Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 241: 117415, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37844684

RESUMO

Periodontitis is a severe form of gum disease caused by bacterial plaque that affects millions of people and has substantial worldwide health and economic implications. However, current clinical antiseptic and antimicrobial drug therapies are insufficient because they frequently have numerous side effects and contribute to widespread bacterial resistance. Recently, nanotechnology has shown promise in the synthesis of novel periodontal therapeutic materials. Nanoparticles are quickly replacing antibiotics in the treatment of bacterial infections, and their potential application in dentistry is immense. The alarming increases in antimicrobial resistance further emphasize the importance of exploring and utilizing nanotechnology in the fight against tooth diseases particularly periodontitis. We developed 16 different combinations of mesoporous silica nanomaterials in this study by ageing, drying, and calcining them with 11 different metals including silver, zinc, copper, gold, palladium, ruthenium, platinum, nickel, cerium, aluminium, and zirconium. The antibacterial properties of metal-doped silica were evaluated using four distinct susceptibility tests. The agar well diffusion antibacterial activity test, which measured the susceptibility of the microbes being tested, as well as the antibacterial efficacy of mesoporous silica with different silica/metal ratios, were among these studies. The growth kinetics experiment was used to investigate the efficacy of various metal-doped silica nanoparticles on microbial growth. To detect growth inhibitory effects, the colony-forming unit assay was used. Finally, MIC and MBC tests were performed to observe the inhibition of microbial biofilm formation. Our findings show that silver- and zinc-doped silica nanoparticles synthesized using the sol-gel method can be effective antimicrobial agents against periodontitis-causing microbes. This study represents the pioneering work reporting the antimicrobial properties of metal-loaded TUD-1 mesoporous silica, which could be useful in the fight against other infectious diseases too.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanopartículas , Periodontite , Humanos , Prata , Dióxido de Silício , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Antibacterianos/farmacologia , Periodontite/tratamento farmacológico , Zinco
2.
Biomater Adv ; 157: 213753, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160632

RESUMO

Nanotechnology has triumphantly overcome several barriers that have formed in modern life. Bacterial infections are a critical public health issue. They emphasized the failure of conventional treatments, high mortality and morbidity rates, antibiotic resistance, and other factors leading to the development of novel and affordable antibacterial medications. In this study, three types of metals (Ag, Cu, and Co) were doped separately into a silanol network in silica nanoparticles. The synthesized monometallic nanohybrids were combined in equal proportions to formulate bi and trimetallic nanohybrids. They were characterized structurally and morphologically. Fourier transform infrared (FTIR) and Raman spectroscopy studies were used to investigate the formation of the bonds and the pertinent peak positions. X-ray diffractograms (XRD) validated the crystalline structures of the metal nanohybrids. X-ray photoelectron spectroscopic study (XPS) confirmed the successful addition of metals to the silanol network. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images were used to characterize the morphology of nanohybrids and demonstrate their dimensions are on the nanoscale. The fraction of each metal doped in the silanol network was determined using energy dispersive spectroscopy (EDS) and atomic absorption spectrometry (AAS). To assess activity and confirm antibacterial synergy, the antibacterial activity of all synthesized nanohybrids was examined. The minimum inhibitory concentration-MIC (Ranged from 12.25 to 1560.00 µg/mL), minimum bactericidal concentration-MBC (Ranged from 197.00 to 3125.00 µg/mL), IC50 values (Ranged from 30.56 to 1683.00 µg/mL-) and fractional inhibitory concentration index (FICI) were determined and compared. Well diffusion assay was conducted against both ATCC cultures and clinical samples of gram-positive bacteria; Staphylococcus aureus (ATCC 25923), Streptococcus pneumoniae (ATCC 49619), MRSA (ATCC 33591) and gram-negative bacteria; Escherichia coli (ATCC 25922), Klebsiella pneumoniae (ATCC BAA 1706) and Pseudomonas aeruginosa (ATCC 27853). The highest synergistic radical scavenging performance of trimetallic nanohybrid (90.67 ± 0.095 %) was established by the DPPH (2,2 diphenyl-1-picrylhydrazil) experiment. Finally, when compared to monometallic nanohybrids, it was demonstrated that the synthesized multimetallic nanohybrids have a substantial potential as an emerging and cost-effective antibacterial agent.


Assuntos
Antibacterianos , Silanos , Dióxido de Silício , Dióxido de Silício/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Prata/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa