Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 369
Filtrar
1.
Glob Chang Biol ; 30(6): e17390, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38899583

RESUMO

Methane is a powerful greenhouse gas, more potent than carbon dioxide, and emitted from a variety of natural sources including wetlands, permafrost, mammalian guts and termites. As increases in global temperatures continue to break records, quantifying the magnitudes of key methane sources has never been more pertinent. Over the last 40 years, the contribution of termites to the global methane budget has been subject to much debate. The most recent estimates of termite emissions range between 9 and 15 Tg CH4 year-1, approximately 4% of emissions from natural sources (excluding wetlands). However, we argue that the current approach for estimating termite contributions to the global methane budget is flawed. Key parameters, namely termite methane emissions from soil, deadwood, living tree stems, epigeal mounds and arboreal nests, are largely ignored in global estimates. This omission occurs because data are lacking and research objectives, crucially, neglect variation in termite ecology. Furthermore, inconsistencies in data collection methods prohibit the pooling of data required to compute global estimates. Here, we summarise the advances made over the last 40 years and illustrate how different aspects of termite ecology can influence the termite contribution to global methane emissions. Additionally, we highlight technological advances that may help researchers investigate termite methane emissions on a larger scale. Finally, we consider dynamic feedback mechanisms of climate warming and land-use change on termite methane emissions. We conclude that ultimately the global contribution of termites to atmospheric methane remains unknown and thus present an alternative framework for estimating their emissions. To significantly improve estimates, we outline outstanding questions to guide future research efforts.


Assuntos
Isópteros , Metano , Isópteros/fisiologia , Isópteros/metabolismo , Metano/análise , Metano/metabolismo , Animais , Mudança Climática , Gases de Efeito Estufa/análise
2.
Int Microbiol ; 27(2): 607-614, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37556066

RESUMO

Wetlands are the main natural sources of methane emissions, which make up a significant portion of greenhouse gas emissions. Such wetland patches serve as rich habitats for aerobic methanotrophs. Limited knowledge of methanotrophs from tropical wetlands widens the scope of study from these habitats. In the present study, a freshwater wetland in a tropical region in India was sampled and serially diluted to obtain methanotrophs in culture. This was followed by the isolation of methanotrophs on agarose-containing plates, incubated under methane: air atmosphere. Methanotrophs are difficult to cultivate, and very few cultures of methanotrophs are available from tropical wetlands. Our current study reports the cultivation of a diverse community of methanotrophs from six genera, namely, Methylomonas, Methylococcus, Methylomagnum, Methylocucumis (type I methanotrophs) along with Methylocystis, Methylosinus (type II methanotrophs). A high abundance of methanotrophs (106-1010 methanotrophs/g fresh weight) was observed in the samples. A Methylococcus strain could represent a putative novel species that was also isolated. Cultures of Methylomagnum and Methylocucumis, two newly described type I methanotrophs exclusively found in rice fields, were obtained. A large number of Methylomonas koyamae strains were cultured. Our study is pioneering in the documentation of culturable methanotrophs from a typical tropical wetland patch. The isolated methanotrophs can act as models for studying methanotroph-based methane mitigation from wetland habitats and can be used for various mitigation and valorization applications.


Assuntos
Methylococcaceae , Methylocystaceae , Áreas Alagadas , Ecossistema , Água Doce , Methylococcaceae/genética , Methylocystaceae/genética , Metano , Microbiologia do Solo , Filogenia , RNA Ribossômico 16S
3.
Microb Cell Fact ; 23(1): 160, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822346

RESUMO

BACKGROUND: Wastewater treatment plants contribute approximately 6% of anthropogenic methane emissions. Methanotrophs, capable of converting methane into polyhydroxybutyrate (PHB), offer a promising solution for utilizing methane as a carbon source, using activated sludge as a seed culture for PHB production. However, maintaining and enriching PHB-accumulating methanotrophic communities poses challenges. RESULTS: This study investigated the potential of Methylosinus trichosporium OB3b to bioaugment PHB-accumulating methanotrophic consortium within activated sludge to enhance PHB production. Waste-activated sludges with varying ratios of M. trichosporium OB3b (1:0, 1:1, 1:4, and 0:1) were cultivated. The results revealed substantial growth and methane consumption in waste-activated sludge with M. trichosporium OB3b-amended cultures, particularly in a 1:1 ratio. Enhanced PHB accumulation, reaching 37.1% in the same ratio culture, indicates the dominance of Type II methanotrophs. Quantification of methanotrophs by digital polymerase chain reaction showed gradual increases in Type II methanotrophs, correlating with increased PHB production. However, while initial bioaugmentation of M. trichosporium OB3b was observed, its presence decreased in subsequent cycles, indicating the dominance of other Type II methanotrophs. Microbial community analysis highlighted the successful enrichment of Type II methanotrophs-dominated cultures due to the addition of M. trichosporium OB3b, outcompeting Type I methanotrophs. Methylocystis and Methylophilus spp. were the most abundant in M. trichosporium OB3b-amended cultures. CONCLUSIONS: Bioaugmentation strategies, leveraging M. trichosporium OB3b could significantly enhance PHB production and foster the enrichment of PHB-accumulating methanotrophs in activated sludge. These findings contribute to integrating PHB production in wastewater treatment plants, providing a sustainable solution for resource recovery.


Assuntos
Hidroxibutiratos , Metano , Methylosinus trichosporium , Esgotos , Esgotos/microbiologia , Methylosinus trichosporium/metabolismo , Hidroxibutiratos/metabolismo , Metano/metabolismo , Poliésteres/metabolismo , Biodegradação Ambiental , Águas Residuárias/microbiologia , Poli-Hidroxibutiratos
4.
Environ Sci Technol ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037290

RESUMO

The phenomenon of methane oxidation linked to perchlorate reduction has been reported in multiple studies; yet, the underlying microbial mechanisms remain unclear. Here, we enriched suspended cultures by performing methane-driven perchlorate reduction under oxygen-limiting conditions in a membrane bioreactor (MBR). Batch test results proved that perchlorate reduction was coupled to methane oxidation, in which acetate was predicted as the potential intermediate and oxygen played an essential role in activating methane. By combining DNA-based stable isotope probing incubation and high-throughput sequencing analyses of 16S rRNA gene and functional genes (pmoA, pcrA, and narG), we found that synergistic interactions between aerobic methanotrophs (Methylococcus and Methylocystis) and perchlorate-reducing bacteria (PRB; Denitratisoma and Dechloromonas) played active roles in mediating methane-driven perchlorate reduction. This partnership was further demonstrated by coculture experiments in which the aerobic methanotroph could produce acetate to support PRB to complete perchlorate reduction. Our findings advance the understanding of the methane-driven perchlorate reduction process and have implications for similar microbial consortia linking methane and chlorine biogeochemical cycles in natural environments.

5.
Environ Sci Technol ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39038214

RESUMO

Numerous US drinking water aquifers have been contaminated with per- and polyfluoroalkyl substances (PFAS) from fire-fighting and fire-training activities using aqueous film-forming foam (AFFF). These sites often contain other organic compounds, such as fuel hydrocarbons and methane, which may serve as primary substrates for cometabolic (i.e., nongrowth-linked) biotransformation reactions. This work investigates the abilities of AFFF site relevant bacteria (methanotrophs, propanotrophs, octane, pentane, isobutane, toluene, and ammonia oxidizers), known to express oxygenase enzymes when degrading their primary substrates, to biotransform perfluoroalkyl acid (PFAA) precursors to terminal PFAAs. Microcosms containing AFFF-impacted groundwater, 6:2 fluorotelomer sulfonate (6:2 FTS), or N-ethylperfluorooctane sulfonamidoethanol (EtFOSE) were inoculated with the aerobic cultures above and incubated for 4 and 8 weeks at 22 °C. Bottles were sacrificed, extracted, and subjected to target, nontarget, and suspect screening for PFAS. The PFAA precursors 6:2 FTS, N-sulfopropyldimethyl ammoniopropyl perfluorohexane sulfonamide (SPrAmPr-FHxSA), and EtFOSE transformed up to 99, 71, and 93%, respectively, and relevant daughter products, such as the 6:1 fluorotelomer ketone sulfonate (6:1 FTKS), were identified in quantities previously not observed, implicating oxygenase enzymes. This is the first report of a suite of site relevant PFAA precursors being transformed in AFFF-impacted groundwater by bacteria grown on substrates known to induce specific oxygenase enzymes. The data provide crucial insights into the microbial transformation of these compounds in the subsurface.

6.
Environ Res ; 250: 118390, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38331139

RESUMO

Wetlands are the largest natural sources of methane (CH4) emissions worldwide. Littoral wetlands of urban lakes represent an ecotone between aquatic and terrestrial ecosystems and are strongly influenced by water levels, environmental conditions, and anthropogenic activities. Despite these littoral zones being potential "hotspots" of CH4 emissions, the status of CH4 emissions therein and the role of physicochemical properties and microbial communities regulating these emissions remain unclear. This study compared the CH4 fluxes, physicochemical properties, and CH4-cycling microbial communities (methanogens and methanotrophs) of three zones (a non-flooded supralittoral zone, a semi-flooded eulittoral zone, and a flooded infralittoral zone) in the littoral wetlands of Lake Pipa, Jiangsu Province, China, for two seasons (summer and winter). The eulittoral zone was a CH4 source (median: 11.49 and 0.02 mg m-2 h-1 in summer and winter, respectively), whereas the supralittoral zone acted as a CH4 sink (median: -0.78 and -0.09 mg m-2 h-1 in summer and winter, respectively). The infralittoral zone shifted from CH4 sink to source between the summer (median: -10.65 mg m-2 h-1) and winter (median: 0.11 mg m-2 h-1). The analysis of the functional genes of methanogenesis (mcrA) and methanotrophy (pmoA) and path analysis showed that CH4 fluxes were strongly regulated by biotic factors (abundance of the mcrA gene and alpha diversity of CH4-cycling microbial communities) and abiotic factors (ammonia nitrogen, moisture, and soil organic carbon). In particular, biotic factors had a major influence on the variation in the CH4 flux, whereas abiotic factors had a minor influence. Our findings provide novel insights into the spatial and seasonal variations in CH4-cycling microbial communities and identify the key factors influencing CH4 fluxes in littoral wetlands. These results are important for managing nutrient inputs and regulating the hydrological regimes of urban lakes.


Assuntos
Inundações , Lagos , Metano , Microbiota , Estações do Ano , Áreas Alagadas , Metano/análise , Metano/metabolismo , Lagos/microbiologia , Lagos/química , China , Poluentes Atmosféricos/análise , Monitoramento Ambiental
7.
Environ Res ; 258: 119457, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906444

RESUMO

Mud volcanoes are dynamic geological features releasing methane (CH4), carbon dioxide (CO2), and hydrocarbons, harboring diverse methane and hydrocarbon-degrading microbes. However, the potential application of these microbial communities in chlorinated hydrocarbons bioremediation purposes such as trichloroethylene (TCE) has not yet been explored. Hence, this study investigated the mud volcano's microbial diversity functional potentiality in TCE degradation as well as their eco-physiological profiling using metabolic activity. Geochemical analysis of the mud volcano samples revealed variations in pH, temperature, and oxidation-reduction potential, indicating diverse environmental conditions. The Biolog Ecoplate™ carbon substrates utilization pattern showed that the Tween 80 was highly consumed by mud volcanic microbial community. Similarly, MicroResp® analysis results demonstrated that presence of additive C-substrates condition might enhanced the cellular respiration process within mud-volcanic microbial community. Full-length 16 S rRNA sequencing identified Proteobacteria as the dominant phylum, with genera like Pseudomonas and Hydrogenophaga associated with chloroalkane degradation, and methanotrophic bacteria such as Methylomicrobium and Methylophaga linked to methane oxidation. Functional analysis uncovered diverse metabolic functions, including sulfur and methane metabolism and hydrocarbon degradation, with specific genes involved in methane oxidation and sulfur metabolism. These findings provide insights into the microbial diversity and metabolic capabilities of mud volcano ecosystems, which could facilitate their effective application in the bioremediation of chlorinated compounds.

8.
Appl Microbiol Biotechnol ; 108(1): 47, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38175239

RESUMO

Candidatus Methylomirabilis-related bacteria conduct anaerobic oxidation of methane (AOM) coupling with NO2- reduction, and Candidatus Methanoperedens-related archaea perform AOM coupling with reduction of diverse electron acceptors, including NO3-, Fe (III), Mn (IV) and SO42-. Application of nitrogen fertilization favors the growth of these methanotrophs in agricultural fields. Here, we explored the vertical variations in community structure and abundance of the two groups of methanotrophs in a nitrogen-rich vegetable field via using illumina MiSeq sequencing and quantitative PCR. The retrieved Methylomirabilis-related sequences had 91.12%-97.32% identity to the genomes of known Methylomirabilis species, and Methanoperedens-related sequences showed 85.49%-97.48% identity to the genomes of known Methanoperedens species which are capable of conducting AOM coupling with reduction of NO3- or Fe (III). The Methanoperedens-related archaeal diversity was significantly higher than Methylomirabilis-related bacteria, with totally 74 and 16 operational taxonomic units, respectively. In contrast, no significant difference in abundance between the bacteria (9.19 × 103-3.83 × 105 copies g-1 dry soil) and the archaea (1.55 × 104-3.24 × 105 copies g-1 dry soil) was observed. Furthermore, the abundance of both groups of methanotrophs exhibited a strong vertical variation, which peaked at 30-40 and 20-30 cm layers, respectively. Soil water content and pH were the key factors influencing Methylomirabilis-related bacterial diversity and abundance, respectively. For the Methanoperedens-related archaea, both soil pH and ammonium content contributed significantly to the changes of these archaeal diversity and abundance. Overall, we provide the first insights into the vertical distribution and regulation of Methylomirabilis-related bacteria and Methanoperedens-related archaea in vegetable soils. KEY POINTS: • The archaeal diversity was significantly higher than bacterial. • There was no significant difference in the abundance between bacteria and archaea. • The abundance of bacteria and archaea peaked at 30-40 and 20-30 cm, respectively.


Assuntos
Agricultura , Solo , Bactérias/genética , Archaea/genética , Metano , Methanosarcinales , Nitrogênio , Verduras
9.
Antonie Van Leeuwenhoek ; 117(1): 60, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517574

RESUMO

The microbial diversity associated with terrestrial groundwater seepage through permafrost soils is tightly coupled to the geochemistry of these fluids. Terrestrial alkaline methane seeps from Lagoon Pingo, Central Spitsbergen (78°N) in Norway, with methane-saturated and oxygen-limited groundwater discharge providing a potential habitat for methanotrophy. Here, we report on the microbial community's comparative analyses and distribution patterns at two sites close to Lagoon Pingo's methane emission source. To target methane-oxidizing bacteria from this system, we analysed the microbial community pattern of replicate samples from two sections near the main methane seepage source. DNA extraction, metabarcoding and subsequent sequencing of 16S rRNA genes revealed microbial communities where the major prokaryotic phyla were Pseudomonadota (42-47%), Gemmatimonadota (4-14%) and Actinobacteriota (7-11%). Among the Pseudomonadota, members of the genus Methylobacter were present at relative abundances between 1.6 and 4.7%. Enrichment targeting the methane oxidising bacteria was set up using methane seep sediments as inoculum and methane as the sole carbon and energy source, and this resulted in the isolation of a novel psychrophilic methane oxidizer, LS7-T4AT. The optimum growth temperature for the isolate was 13 °C and the pH optimum was 8.0. The morphology of cells was short rods, and TEM analysis revealed intracytoplasmic membranes arranged in stacks, a distinctive feature for Type I methanotrophs in the family Methylomonadaceae of the class Gammaproteobacteria. The strain belongs to the genus Methylobacter based on high 16S rRNA gene similarity to the psychrophilic species of Methylobacter psychrophilus Z-0021T (98.95%), the psychrophilic strain Methylobacter sp. strain S3L5C (99.00%), and the Arctic mesophilic species of Methylobacter tundripaludum SV96T (99.06%). The genome size of LS7-T4AT was 4,338,157 bp with a G + C content of 47.93%. The average nucleotide identities (ANIb) of strain LS7-T4AT to 10 isolated strains of genus Methylobacter were between 75.54 and 85.51%, lower than the species threshold of 95%. The strain LS7-T4AT represents a novel Arctic species, distinct from other members of the genus Methylobacter, for which the name Methylobacter svalbardensis sp. nov. is proposed. The type of strain is LS7-T4AT (DSMZ:114308, JCM:39463).


Assuntos
Metano , Methylococcaceae , Metano/análise , Svalbard , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ácidos Graxos/análise , Filogenia , DNA Bacteriano/genética , DNA Bacteriano/química
10.
J Environ Manage ; 366: 121811, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39002456

RESUMO

Nowadays, the utilization of biogas for energy generation is hindered by the declining production costs of solar and wind power. A shift towards the valorization of biogas into ectoine, a highly valuable bioproduct priced at 1000 €â¸±kg-1, offers a novel approach to fostering a more competitive biogas market while contributing to carbon neutrality. This study evaluated the optimization of CH4 gas-liquid mass transfer in 10 L bubble column bioreactors for CH4 conversion into ectoine and hydroxyectoine using a mixed methanotrophic culture. The influence of the empty bed residence time (EBRTs of 27, 54, and 104 min) at different membrane diffuser pore sizes (0.3 and 0.6 mm) was investigated. Despite achieving CH4 elimination capacities (CH4-ECs) of 10-12 g⸱m-3⸱h-1, an EBRT of 104 min mediated CH4 limitation within the cultivation broth, resulting in a negligible biomass growth. Reducing the EBRT to 54 min entailed CH4-ECs of 21-24 g⸱m-3⸱h-1, concomitant to a significant increase in biomass growth (up to 0.17 g⸱L⸱d-1) and reaching maximum ectoine and hydroxyectoine accumulation of 79 and 13 mg⸱gVSS-1, respectively. Conversely, process operation at an EBRT of 27 min lead to microbial inhibition, resulting in a reduced biomass growth of 0.09 g⸱L⸱d-1 and an ectoine content of 47 mg⸱gVSS-1. While the influence of diffuser pore size was less pronounced compared to EBRT, the optimal process performance was observed with a diffuser pore size of 0.6 mm.

11.
Appl Environ Microbiol ; 89(1): e0188322, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36622175

RESUMO

Methanotrophs play key roles in global methane cycling and are promising platforms for methane bioconversion. However, major gaps existing in fundamental knowledge undermines understanding of these methane-consuming microorganisms. To associate genes with a phenotype at the genome-wide level, we developed a Cre/lox-mediated method for constructing a large-scale CRISPRi library in a model methanotroph Methylotuvimicrobium buryatense 5GB1C. The efficiency of this Cre mediated integration method was up to a level of 105 CFU/µg DNA. Targeting 4,100 predicted protein-coding genes, our CRISPRi pooled screening uncovered 788 core genes for the growth of strain 5GB1C using methane. The core genes are highly consistent with the gene knockout results, indicating the reliability of the CRISPRi screen. Insights from the core genes include that annotated isozymes generally exist in metabolic pathways and many core genes are hypothetical genes. This work not only provides functional genomic data for both fundamental research and metabolic engineering of methanotrophs, but also offers a method for CRISPRi library construction. IMPORTANCE Due to their key role in methane cycling and their industrial potential, methanotrophs have drawn increasing attention. Genome-wide experimental approaches for gene-phenotype mapping accelerate our understanding and engineering of a bacterium. However, these approaches are still unavailable in methanotrophs. This work has two significant implications. First, the core genes identified here provide functional genetic basics for complete reconstruction of the metabolic network and afford more clues for knowledge gaps. Second, the Cre-mediated knock-in method developed in this work enables large-scale DNA library construction in methanotrophs; the CRISPRi library can be used to screen the genes associated with special culture conditions.


Assuntos
Metano , Reprodutibilidade dos Testes , Biblioteca Gênica , Metano/metabolismo
12.
Appl Environ Microbiol ; 89(6): e0011323, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37184406

RESUMO

Methylocystis spp. are known to have a low salt tolerance (≤1.0% NaCl). Therefore, we tested various amino acids and other well-known osmolytes for their potential to act as an osmoprotectant under otherwise growth-inhibiting NaCl conditions. Adjustment of the medium to 10 mM asparagine had the greatest osmoprotective effect under severe salinity (1.50% NaCl), leading to partial growth recovery of strain SC2. The intracellular concentration of asparagine increased to 264 ± 57 mM, with a certain portion hydrolyzed to aspartate (4.20 ± 1.41 mM). In addition to general and oxidative stress responses, the uptake of asparagine specifically induced major proteome rearrangements related to the KEGG level 3 categories of "methane metabolism," "pyruvate metabolism," "amino acid turnover," and "cell division." In particular, various proteins involved in cell division (e.g., ChpT, CtrA, PleC, FtsA, FtsH1) and peptidoglycan synthesis showed a positive expression response. Asparagine-derived 13C-carbon was incorporated into nearly all amino acids. Both the exometabolome and the 13C-labeling pattern suggest that in addition to aspartate, the amino acids glutamate, glycine, serine, and alanine, but also pyruvate and malate, were most crucially involved in the osmoprotective effect of asparagine, with glutamate being a major hub between the central carbon and amino acid pathways. In summary, asparagine induced significant proteome rearrangements, leading to major changes in central metabolic pathway activity and the sizes of free amino acid pools. In consequence, asparagine acted, in part, as a carbon source for the growth recovery of strain SC2 under severe salinity. IMPORTANCE Methylocystis spp. play a major role in reducing methane emissions into the atmosphere from methanogenic wetlands. In addition, they contribute to atmospheric methane oxidation in upland soils. Although these bacteria are typical soil inhabitants, Methylocystis spp. are thought to have limited capacity to acclimate to salt stress. This called for a thorough study into potential osmoprotectants, which revealed asparagine as the most promising candidate. Intriguingly, asparagine was taken up quantitatively and acted, at least in part, as an intracellular carbon source under severe salt stress. The effect of asparagine as an osmoprotectant for Methylocystis spp. is an unexpected finding. It may provide Methylocystis spp. with an ecological advantage in wetlands, where these methanotrophs colonize the roots of submerged vascular plants. Collectively, our study offers a new avenue into research on compounds that may increase the resilience of Methylocystis spp. to environmental change.


Assuntos
Asparagina , Methylocystaceae , Asparagina/metabolismo , Methylocystaceae/metabolismo , Ácido Aspártico , Proteoma/metabolismo , Cloreto de Sódio/metabolismo , Carbono/metabolismo , Aminoácidos/metabolismo , Metano/metabolismo , Estresse Salino , Piruvatos/metabolismo
13.
Mol Ecol ; 32(12): 3257-3275, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36896778

RESUMO

Deforestation threatens the integrity of the Amazon biome and the ecosystem services it provides, including greenhouse gas mitigation. Forest-to-pasture conversion has been shown to alter the flux of methane gas (CH4 ) in Amazonian soils, driving a switch from acting as a sink to a source of atmospheric CH4 . This study aimed to better understand this phenomenon by investigating soil microbial metagenomes, focusing on the taxonomic and functional structure of methane-cycling communities. Metagenomic data from forest and pasture soils were combined with measurements of in situ CH4 fluxes and soil edaphic factors and analysed using multivariate statistical approaches. We found a significantly higher abundance and diversity of methanogens in pasture soils. As inferred by co-occurrence networks, these microorganisms seem to be less interconnected within the soil microbiota in pasture soils. Metabolic traits were also different between land uses, with increased hydrogenotrophic and methylotrophic pathways of methanogenesis in pasture soils. Land-use change also induced shifts in taxonomic and functional traits of methanotrophs, with bacteria harbouring genes encoding the soluble form of methane monooxygenase enzyme (sMMO) depleted in pasture soils. Redundancy analysis and multimodel inference revealed that the shift in methane-cycling communities was associated with high pH, organic matter, soil porosity and micronutrients in pasture soils. These results comprehensively characterize the effect of forest-to-pasture conversion on the microbial communities driving the methane-cycling microorganisms in the Amazon rainforest, which will contribute to the efforts to preserve this important biome.


Assuntos
Microbiota , Solo , Solo/química , Metano/metabolismo , Florestas , Genes Bacterianos , Microbiota/genética , Microbiologia do Solo
14.
Glob Chang Biol ; 29(10): 2714-2731, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36811358

RESUMO

Thermokarst lagoons represent the transition state from a freshwater lacustrine to a marine environment, and receive little attention regarding their role for greenhouse gas production and release in Arctic permafrost landscapes. We studied the fate of methane (CH4 ) in sediments of a thermokarst lagoon in comparison to two thermokarst lakes on the Bykovsky Peninsula in northeastern Siberia through the analysis of sediment CH4 concentrations and isotopic signature, methane-cycling microbial taxa, sediment geochemistry, lipid biomarkers, and network analysis. We assessed how differences in geochemistry between thermokarst lakes and thermokarst lagoons, caused by the infiltration of sulfate-rich marine water, altered the microbial methane-cycling community. Anaerobic sulfate-reducing ANME-2a/2b methanotrophs dominated the sulfate-rich sediments of the lagoon despite its known seasonal alternation between brackish and freshwater inflow and low sulfate concentrations compared to the usual marine ANME habitat. Non-competitive methylotrophic methanogens dominated the methanogenic community of the lakes and the lagoon, independent of differences in porewater chemistry and depth. This potentially contributed to the high CH4 concentrations observed in all sulfate-poor sediments. CH4 concentrations in the freshwater-influenced sediments averaged 1.34 ± 0.98 µmol g-1 , with highly depleted δ13 C-CH4 values ranging from -89‰ to -70‰. In contrast, the sulfate-affected upper 300 cm of the lagoon exhibited low average CH4 concentrations of 0.011 ± 0.005 µmol g-1 with comparatively enriched δ13 C-CH4 values of -54‰ to -37‰ pointing to substantial methane oxidation. Our study shows that lagoon formation specifically supports methane oxidizers and methane oxidation through changes in pore water chemistry, especially sulfate, while methanogens are similar to lake conditions.


Assuntos
Sedimentos Geológicos , Microbiota , Metano/análise , Anaerobiose , Lagos , Água/análise , Sulfatos/análise
15.
Adv Appl Microbiol ; 124: 119-146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37597946

RESUMO

Methane is abundant in nature, and excessive emissions will cause the greenhouse effect. Methane is also an ideal carbon and energy feedstock for biosynthesis. In the review, the microorganisms, metabolism, and enzymes for methane utilization, and the advances of conversion to value-added bioproducts were summarized. First, the physiological characteristics, classification, and methane oxidation process of methanotrophs were introduced. The metabolic pathways for methane utilization and key intermediate metabolites of native and synthetic methanotrophs were summarized. Second, the enzymatic properties, crystal structures, and catalytic mechanisms of methane-oxidizing and metabolizing enzymes in methanotrophs were described. Third, challenges and prospects in metabolic pathways and enzymatic catalysis for methane utilization and conversion to value-added bioproducts were discussed. Finally, metabolic engineering of microorganisms for methane biooxidation and bioproducts synthesis based on different pathways were summarized. Understanding the metabolism and challenges of microbial methane utilization will provide insights into possible strategies for efficient methane-based synthesis.


Assuntos
Carbono , Engenharia Metabólica , Catálise , Efeito Estufa , Metano
16.
Microb Ecol ; 86(2): 1447-1452, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36409329

RESUMO

Methane (CH4) oxidation by methanotrophic bacteria in forest soils is the largest biological sink for this greenhouse gas on earth. However, the compaction of forest soils by logging traffic has previously been shown to reduce the potential rate of CH4 uptake. This change could be due to not only a decrease of methanotrophs but also an increase in methanogen activity. In this study, we investigated whether the decrease in CH4 uptake by forest soils, subjected to compaction by heavy machinery 7 years earlier, can be explained by quantitative and qualitative changes in methanogenic and methanotrophic communities. We measured the functional gene abundance and polymorphism of CH4 microbial oxidizers (pmoA) and producers (mcrA) at different depths and during different seasons. Our results revealed that the soil compaction effect on the abundance of both genes depended on season and soil depth, contrary to the effect on gene polymorphism. Bacterial pmoA abundance was significantly lower in the compacted soil than in the controls across all seasons, except in winter in the 0-10 cm depth interval and in summer in the 10-20 cm depth interval. In contrast, archaeal mcrA abundance was higher in compacted than control soil in winter and autumn in the two soil depths investigated. This study shows the usefulness of using pmoA and mcrA genes simultaneously in order to better understand the spatial and temporal variations of soil CH4 fluxes and the potential effect of physical disturbances.


Assuntos
Euryarchaeota , Solo , Estações do Ano , Bactérias/genética , Oxirredução , Florestas , Metano , Microbiologia do Solo
17.
Microb Ecol ; 86(4): 3057-3067, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37843656

RESUMO

Subglacial environments provide conditions suitable for the microbial production of methane, an important greenhouse gas, which can be released from beneath the ice as a result of glacial melting. High gaseous methane emissions have recently been discovered at Russell Glacier, an outlet of the southwestern margin of the Greenland Ice Sheet, acting not only as a potential climate amplifier but also as a substrate for methane consuming microorganisms. Here, we describe the composition of the microbial assemblage exported in meltwater from the methane release hotspot at Russell Glacier and its changes over the melt season and as it travels downstream. We found that a substantial part (relative abundance 27.2% across the whole dataset) of the exported assemblage was made up of methylotrophs and that the relative abundance of methylotrophs increased as the melt season progressed, likely due to the seasonal development of the glacial drainage system. The methylotrophs were dominated by representatives of type I methanotrophs from the Gammaproteobacteria; however, their relative abundance decreased with increasing distance from the ice margin at the expense of type II methanotrophs and/or methylotrophs from the Alphaproteobacteria and Betaproteobacteria. Our results show that subglacial methane release hotspot sites can be colonized by microorganisms that can potentially reduce methane emissions.


Assuntos
Camada de Gelo , Metano , Groenlândia , Camada de Gelo/microbiologia , Metano/análise , Clima , Estações do Ano
18.
Environ Sci Technol ; 57(6): 2647-2659, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36719133

RESUMO

CH4 emission in the Arctic has large uncertainty due to the lack of mechanistic understanding of the processes. CH4 oxidation in Arctic soil plays a critical role in the process, whereby removal of up to 90% of CH4 produced in soils by methanotrophs can occur before it reaches the atmosphere. Previous studies have reported on the importance of rising temperatures in CH4 oxidation, but because the Arctic is typically an N-limited system, fewer studies on the effects of inorganic nitrogen (N) have been reported. However, climate change and an increase of available N caused by anthropogenic activities have recently been reported, which may cause a drastic change in CH4 oxidation in Arctic soils. In this study, we demonstrate that excessive levels of available N in soil cause an increase in net CH4 emissions via the reduction of CH4 oxidation in surface soil in the Arctic tundra. In vitro experiments suggested that N in the form of NO3- is responsible for the decrease in CH4 oxidation via influencing soil bacterial and methanotrophic communities. The findings of our meta-analysis suggest that CH4 oxidation in the boreal biome is more susceptible to the addition of N than in other biomes. We provide evidence that CH4 emissions in Arctic tundra can be enhanced by an increase of available N, with profound implications for modeling CH4 dynamics in Arctic regions.


Assuntos
Nitrogênio , Solo , Nitrogênio/análise , Metano/análise , Tundra , Ecossistema , Regiões Árticas , Microbiologia do Solo
19.
Environ Sci Technol ; 57(51): 21715-21726, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38079577

RESUMO

Microbial methane oxidation coupled to a selenate reduction process has been proposed as a promising solution to treat contaminated water, yet the underlying microbial mechanisms are still unclear. In this study, a novel methane-based membrane bioreactor system integrating hollow fiber membranes for efficient gas delivery and ultrafiltration membranes for biomass retention was established to successfully enrich abundant suspended cultures able to perform methane-dependent selenate reduction under oxygen-limiting conditions. The microbial metabolic mechanisms were then systematically investigated through a combination of short-term batch tests, DNA-based stable isotope probing (SIP) microcosm incubation, and high-throughput sequencing analyses of 16S rRNA gene and functional genes (pmoA and narG). We confirmed that the methane-supported selenate reduction process was accomplished by a microbial consortia consisting of type-II aerobic methanotrophs and several heterotrophic selenate reducers. The mass balance and validation tests on possible intermediates suggested that methane was partially oxidized into acetate under oxygen-limiting conditions, which was consumed as a carbon source for selenate-reducing bacteria. High-throughput 16S rRNA gene sequencing, DNA-SIP incubation with 13CH4, and subsequent functional gene (pmoA and narG) sequencing results collectively proved that Methylocystis actively executed partial methane oxidation and Acidovorax and Denitratisoma were dominant selenate-reducing bacteria, thus forming a syntrophic partnership to drive selenate reduction. The findings not only advance our understanding of methane oxidation coupled to selenate reduction under oxygen-limiting conditions but also offer useful information on developing methane-based biotechnology for bioremediation of selenate-contaminated water.


Assuntos
Bactérias , Metano , Ácido Selênico/metabolismo , RNA Ribossômico 16S/genética , Bactérias/genética , Oxirredução , Isótopos/metabolismo , Reatores Biológicos , Oxigênio , Água
20.
Environ Res ; 224: 115547, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36822529

RESUMO

Submerged macrophytes provide niches for epiphytic microbes (including aerobic methanotrophs) growth. However, little is known about the impacts of submerged macrophytes growth status and nutrients loadings on methanotroph community and methane release in wetlands. In the present study, methane fluxes, bacterial and methanotroph community in epiphytic biofilm, and environmental parameters were investigated during Vallisneria natans senescence in wetlands under low (VnL) and high (VnH) nutrients for seven weeks. Relative conductivity and concentration of H2O2, total chlorophyll and malondialdehyde were higher in leaves of V. natans in VnH than VnL at the same sampling time. Nutrients loading increased methane fluxes in treatments with or without (Control) macrophytes, while healthy V. natans plants reduced the methane flux and nutrients concentration in water columns. CH4 fluxes were positively correlated to temperature and COD (p < 0.05). Methane oxidation rates were 3.04-31.68 µmol methane mg-1 fresh weight of V. natans leaves - epiphytic biofilm within 1 h. Proteobacteria, Cyanobacteria, Bacteroidetes, Verrucomicrobia, Planctomycetes, Actinobacteria and Acidobacteria were dominant phylum in all epiphytic biofilms. The mean abundances of pmoA/16S rRNA were higher in VnL than VnH. According to Illumina sequencing results of pmoA gene, γ-proteobacteria and α-proteobacteria were the dominant methanotroph class in epiphytic biofilm from VnH and VnL, respectively. Among seven detected methanotrophic genera, Methylomonas was significantly higher in VnH than VnL. Network analysis revealed that there were much closer relationships between the environmental parameters and epiphytic bacterial community in VnH than in VnL. COD and MDA were negatively correlated with Methyloglobulus, Methylosarcina, Methylobacter and Methylocystis, but positively correlated with Methylomonas and Methylosinus. This study highlights that methanotrophs in epiphytic biofilm play important roles in methane-oxidizing, which can be affected by plant physiological status and environmental parameters.


Assuntos
Cianobactérias , Áreas Alagadas , RNA Ribossômico 16S , Peróxido de Hidrogênio , Nutrientes , Metano
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa