and heart being 9-20% heavier and digestive and excretory organs being 21-36% larger than at thermoneutrality. Rather than the predicted digestive and excretory organs, the cold-induced increase in BMR correlated with changes in mass of the heart, pectoralis, and carcass. Msum varied positively with the mass of the pectoralis, supracoracoideus, and heart, highlighting the importance of muscles and cardiac function in cold endurance. Cold-acclimated knots also expressed upregulated capacity for lipid transport across mitochondrial membranes [carnitine palmitoyl transferase (CPT)] in their pectoralis and leg muscles, higher lipid catabolism capacity in their pectoralis muscles [ß-hydroxyacyl CoA-dehydrogenase (HOAD)], and elevated oxidative capacity in their liver and kidney (citrate synthase). These adjustments may have contributed to BMR through changes in metabolic intensity. Positive relationships among Msum, CPT, and HOAD in the heart also suggest indirect constraints on thermogenic capacity through limited cardiac capacity.


Assuntos
Aves/fisiologia , Composição Corporal/fisiologia , Músculo Esquelético/fisiologia , Termogênese/fisiologia , Termotolerância/fisiologia , Vísceras/fisiologia , Animais , Metabolismo Energético/fisiologia
3.
J Exp Biol ; 217(Pt 6): 824-30, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24198261

RESUMO

In small resident bird species living at northern latitudes, winter cold acclimatization is associated with an increase in pectoral muscle size and haematocrit level, and this is thought to drive the seasonal increase in summit metabolic rate (Msum, a measure of maximal shivering thermogenic capacity). However, evidence suggesting that pectoral muscle size influences Msum is correlational and the link between haematrocrit level and Msum remains to be demonstrated. We experimentally tested the relationship between pectoral muscle size and Msum by manipulating muscle size using a feather clipping protocol in free-living wintering black-capped chickadees (Poecile atricapillus). This also allowed us to investigate the link between haematocrit and thermogenic capacity. After a first series of measures on all birds, we cut half of the flight feathers of experimental individuals (N=14) and compared their fat and pectoral muscle scores, Msum and haematocrit level at recapture with their previous measures and with those of control birds (N=17) that were captured and recaptured at comparable times. Results showed that: (1) experimental birds developed larger pectoral muscles than control individuals and (2) mass-independent Msum was up to 16% higher in birds expressing large pectoral muscles. Msum was also positively correlated with haematocrit, which was not affected by the experimental manipulation. These findings demonstrate that, for a given body mass, large pectoral muscles are associated with a higher Msum in black-capped chickadees and that oxygen carrying capacity likely supports thermogenesis in this species.


Assuntos
Metabolismo Energético , Hematócrito , Músculos Peitorais/fisiologia , Aves Canoras/fisiologia , Termogênese , Animais , Plumas/cirurgia , Fenótipo , Estações do Ano
4.
Philos Trans R Soc Lond B Biol Sci ; 379(1896): 20220490, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38186282

RESUMO

Understanding metabolic performance limitations is key to explaining the past, present and future of life. We investigated whether heat tolerance in actively flying Drosophila melanogaster is modified by individual differences in cell size and the amount of oxygen in the environment. We used two mutants with loss-of-function mutations in cell size control associated with the target of rapamycin (TOR)/insulin pathways, showing reduced (mutant rictorΔ2) or increased (mutant Mnt1) cell size in different body tissues compared to controls. Flies were exposed to a steady increase in temperature under normoxia and hypoxia until they collapsed. The upper critical temperature decreased in response to each mutation type as well as under hypoxia. Females, which have larger cells than males, had lower heat tolerance than males. Altogether, mutations in cell cycle control pathways, differences in cell size and differences in oxygen availability affected heat tolerance, but existing theories on the roles of cell size and tissue oxygenation in metabolic performance can only partially explain our results. A better understanding of how the cellular composition of the body affects metabolism may depend on the development of research models that help separate various interfering physiological parameters from the exclusive influence of cell size. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.


Assuntos
Drosophila melanogaster , Termotolerância , Feminino , Masculino , Animais , Drosophila melanogaster/genética , Tamanho Celular , Mutação , Hipóxia/genética , Oxigênio
5.
Sci Total Environ ; 751: 141804, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32882563

RESUMO

Crude oil is a well-known toxicant that reduces cardiorespiratory performance in acutely exposed fishes. While toxic effects can manifest in death in severe cases, the ecological consequences of sub-lethal exposure remain uncertain. This study investigated the impact of crude oil exposure on long-term social competition, growth, and metabolic performance in a coastal species, the red drum (Sciaenops ocellatus). Fish were acutely exposed to either control or one of two environmentally relevant oil concentrations and reared together in groups of 15 (5 from each exposure concentration) for eight weeks under resource-rich or resource-limited scenarios. Relative to controls, a 41.3% and 45.9% reduction in the specific growth rate was-observed following exposure to 25.3 and 53.4 µg l-1 ΣPAH respectively under resource-limited conditions. These fish were subsequently sampled for metabolic performance and common indicators of social subordination including reduced glucocorticoid receptors in the gill and caudal fin damage. The reduction in specific growth rate coincided with a 15.1% and 17.3% reduction in standard metabolic rate; however, maximum metabolic rate and aerobic scope were unaffected. Additionally, measures of social subordination showed no differences between oil-exposed and control fish. These results reinforce the hypothesis that acute oil exposure can have prolonged sub-lethal effects that compromise the ability of exposed individuals to perform effectively in their environment, including gathering and/or metabolizing food. Furthermore, this work highlights the premise that oil spills can be more detrimental in already at-risk ecosystems.


Assuntos
Perciformes , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Animais , Ecossistema , Humanos , Petróleo/toxicidade , Poluição por Petróleo/efeitos adversos , Poluentes Químicos da Água/toxicidade
6.
Mar Pollut Bull ; 153: 111005, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32275553

RESUMO

Stress-tolerant coral species, such as Platygyra spp., are considered to be well adapted to survive in marginal reefs, but their physiological response to short term exposure to abnormally high temperature and lowered salinity remains poorly understood. Using non-invasive techniques to quantitatively assess the health of Platygyra carnosa (e.g. respiration, photosynthesis, biocalcification and whiteness), we identified the plasticity of its energetics and physiological limits. Although these indicators suggest that it can survive to increasing temperature (25-32 °C), its overall energetics were seriously diminished at temperatures >30 °C. In contrast, it was well adapted to hyposaline waters (31-21 psu) but with reduced biocalcification, indicating short term adaptation for expected future changes in salinity driven by increased amounts and intensities of precipitation. Our findings provide useful insights to the effect of these climate drivers on P. carnosa metabolism and thus better forecast changes in their health status under future climate change scenarios.


Assuntos
Antozoários/fisiologia , Tolerância ao Sal , Aclimatação , Animais , Mudança Climática , Recifes de Corais , Hong Kong , Salinidade , Temperatura
7.
Conserv Physiol ; 8(1): coaa034, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32391152

RESUMO

The practice of mitigating cannibalism in aquaculture is an important focus for hatcheries seeking to maximize yield and has been maintained in hatcheries focusing on wild stock restoration. We hypothesize, however, that a cannibal feeding strategy may confer performance advantages over a non-cannibal feeding strategy and that perhaps cannibal size grading may not be optimal for hatcheries focusing on conservation goals. This study examined metabolic performance differences between cannibal and non-cannibal burbot, Lota lota maculosa, at the Kootenai Tribe of Idaho Twin Rivers Hatchery in Moyie Springs, ID, USA. After habitat alteration led to functional extinction of burbot in the region, the Twin Rivers Hatchery has played a leading role in the reestablishment of burbot in the Kootenai River, ID, and British Columbia. We examined morphometric data (weight, length and condition factor), whole animal resting metabolic rate and the enzyme activity of lactate dehydrogenase, citrate synthase and 3-hydroxyacyl-CoA dehydrogenase to describe the baseline metabolic performance of cannibal and non-cannibal burbot. Taken together, our results demonstrated significant differences in the metabolic strategies of cannibal vs. non-cannibal burbot, where cannibals relied more heavily on carbohydrate metabolism and non-cannibals relied more heavily on glycolytic and lipid metabolism. This study demonstrates the need to reevaluate the traditional practice of removing cannibal fish in conservation hatcheries, as it may not be the ideal strategy of raising the most robust individuals for release. When natural habitat conditions cannot be restored due to permanent habitat alteration, prioritizing release of higher performing individuals could help achieve conservation goals.

8.
Physiol Biochem Zool ; 90(2): 153-165, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28277963

RESUMO

Avian basal metabolic rate (BMR) and summit metabolic rate (Msum) vary in parallel during cold acclimation and acclimatization, which implies a functional link between these variables. However, evidence suggests that these parameters may reflect different physiological systems acting independently. We tested this hypothesis in white-throated sparrows (Zonotrichia albicollis) acclimated to two temperatures (-8° and 28°C) and two diets (0% and 30% cellulose). We expected to find an uncoupling of Msum and BMR where Msum, a measure of maximal shivering heat production, would reflect muscle and heart mass variation and would respond only to temperature, while BMR would reflect changes in digestive and excretory organs in response to daily food intake, responding to both temperature and diet. We found that the gizzard, liver, kidneys, and intestines responded to treatments through a positive relationship with food intake. BMR was 15% higher in cold-acclimated birds and, as expected, varied with food intake and the mass of digestive and excretory organs. In contrast, although Msum was 19% higher in cold-acclimated birds, only heart mass responded to temperature (+18% in the cold). Pectoral muscles did not change in mass with temperature but were 8.2% lighter on the cellulose diet. Nevertheless, Msum varied positively with the mass of heart and skeletal muscles but only in cold-acclimated birds. Our results therefore suggest that an upregulation of muscle metabolic intensity is required for cold acclimation. This study increases support for the hypothesis that BMR and Msum reflect different physiological systems responding in parallel to constraints associated with cold environments.


Assuntos
Metabolismo Basal/fisiologia , Regulação da Temperatura Corporal/fisiologia , Digestão/fisiologia , Músculo Esquelético/fisiologia , Pardais/fisiologia , Aclimatação/fisiologia , Animais , Peso Corporal , Temperatura Baixa , Ingestão de Alimentos , Moela das Aves/anatomia & histologia , Intestinos/anatomia & histologia , Fígado/anatomia & histologia , Tamanho do Órgão
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa