Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Environ Sci Technol ; 57(38): 14280-14288, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37706300

RESUMO

Methoxyphenols and nitroaromatic compounds (NACs) have strong atmospheric radiative forcing effects and adverse effects on human health. They are emitted from the incomplete combustion of solid fuels and are secondarily formed through photochemical reactions. Here, an on-site study was conducted to determine the primary emission and secondary formation of particulate phase products from a variety of solid fuels through a potential aerosol mass-oxidation flow reactor. Emission factors for total quantified methoxyphenols and NACs (i.e., EF∑Methoxyphenols and EF∑NACs) varied by 2 orders of magnitude among different fuels, which were greatly influenced by volatile matter, incomplete combustibility, flame intensity, and combustion temperature. Guaiacol and 4-nitro-2-vinylphenol were used as tracers for primary organic aerosol due to the low aged-to-fresh ratios (0.21-0.97), while 4-methyl-guaiacol, 4-ethyl-guaiacol, eugenol, 4-methyl-syringol, isoeugenol, acetovanillone, syringaldehyde, homovanillin acid, vanillin acid, and syringic acid were identified as secondary organic aerosol (SOA) (aged-to-fresh ratios between 1.90 and 4.20). During simulated aging, the -CHO group reacted with the hydroxyl radical (•OH) to form the -COOH group, but there was no correlation between syringol and 4-nitrosyringol, implying that •OH is the main reactant rather than the nitriate radical (•NO3) in the atmospheric aging processes of methoxyphenols. Aging caused substantially different emission profiles due to variable photochemical reaction properties. The fresh EFs for guaiacol emitted from the biomass burning ranged from 3.80 ± 0.44 to 26.2 ± 5.40 mg·kg-1, which were much higher than those in coal combustions (of 0.03 ± 0.01 to 1.42 ± 0.28 mg·kg-1). However, the aged EFs (EFaged) for guaiacol was 1.02 ± 0.06 to 1.61 ± 0.11 mg·kg-1 in most biomass combustions, which were comparable with those of the bituminous chunk (1.20 ± 0.16 mg·kg-1). Therefore, guaiacol, a traditional biomass marker, is not an ideal tracer for aged PM2.5 emitted from biomass burning. Indeed, the syringol/guaiacol and syringol/4-nitrosyringol ratios were found to be more suitable and efficient to be used in source characterization.


Assuntos
Envelhecimento , Pirogalol , Humanos , Idoso , Biomassa , Carvão Mineral
2.
Environ Sci Technol ; 57(23): 8785-8795, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37269319

RESUMO

The photodegradation of vanillin, as a proxy of methoxyphenols emitted by biomass burning, was investigated in artificial snow at 243 K and in liquid water at room temperature. Nitrite (NO2-) was used as a photosensitizer of reactive oxygen and nitrogen species under UVA light, because of its key photochemical role in snowpacks and atmospheric ice/waters. In snow and in the absence of NO2-, slow direct photolysis of vanillin was observed due to back-reactions taking place in the quasi-liquid layer at the ice-grain surface. The addition of NO2- made the photodegradation of vanillin faster, because of the important contribution of photoproduced reactive nitrogen species in vanillin phototransformation. These species triggered both nitration and oligomerization of vanillin in irradiated snow, as the identified vanillin by-products showed. Conversely, in liquid water, direct photolysis was the main photodegradation pathway of vanillin, even in the presence of NO2-, which had negligible effects on vanillin photodegradation. The results outline the different role of iced and liquid water in the photochemical fate of vanillin in different environmental compartments.


Assuntos
Nitritos , Poluentes Químicos da Água , Fotólise , Gelo , Neve , Dióxido de Nitrogênio , Água , Poluentes Químicos da Água/análise
3.
Int J Mol Sci ; 24(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37511098

RESUMO

The reductive catalytic fractionation of flax shives in the presence of bimetallic NiRu catalysts supported on oxidized carbon materials (CM) such as mesoporous Sibunit and carbon mesostructured by KAIST (CMK-3) was studied. The catalysts based on CMK-3 were characterized by a higher surface area (1216 m2/g) compared to the ones based on Sibunit (315 m2/g). The catalyst supported on CMK-3 (10Ni3RuC400) was characterized by a more uniform distribution of Ni particles, in contrast to the Sibunit-based catalyst (10Ni3RuS450), on the surface of which large agglomerated particles (300-400 nm) were presented. The bimetallic catalysts were found to be more selective towards propanol-substituted methoxyphenols compared to monometallic Ru/C and Ni/C catalysts. A high yield of monomers (up to 26 wt%, including 17% 4-propanol guaiacol) was obtained in the presence of a 10Ni3RuC400 catalyst based on CMK-3.


Assuntos
Etanol , Linho , Catálise , 1-Propanol , Propanóis , Carbono
4.
Environ Sci Technol ; 56(5): 2897-2916, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35188384

RESUMO

Methoxyphenols emitted from lignin pyrolysis are widely used as potential tracers for biomass burning, especially for wood burning. In the past ten years, their atmospheric reactivity has attracted increasing attention from the academic community. Thus, this work provides an extensive review of the atmospheric reactivity of methoxyphenols, including their gas-phase, particle-phase, and aqueous-phase reactions, as well as secondary organic aerosol (SOA) formation. Emphasis was placed on kinetics, mechanisms, and SOA formation. The reactions of methoxyphenols with OH and NO3 radicals were the predominant degradation pathways, which also had significant SOA formation potentials. The reaction mechanism of methoxyphenols with O3 is the cycloaddition of O3 to the benzene ring or unsaturated C═C bond, while H-abstraction and radical adduct formation are the main degradation channels of methoxyphenols by OH and NO3 radicals. Based on the published studies, knowledge gaps were pointed out. Future studies including experimental simulations and theoretical calculations of other representative kinds of methoxyphenols should be systematically carried out under complex pollution conditions. In addition, the ecotoxicity of their degradation products and their contribution to SOA formation from the atmospheric aging of biomass-burning plumes should be seriously assessed.


Assuntos
Madeira , Aerossóis/química , Biomassa , Cinética
5.
J Sep Sci ; 43(5): 877-885, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31837095

RESUMO

An efficient ultra high performance liquid chromatography method of separation was developed for the analysis of six important methoxyphenol derivatives involved in the eugenol catabolic pathway. In the present study, an Acquity UPLC BEH C18 column was used for the chromatographic separation of the industrially important phenolic compounds such as vanillin, vanillic acid, ferulic acid, coniferyl alcohol, and coniferyl aldehyde obtained during microbial transformation of eugenol. Eluted components were identified using the dual wavelength (254 and 310 nm) UV detector. A gradient method of elution using mobile phase of aqueous 1 mM trifluoroacetic acid (Solvent A) and methanol (Solvent B) at a flow rate of 0.3 mL/min separated all the five intermediate methoxyphenol derivatives along with their precursor eugenol within 15 min with stable baseline resolution. Method validation was performed for the accurate quantification of vanillin, coniferyl aldehyde, and eugenol using the parameters of linearity, specificity, precision, limit of detection, limit of quantification, and robustness. The developed method would be helpful for clear separation and identification of the five most important intermediate metabolites of the eugenol catabolism pathway.


Assuntos
Eugenol/metabolismo , Fenóis/análise , Cromatografia Líquida de Alta Pressão , Eugenol/química , Fenóis/metabolismo
6.
J Sep Sci ; 37(13): 1561-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24723391

RESUMO

A gas chromatography with ion trap mass spectrometry method has been developed and validated for the analysis of 27 polar organic compounds in atmospheric aerosols. The target analytes were low-molecular-weight carboxylic acids and methoxyphenols, as relevant markers of source emissions and photochemical processes of organic aerosols. The operative parameters were optimized in order to achieve the best sensitivity and selectivity for the analysis. In comparison with the previous gas chromatography with mass spectrometry procedure based on single ion monitoring detection, the tandem mass spectrometry technique increased the analytical sensitivity by reducing detection limits for standard solutions from 1-2.6 to 0.1-0.4 ng/µL ranges (concentrations in the injected solution). In addition, it enhanced selectivity by reducing matrix interferences and chemical noise in the chromatogram. The applicability of the developed method in air quality monitoring campaigns was effectively checked by analyzing environmental samples collected in the Po Valley (Northern Italy) in different seasons. The obtained results indicate that the ion trap mass spectrometer may be an ideal alternative to high-resolution mass spectrometers for the user-friendly and cost-effective determination of a wide range of molecular tracers in airborne particulate matter.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos/análise , Monitoramento Ambiental , Material Particulado/análise
7.
Sci Total Environ ; 946: 174317, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38960189

RESUMO

Lignin is an abundant and recalcitrant biopolymer of major relevance as soil organic matter (SOM) component playing a significant role in its stabilization. In this work, a factorial field experiment was established, where three climatic treatments (W, warming; D, drought; W + D, warming + drought), mimicking future climate change scenarios were installed over five years in a Mediterranean savannah "dehesa", accounting for its landscape diversity (under the tree canopy and in open grassland). A combination of analytical pyrolysis (Py-GC/MS) and the study of biogeochemical proxies based on lignin monomers is used for the direct detection of lignin-derived phenols and to infer possible shifts in lignin dynamics in soil. A total of 27 main lignin-derived methoxyphenols were identified, exhibiting different patterns and proportions, mainly driven by the effect of habitat, hence biomass inputs to SOM. An accelerated decomposition of lignin moieties -(exhibited by higher LG/LS and Al/K + Ac ratios)- is particularly exacerbated by the effect of all climatic treatments. There is also an overall effect on increasing lignin oxidation of side chain in syringyl units, especially under the tree canopy due to the alteration in biomass degradation and potential stimulation of enzyme activities. Conversely, in open grassland these effects are slower since the microbial community is expected to be already adapted to harsher conditions. Our findings suggests that climate change-related temperature and soil moisture deviations impact soil lignin decomposition in dehesas threatening this productive Mediterranean agroecosystem and affecting the mechanism of soil carbon storage.

8.
Food Chem X ; 23: 101573, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39050678

RESUMO

Antioxidants in nutrition are a widely discussed topic. In this study, a synergistic effect was observed for 13 selected substances - antioxidants and potential synergists, whereby two substances were mixed in the same concentration ratio of 1:1. The antioxidant capacity (AC) of the mixtures was determined using the FRAP method. The AC measured was compared with a theoretical AC value (as only additive effect) to calculate the synergistic or antagonistic effect. Out of 78 possible combinations, a synergistic effect (SE) was detected in 72. For the 10 combinations, the SE was more than twice that of the pure substances. The largest synergistic effect was exhibited by vanillin and 4-hydroxybenzoic acid with increases even above 200% compared to the pure substances. Some of the phenolic substances that were subject to measurement can be used for the fortification of fruit juices.

9.
Chemosphere ; 295: 133860, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35124090

RESUMO

The changes in optical properties and chemical compositions of methoxyphenols, which acted as an important aromatic compound from the biomass burning, were investigated in the presence of Fe(III)-carboxylates under aqueous phase conditions. The light was confirmed to be a key factor for stimulating the reaction of methoxyphenols and Fe(III)-carboxylates. The photoinduced evolution of optical properties of methoxyphenols was dependent on various factors, including irradiation intensity, types of carboxylates, dissolved oxygen and pH. The changes in the mass absorption efficiency at 306 nm (MAE306) positively relied on irradiation intensity and dissolved oxygen. The acceleration effects of carboxylates on the decreases in MAE306 of methoxyphenols followed the order of oxalate > citrate > malonate. The change amplitude of MAE306 decreased with an increasing pH (3.5-9), while that of the mass absorption efficiency at 364 nm (MAE364) increased with pH ranging from 3.5 to 7. The compositional evolutions of methoxyphenols by the photochemical aging were analyzed with the attenuated total reflection infrared spectroscopy (ATR-IR), confirming the decrease of CO groups and the increase of O-H and C-O groups. The photochemical reaction pathways of methoxyphenols with Fe(III)-carboxylates were proposed according to optical properties and compositions measurements.


Assuntos
Ácidos Carboxílicos , Compostos Férricos , Ácidos Carboxílicos/química , Ácido Cítrico , Compostos Férricos/química , Oxalatos/química , Água/química
10.
Chemosphere ; 255: 126893, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32402872

RESUMO

Syringol and syringaldehyde are widely present pollutants in atmosphere and wastewater due to lignin pyrolysis and draining of pulp mill effluents. The hydroxylation degradation mechanisms and kinetics and health effect assessment of them under high and low-NOx regimes in atmosphere and wastewater have been studied theoretically. The effect of pH on reaction mechanisms and rate constants in their ·OH-initiated degradation processes has been fully investigated. Results have suggested that aqueous solution played a positive role in the ·OH-initiated degradation reactions by decreasing the energy barriers of most reactions and changing the reactivity order of initial reactions. For Sy- and Sya- (anionic species of syringol and syringaldehyde), most initial reaction routes were more likely to occur than that of HSy and Hsya (neutral species of syringol and syringaldehyde). As the pH increased from 1 to 14, the overall rate constants (at 298 K) of syringol and syringaldehyde with ·OH in wastewater increased from 5.43 × 1010 to 9.87 × 1010 M-1 s-1 and from 3.70 × 1010 to 1.14 × 1011 M-1 s-1, respectively. In the NOx-rich environment, 4-nitrosyringol was the most favorable product, while ring-opening oxygenated chemicals were the most favorable products in the NOx-poor environment. On the whole, the NOx-poor environment could decrease the toxicities during the hydroxylation processes of syringol and syringaldehyde, which was the opposite in a NOx-rich environment. ·OH played an important role in the methoxyphenols degradation and its conversion into harmless compounds in the NOx-poor environment.


Assuntos
Benzaldeídos/química , Pirogalol/análogos & derivados , Atmosfera/química , Concentração de Íons de Hidrogênio , Cinética , Lignina/química , Oxirredução , Oxigênio , Pirogalol/química , Águas Residuárias , Água
11.
Int J Biol Macromol ; 151: 1099-1107, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31751732

RESUMO

We studied the laccase-catalysed oxygenation of methoxyphenolic food ingredients, such as 2-methoxyphenol (guaiacol) and 2,6-dimethoxyphenol (syringol), isomers such as 3- and 4-methoxyphenol, and 2,3-, 3,4- and 3,5-dimethoxyphenol. These methoxyphenolic substrates generate unstable free radicals, which leads to the erroneous determination of steady state rates. The addition of small quantities of ascorbic acid as coupling reagent generates a lag period because it reduces free radicals to methoxyphenols. Measurement of the length of the lag period provides the reliable determination of true steady state rates. We describe the application of this chronometric method to the kinetic characterization of the oxidation of the above methoxyphenolic substrates by Trametes versicolor laccase.


Assuntos
Ensaios Enzimáticos/métodos , Ingredientes de Alimentos/análise , Lacase/química , Fenóis/análise , Ascorbato Oxidase/química , Ativação Enzimática , Concentração de Íons de Hidrogênio , Isomerismo , Cinética , Estrutura Molecular , Análise Espectral , Especificidade por Substrato
12.
Sci Total Environ ; 691: 1155-1161, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31466197

RESUMO

The introduction of coniferous species in former deciduous forests may exert changes in soil organic matter, particularly in its molecular composition. In this work, pyrolysis-gas chromatography-mass spectrometry was used to study changes in SOM quality related to the centennial afforestation of Scots pine in an area formerly covered by European beech forest in the NE-flank of the Moncayo Natural Park (NE-Spain). For each soil profile three organic layers (fresh litter, fragmented litter and humified litter) and mineral soil horizons (Ah, E, Bhs and C) were studied. A total of 128 compounds were identified in the pyrograms, and composition differences were detected among the organic and mineral soil layers as well as between soils under beech and pine, for the main compound classes: nitrogen compounds, aromatics, lignin methoxyphenols, polycyclic aromatic hydrocarbons, lipids and polysaccharide-derived moieties. Such chemical differences were found to be derived from the biomass composition of the predominant vegetation type that was incorporated into the soil and from its progression into the soil profile. The analysis of the distribution of alkanes indicated higher SOM stabilization in the native beech forest soil. The signal of beech biomarkers (long chain n-alkanes C31-C33) found in the pine E horizon indicates the permanence of SOM derived from the natural forest ca. 100 years after the afforestation.


Assuntos
Fagus/crescimento & desenvolvimento , Florestas , Pinus sylvestris/crescimento & desenvolvimento , Solo/química , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Pirólise
13.
Chemosphere ; 209: 560-567, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29945049

RESUMO

Methoxyphenols as the potential tracers for wood smoke emissions, are emitted into the atmosphere in large quantities but their atmospheric chemical behaviors have not been well characterized. In this work, heterogeneous kinetics of methoxyphenols in the OH-initiated reactions was investigated using a flow reactor under different experimental conditions. The average second-order rate constants (k2) of vanillic acid (VA), coniferyl aldehyde (CA), and syringaldehyde (SA) were (4.72 ±â€¯0.51) × 10-12, (10.59 ±â€¯0.50) × 10-12, (12.25 ±â€¯0.60) × 10-12 cm3 molecule-1 s-1, respectively, obtained at relative humidity (RH) and temperature of 40% and 25 °C. In addition, the results showed that high temperature played a positive role in promoting these reactions while high RH had an inhibiting impact. The k2 values of VA, CA, and SA at 40% RH and different temperature followed the Arrhenius expressions, i.e., k2 = (2.45 ±â€¯0.40) × 10-10exp [-(1170.73 ±â€¯47.35)/T], k2 = (6.40 ±â€¯0.26) × 10-10exp [-(1516.16 ±â€¯13.71)/T], and k2 = (1.02 ±â€¯0.13) × 10-9exp [-(1310.79 ±â€¯36.75)/T], respectively. Based on the determined rate constants, the atmospheric lifetimes of these three methoxyphenols ranged from 0.54 to 2.18 d under different conditions. The experimental results indicate that OH radicals might play an important role in controlling the atmospheric lifetimes of methoxyphenols, and also help to further cognize the chemical behaviors of methoxyphenols in the atmosphere.


Assuntos
Acroleína/análogos & derivados , Benzaldeídos/química , Radical Hidroxila/química , Fenóis/química , Ácido Vanílico/química , Acroleína/química , Atmosfera , Cinética , Temperatura
14.
Environ Pollut ; 243(Pt B): 1772-1780, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30408864

RESUMO

Creosol and 4-ethylguaiacol are two important methoxyphenols, lignin pyrolysis products, which are discharge into the atmosphere in large quantities. In this work, theoretical calculations of the reaction mechanism towards the two compounds with NO3 radicals was performed using DFT method. The rate constants and toxicity assessment were also investigated. The atmospheric lifetime for creosol and 4-ethylguaiacol were 0.82 and 0.19 h, respectively. A new reaction pathway was proposed for the transformation of methoxyl into hydroxyl, which has not yet been clarified in previous studies. The toxicity of methoxyphenols and their degradation products is closely related to their hydrophobicity. Although most degradation products are less toxic, they also should be pay more attention, especially for nitro-substituents. A new reaction pathway was proposed for the transformation of methoxyl into hydroxyl. The toxicity is closely related to their hydrophobicity.


Assuntos
Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Cresóis/química , Guaiacol/análogos & derivados , Radical Hidroxila/química , Nitratos/química , Atmosfera , Guaiacol/química , Cinética , Modelos Teóricos , Óxidos de Nitrogênio/química
15.
J Chromatogr A ; 1508: 130-137, 2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28610797

RESUMO

The variable extent to which environmental factors are involved in soil carbon storage is currently a subject of controversy. In fact, justifying why some soils accumulate more organic matter than others is not trivial. Some abiotic factors such as organo-mineral associations have classically been invoked as the main drivers for soil C stabilization. However, in this research indirect evidences based on correlations between soil C storage and compositional descriptors of the soil organic matter are presented. It is assumed that the intrinsic structure of soil organic matter should have a bearing in the soil carbon storage. This is examined here by focusing on the methoxyphenols released by direct pyrolysis from a wide variety of topsoil samples from continental Mediterranean ecosystems from Spain with different properties and carbon content. Methoxyphenols are typical signature compounds presumptively informing on the occurrence and degree of alteration of lignin in soils. The methoxyphenol assemblages (12 major guaiacyl- and syringyl-type compounds) were analyzed by pyrolysis-gas chromatography-mass spectrometry. The Shannon-Wiener diversity index was chosen to describe the complexity of this phenolic signature. A series of exploratory statistical analyses (simple regression, partial least squares regression, multidimensional scaling) were applied to analyze the relationships existing between chemical and spectroscopic characteristics and the carbon content in the soils. These treatments coincided in pointing out that significant correlations exist between the progressive molecular diversity of the methoxyphenol assemblages and the concentration of organic carbon stored in the corresponding soils. This potential of the diversity in the phenolic signature as a surrogate index of the carbon storage in soils is tentatively interpreted as the accumulation of plant macromolecules altered into microbially reworked structures not readily recognized by soil enzymes. From a quantitative viewpoint, the partial least squares regression models exclusively based on total abundances of the 12 major methoxyphenols were especially successful in forecasting soil carbon storage.


Assuntos
Carbono/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Fenóis/química , Solo/química , Lignina/química , Plantas/química , Espanha
16.
Meat Sci ; 117: 18-26, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26937586

RESUMO

In this study we investigated the formation of the oxidation products of guaiacol in brines and heated meat matrix: 6-nitrosoguaiacol, 4-nitroguaiacol and 6-nitroguaiacol. For this purpose we applied a newly developed HPLC-UV and LC-MS method. For the first time, 6-nitrosoguaiacol was determined in brine and meat (containing guaiacol and sodium nitrite), which had been heated to 80°C and subsequently subjected to simulated digestion. Application of 500mg/L ascorbic acid to the brines reduced guaiacol degradation at pH3 and simultaneously inhibited the formation of 6-nitrosoguaiacol compared to brines containing only 100mg/L of ASC. The oxidation products were isolated with a new extraction method from meat samples containing 400mg/kg sodium nitrite at pH3.6 following simulated digestion. When oxygen was added, 6-nitrosoguaiacol was determined even at legally allowed levels (150mg/kg) of the curing agent. Finally, we developed a new LC-MS method for the separation and qualitative determination of the four main smoke methoxyphenols.


Assuntos
Culinária , Guaiacol/química , Carne/análise , Sais , Animais , Bovinos , Temperatura Alta , Peroxidação de Lipídeos , Estrutura Molecular , Nitratos/química , Nitrosação , Oxirredução , Suínos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa