Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Angew Chem Int Ed Engl ; 60(36): 19928-19932, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34196088

RESUMO

Metal complexes can be considered a "paradigm of promiscuity" when it comes to their interactions with proteins. They often form adducts with a variety of donor atoms in an unselective manner. We have characterized the adducts formed between a series of isostructural N-heterocyclic carbene (NHC) complexes with Ru, Os, Rh, and Ir centers and the model protein hen egg white lysozyme by X-ray crystallography and mass spectrometry. Distinctive behavior for the metal compounds was observed with the more labile Ru and Rh complexes targeting mainly a surface l-histidine moiety through cleavage of p-cymene or NHC co-ligands, respectively. In contrast, the more inert Os and Ir derivatives were detected abundantly in an electronegative binding pocket after undergoing ligand exchange of a chlorido ligand for an amino acid side chain. Computational studies supported the binding profiles and hinted at the role of the protein microenvironment for metal complexes eliciting selectivity for specific binding sites on the protein.

2.
Int J Mol Sci ; 21(6)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32245108

RESUMO

Whey proteins tend to interact with metal ions, which have implications in different fields related to human life quality. There are two impacts of such interactions: they can provide opportunities for applications in food and nutraceuticals, but may lead to analytical challenges related to their study and outcomes for food processing, storage, and food interactions. Moreover, interactions of whey proteins with metal ions are complicated, requiring deep understanding, leading to consequences, such as metalloproteins, metallocomplexes, nanoparticles, or aggregates, creating a biologically active system. To understand the phenomena of metal-protein interactions, it is important to develop analytical approaches combined with studies of changes in the biological activity and to analyze the impact of such interactions on different fields. The aim of this review was to discuss chemistry of ß-lactoglobulin, α-lactalbumin, and lactotransferrin, their interactions with different metal ions, analytical techniques used to study them and the implications for food and nutraceuticals.


Assuntos
Metais/metabolismo , Proteínas do Soro do Leite/metabolismo , Suplementos Nutricionais , Alimentos , Íons , Modelos Moleculares , Ligação Proteica , Proteínas do Soro do Leite/química , Proteínas do Soro do Leite/isolamento & purificação
3.
Chemistry ; 23(55): 13802-13813, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28776779

RESUMO

Structural studies have paved the avenue to a deeper understanding of aquaporins (AQPs), small ancient proteins providing efficient transmembrane pathways for water, small uncharged solutes such as glycerol, and possibly gas molecules. Despite the numerous studies, their roles in health and disease remain to be fully disclosed. The recent discovery of AuIII complexes as potent and selective inhibitors of aquaglyceroporin isoforms paves the way to their possible therapeutic application. The binding of the selective human AQP3 inhibitor, the cationic complex [Au(bipy)Cl2 ]+ (Aubipy), to the protein channel has been investigated here by means of a multi-level theoretical workflow that includes QM, MD and QM/MM approaches. The hydroxo complex was identified as the prevalent form of Aubipy in physiological media and its binding to AQP3 studied by MD. Both non-covalent and coordinative Aubipy-AQP3 adducts were simulated to probe their role in the modulation of water channel functionality. The electronic structures of representative Aubipy-AQP3 adducts were then analysed to unveil the role played by the metal moiety in their stabilisation. This study spotlights the overall importance of three key aspects for AQP3 inhibition: 1) water speciation of the AuIII complex, 2) stability of non-covalent adducts and 3) conformational changes induced within the pore by the coordinative binding of AuIII . The obtained results are expected to orient future developments in the design of isoform-selective AuIII inhibitors.


Assuntos
2,2'-Dipiridil/química , Aquagliceroporinas/metabolismo , Complexos de Coordenação/metabolismo , Ouro/química , Simulação de Dinâmica Molecular , Aquagliceroporinas/antagonistas & inibidores , Sítios de Ligação , Complexos de Coordenação/química , Humanos , Ligação de Hidrogênio , Ligação Proteica , Estrutura Terciária de Proteína , Teoria Quântica , Termodinâmica
4.
Anal Bioanal Chem ; 408(2): 345-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26635018

RESUMO

High precision natural isotope analyses are widely used in geosciences to trace elemental transport pathways. The use of this analytical tool is increasing in nutritional and disease-related research. In recent months, a number of groups have shown the potential this technique has in providing new observations for various cancers when applied to trace metal metabolism. The deconvolution of isotopic signatures, however, relies on mathematical models and geochemical data, which are not representative of the system under investigation. In addition to relevant biochemical studies of protein-metal isotopic interactions, technological development both in terms of sample throughput and detection sensitivity of these elements is now needed to translate this novel approach into a mainstream analytical tool. Following this, essential background healthy population studies must be performed, alongside observational, cross-sectional disease-based studies. Only then can the sensitivity and specificity of isotopic analyses be tested alongside currently employed methods, and important questions such as the influence of cancer heterogeneity and disease stage on isotopic signatures be addressed.


Assuntos
Isótopos/química , Espectrometria de Massas/métodos , Metais/química , Neoplasias/química , Estudos Transversais , Humanos , Neoplasias/diagnóstico , Neoplasias/metabolismo , Ligação Proteica , Proteínas/química , Proteínas/metabolismo , Sensibilidade e Especificidade
5.
Methods Enzymol ; 687: 279-341, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37666636

RESUMO

The first-row D-block metal ions are essential for the physiology of living organisms, functioning as cofactors in metalloproteins or structural components for enzymes: almost half of all proteins require metals to perform the biological function. Understanding metal-protein interactions is crucial to unravel the mysteries behind molecular biology, understanding the effects of metal imbalance and toxicity or the diseases due to disorders in metal homeostasis. Metal-protein interactions are dynamic: they are noncovalent and affected by the environment to which the system is exposed. To reach a complete comprehension of the system, different conditions must be considered for the experimental investigation, in order to get information on the species distribution, the ligand coordination modes, complex stoichiometry and geometry. Thinking about the whole environment where a protein acts, investigations are often challenging, and simplifications are required to study in detail the mechanisms of metal interaction. This chapter is intended to help researchers addressing the problem of the complexity of metal-protein interactions, with particular emphasis on the use of peptides as model systems for the metal coordination site. The thermodynamic and spectroscopic methods most widely employed to investigate the interaction between metal ions and peptides in solution are here covered. These include solid-phase peptide synthesis, potentiometric titrations, calorimetry, electrospray ionization mass spectrometry, UV-Vis spectrophotometry, circular dichroism (CD), nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR). Additional experimental methods, which can be employed to study metal complexes with peptides, are also briefly mentioned. A case-study is finally reported providing a practical example of the investigation of metal-protein interaction by means of thermodynamic and spectroscopic methods applied to peptide model systems.


Assuntos
Metais , Projetos de Pesquisa , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica , Espectrofotometria , Termodinâmica
6.
J Inorg Biochem ; 199: 110783, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31349072

RESUMO

Protein-protein interactions play important roles for a variety of cell functions, often involving metal ions; in fact, metal-ion binding mediates and regulates the activity of a wide range of biomolecules. Enlightening all of the specific features of metal-protein and metal-mediated protein-protein interactions can be a very challenging task; a detailed knowledge of the thermodynamic and spectroscopic parameters and the structural changes of the protein is normally required. For this purpose, many experimental techniques are employed, embracing all fields of Analytical and Bioinorganic Chemistry. In addition, the use of peptide models, reproducing the primary sequence of the metal-binding sites, is also proved to be useful. In this paper, a review of the most useful techniques for studying ligand-protein interactions with a special emphasis on metal-protein interactions is provided, with a critical summary of their strengths and limitations.


Assuntos
Metais/química , Proteínas/química , Sítios de Ligação , Cinética , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Proteínas/metabolismo
7.
Biochimie ; 123: 117-29, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26821345

RESUMO

Human serum albumin (HSA), the most abundant soluble protein in blood plays critical roles in transportation of biomolecules and maintenance of osmotic pressure. In view of increasing applications of lanthanides- and actinides-based materials in nuclear energy, space, industries and medical applications, the risk of exposure with these metal ions is a growing concern for human health. In present study, binding interaction of actinides/lanthanides [thorium: Th(IV), uranium: U(VI), lanthanum: La(III), cerium: Ce(III) and (IV)] with HSA and its structural consequences have been investigated. Ultraviolet-visible, Fourier transform-infrared, Raman, Fluorescence and Circular dichroism spectroscopic techniques were applied to study the site of metal ions interaction, binding affinity determination and the effect of metal ions on protein unfolding and HSA conformation. Results showed that these metal ions interacted with carbonyl (CO..:)/amide(N..-H) groups and induced exposure of aromatic residues of HSA. The fluorescence analysis indicated that the actinide binding altered the microenvironment around Trp214 in the subdomain IIA. Binding affinity of U(VI) to HSA was slightly higher than that of Th(IV). Actinides and Ce(IV) altered the secondary conformation of HSA with a significant decrease of α-helix and an increase of ß-sheet, turn and random coil structures, indicating a partial unfolding of HSA. A correlation was observed between metal ion's ability to alter HSA conformation and protein unfolding. Both cationic effects and coordination ability of metal ions seemed to determine the consequences of their interaction with HSA. Present study improves our understanding about the protein interaction of these heavy ions and their impact on its secondary structure. In addition, binding characteristics may have important implications for the development of rational antidote for the medical management of health effects of actinides and lanthanides.


Assuntos
Elementos da Série Actinoide/química , Elementos da Série dos Lantanídeos/química , Albumina Sérica/química , Dicroísmo Circular , Humanos , Conformação Proteica , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa