Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Pharmacol Res ; 187: 106570, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36423788

RESUMO

Hypercholesterolemia is a major driver of atherosclerosis, thus contributing to high morbidity and mortality worldwide. Gut microbiota have been identified as modulator of blood lipids including cholesterol levels. Few studies have already linked certain bacteria and microbial mechanisms to host cholesterol. However, in particular mouse models revealed conflicting results depending on genetics and experimental protocol. To gain further insights into the relationship between intestinal bacteria and host cholesterol metabolism, we first performed fecal 16S rRNA targeted metagenomic sequencing in a human cohort (n = 24) naïve for cholesterol lowering drugs. Here, we show alterations in the gut microbiota composition of hypercholesterolemic patients with depletion of Bifidobacteria, expansion of Clostridia and increased Firmicutes/Bacteroidetes ratio. To test whether pharmacological intervention in gut microbiota impacts host serum levels of cholesterol, we treated hypercholesterolemic Apolipoprotein E knockout with oral largely non-absorbable antibiotics. Antibiotics increased serum cholesterol, but only when mice were fed normal chow diet and cholesterol was measured in the random fed state. These elevations in cholesterol already occurred few days after treatment initiation and were reversible after stopping antibiotics with re-acquisition of intestinal bacteria. Gene expression analyses pointed to increased intestinal cholesterol uptake mediated by antibiotics in the fed state. Non-targeted serum metabolomics suggested that diminished plant sterol levels and reduced bile acid cycling were involved microbial mechanisms. In conclusion, our work further enlightens the link between gut microbiota and host cholesterol metabolism. Pharmacological disruption of the gut flora by antibiotics was able to exacerbate serum cholesterol and may impact cardiovascular disease.


Assuntos
Antibacterianos , Microbioma Gastrointestinal , Hipercolesterolemia , Animais , Humanos , Camundongos , Antibacterianos/efeitos adversos , Colesterol/metabolismo , Firmicutes , Microbioma Gastrointestinal/efeitos dos fármacos , Hipercolesterolemia/microbiologia , RNA Ribossômico 16S/genética
2.
Pharmacol Res ; 177: 106129, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35151859

RESUMO

Long-term stress causes hyperalgesia; and there are gender differences in the mechanism of pain in male and female individuals. The role of gut microbiota in pain has also been verified. However, whether gut microbiota plays a role in hyperalgesia caused by chronic restraint stress (CRS) with gender differences has not been explored. This study investigated the role of gut microbiota in CRS-induced hyperalgesia gender-specifically through 16 S ribosomal RNA (16 S rRNA) gene sequencing and untargeted metabolomic analysis using liquid chromatography-mass spectrometry (LC-MS). The study found that both male and female mice experienced hyperalgesia after CRS and antibiotic treatment. 16 S rRNA gene sequencing reveals gender differences in the fecal microbiota induced by CRS. The pain threshold decreased after transplanting the fecal microbiota from the male and female CRS group to the corresponding pseudo-germ-free mice. In addition, this study detected gender differences in the host gut microbiota and serum metabolism induced by fecal microbiota transplantation (FMT). Specifically, the different serum metabolites between the pseudo-germ-free mice receiving FMT from the CRS group and those from the control group were mainly involved in bile secretion and steroid hormone biosynthesis for male mice, and in taurine and hypotaurine metabolism and tryptophan metabolism for female mice. In summary, the gut microbiota participates in stress-induced hyperalgesia (SIH) with gender differences by influencing the host's gut microbiota composition and serum metabolism. Therefore, our findings provided insights into developing novel gut microbiota-associated drugs for the management of gender-specific SIH.


Assuntos
Microbioma Gastrointestinal , Animais , Transplante de Microbiota Fecal , Fezes , Feminino , Microbioma Gastrointestinal/fisiologia , Hiperalgesia , Masculino , Camundongos , Dor
3.
Pharmacol Res ; 183: 106377, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35926806

RESUMO

Spinal cord injury (SCI) can change the intestinal microbiota pattern and corresponding metabolites, which in turn affect the prognosis of SCI. Among many metabolites, short-chain fatty acids (SCFAs) are critical for neurological recovery after SCI. Recent research has shown that resveratrol exerts anti-inflammatory properties. But it is unknown if the anti-inflammatory properties of resveratrol are associated with intestinal microbiota and metabolites. We thus investigate the alteration in gut microbiota and the consequent change of SCFAs following resveratrol treatment. The SCI mouse models with retention of gut microbiota (donor) and depletion of gut microbiota (recipient) were established. Fecal microbiota transplantation from donors to recipients was performed with intragastrical administration. Spinal cord tissues of mice were examined by H&E, Nissl, and immunofluorescence stainings. The expressions of the inflammatory profile were examined by qPCR and cytometric bead array. Fecal samples of mice were collected and analyzed with 16S rRNA sequencing. The results showed that resveratrol inhibited the microglial activation and promoted the functional recovery of SCI. The analysis of intestinal microbiota and metabolites indicated that SCI caused dysbiosis and the decrease in butyrate, while resveratrol restored microbiota pattern, reversed intestinal dysbiosis, and increased the concentration of butyrate. Both fecal supernatants from resveratrol-treated donors and butyrate suppressed the expression of pro-inflammatory genes in BV2 microglia. Our result demonstrated that fecal microbiota transplantation from resveratrol-treated donors had beneficial effects on the functional recovery of SCI. One mechanism of resveratrol effects was to restore the disrupted gut microbiota and butyrate.


Assuntos
Microbioma Gastrointestinal , Traumatismos da Medula Espinal , Animais , Anti-Inflamatórios/farmacologia , Butiratos/farmacologia , Disbiose , Ácidos Graxos Voláteis/metabolismo , Camundongos , Microglia/metabolismo , RNA Ribossômico 16S , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico
4.
Pharmacol Res ; 155: 104752, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32169656

RESUMO

As a potential drug for treating inflammatory, autoimmune diseases and cancers, triptolide (TP) is greatly limited in clinical practice due to its severe toxicity, particularly for liver injury. Recently, metabolic homeostasis was vitally linked to drug-induced liver injury and gut microbiota was established to play an important role. In this study, we aimed to investigate the functions of gut microbiota on TP-induced hepatotoxicity using metabolomics in mice. Here, predepletion of gut microbiota by antibiotic treatment strikingly aggravated liver injury and caused mortality after treated with a relatively safe dosage of TP at 0.5 mg/kg, which could be reversed by gut microbial transplantation. The loss of gut microbiota prior to TP treatment dramatically elevated long chain fatty acids and bile acids in plasma and liver. Further study suggested that gut microbiota-derived propionate contributed to the protective effect of gut microbiota against TP evidenced by ameliorative inflammatory level (Tnfa, Il6 and Cox2), ATP, malondialdehyde and hepatic histology. Supplementing with propionate significantly decreased the mRNA levels of genes involved in fatty acid biosynthesis (Srebp1c, Fasn and Elovl6), resulting in the decreased long chain fatty acids in liver. Moreover, TP restricted the growth of Firmicutes and led to the deficiency of short chain fatty acids in cecum content. In conclusion, our study warns the risk for TP and its preparations when antibiotics are co-administrated. Intervening by foods, prebiotics and probiotics toward gut microbiota or supplementing with propionate may be a clinical strategy to improve toxicity induced by TP.


Assuntos
Antibacterianos/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Diterpenos , Microbioma Gastrointestinal , Fenantrenos , Propionatos/farmacologia , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Compostos de Epóxi , Ácidos Graxos Voláteis/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais
5.
Food Chem X ; 22: 101504, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38855097

RESUMO

The presence of veterinary drug residues in aquatic products represents a significant challenge to food safety. The current detection methods, limited in both scope and sensitivity, underscore the urgent need for more advanced techniques. This research introduces a swift and potent screening technique using high-performance liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS) and a refined QuEChERS protocol, allowing simultaneous qualitative and semi-quantitative analysis of 192 residues. A comprehensive database, employing full scan mode and data-dependent secondary mass spectroscopy, enhances screening accuracy. The method involves efficient extraction using 90% acetonitrile, dehydration with Na2SO4, and acetic acid, followed by cleanup using dispersive solid-phase extract sorbent primary secondary amine. It is suitable for samples with varying fat content, offering detection limits ranging from 0.5 to 10 µg/kg, high recovery rates (60-120%), and low relative standard deviations (<20%). Practical application has validated its effectiveness for multi-residue screening, marking a significant advancement in food safety evaluation.

6.
Eur J Pharmacol ; 974: 176611, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38663540

RESUMO

Inflammatory bowel disease (IBD) is a chronic and relapsing inflammatory disorder of the gastrointestinal tract for which treatment options remain limited. In this study, we used a dual-luciferase-based screening of an FDA-approved drug library, identifying Bazedoxifene (BZA) as an inhibitor of the NF-κB pathway. We further investigated its therapeutic effects in a dextran sodium sulfate (DSS)-induced colitis model and explored its impact on gut microbiota regulation and the underlying molecular mechanisms. Our results showed that BZA significantly reduced DSS-induced colitis symptoms in mice, evidenced by decreased colon length shortening, lower histological scores, and increased expression of intestinal mucosal barrier-associated proteins, such as Claudin 1, Occludin, Zo-1, Mucin 2 (Muc2), and E-cadherin. Used independently, BZA showed therapeutic effects comparable to those of infliximab (IFX). In addition, BZA modulated the abundance of gut microbiota especially Bifidobacterium pseudolongum, and influenced microbial metabolite production. Crucially, BZA's alleviation of DSS-induced colitis in mice was linked to change in gut microbiota composition, as evidenced by in vivo gut microbiota depletion and fecal microbiota transplantation (FMT) mice model. Molecularly, BZA inhibited STAT3 and NF-κB activation in DSS-induced colitis in mice. In general, BZA significantly reduced DSS-induced colitis in mice through modulating the gut microbiota and inhibiting STAT3 and NF-κB activation, and its independent use demonstrated a therapeutic potential comparable to IFX. This study highlights gut microbiota's role in IBD drug development, offering insights for BZA's future development and its clinical applications.


Assuntos
Colite , Sulfato de Dextrana , Microbioma Gastrointestinal , NF-kappa B , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite/microbiologia , Colite/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Transdução de Sinais/efeitos dos fármacos , Indóis/farmacologia , Indóis/uso terapêutico , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo/efeitos dos fármacos , Colo/patologia , Colo/metabolismo , Colo/microbiologia , Masculino , Humanos
7.
Int J Pharm ; 598: 120375, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33581271

RESUMO

Metronidazole is the drug of choice in the treatment of bacterial vaginosis, but the oral therapy can induce several collateral effects. Aim of this work was the development of a vaginal multiparticulate system, loaded with metronidazole, able to improve its residence time allowing a complete drug release. Several kinds of MS were prepared using chitosan dissolved in different organic acids or alginate coated with chitosan. FTIR and DSC analyses were performed to study the interactions between the drug and the polymers, while MS morphology was investigated with optical and electron microscopy. All the formulations were characterized in terms of drug entrapment efficiency, mucoadhesion, swelling capacity and drug release behavior, demonstrating the best results for alginate MS coated with chitosan. The formulations evidenced a complete and rapid release of drug, compared with the commercial form: Zidoval®.The best formulations assayed for antibacterial activity confirmed the suitability of this new formulation for the vaginal treatment of local diseases.


Assuntos
Quitosana , Administração Intravaginal , Alginatos , Feminino , Humanos , Metronidazol , Microesferas
8.
Int J Pharm ; 531(2): 595-605, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28554545

RESUMO

Cyclodextrins (CDs) and mesoporous silica particles (MSPs) have been combined as composite carriers for controlled antibiotic release. CDs were employed as "gatekeeper" agents and grafted onto MSPs to retain drug molecules inside the MSP carrier. A variety of CDs (unfunctionalized, positively charged and carboxymethylated) and three different coupling strategies (covalent binding, electrostatic adsorption and inclusion complexation) were systematically investigated for their ability to control the release of two antibiotic drugs, metronidazole and clofazimine. The drugs had significantly different physicochemical properties (metronidazole - small hydrophilic, clofazimine- large hydrophobic). We report for the first time on the encapsulation and characterization of metronidazole-loaded-MSP. Each CD coating strategy reduced the drug release rate in phosphate buffer compared to unmodified MSP (from 20% to 100% retained drug). Covalent binding and inclusion complex approaches were significantly more effective than electrostatically adsorbed CD. In particular, the novel inclusion complex based on host/guest interaction between benzyl-modified silica surface and α-CD proved to be very effective (60-100% retained drug amount). Using pharmaceutical manufacturing processes, our study shows that CD-MSP composites can retain both hydrophobic and hydrophilic antibiotic compounds with potential translation to triggered release formulation targeting bacterial infections in the colon and lower intestine.


Assuntos
Antibacterianos/administração & dosagem , Ciclodextrinas/química , Portadores de Fármacos/química , Dióxido de Silício/química , Colo , Preparações de Ação Retardada , Liberação Controlada de Fármacos
9.
Biochem Pharmacol ; 134: 114-126, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27641814

RESUMO

Our microbiome should be understood as one of the most complex components of the human body. The use of ß-lactam antibiotics is one of the microbiome covariates that influence its composition. The extent to which our microbiota changes after an antibiotic intervention depends not only on the chemical nature of the antibiotic or cocktail of antibiotics used to treat specific infections, but also on the type of administration, duration and dose, as well as the level of resistance that each microbiota develops. We have begun to appreciate that not all bacteria within our microbiota are vulnerable or reactive to different antibiotic interventions, and that their influence on both microbial composition and metabolism may differ. Antibiotics are being used worldwide on a huge scale and the prescription of antibiotics is continuing to rise; however, their effects on our microbiota have been reported for only a limited number of them. This article presents a critical review of the antibiotics or antibiotic cocktails whose use in humans has been linked to changes in the composition of our microbial communities, with a particular focus on the gut, oral, respiratory, skin and vaginal microbiota, and on their molecular agents (genes, proteins and metabolites). We review the state of the art as of June 2016, and cover a total of circa 68 different antibiotics. The data herein are the first to compile information about the bacteria, fungi, archaea and viruses most influenced by the main antibiotic treatments prescribed nowadays.


Assuntos
Antibacterianos/farmacologia , Microbiota/efeitos dos fármacos , Microbiota/fisiologia , Animais , Humanos
10.
Int J Food Microbiol ; 242: 37-44, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-27870984

RESUMO

Clostridium difficile causes antibiotic-associated diarrhea in both humans and animals. The ribotype 078, predominant in food animals, is associated with community-acquired C. difficile infection, and C. difficile is suggested to be a foodborne pathogen. Recently, the C. difficile ribotype 078 lineage emerged in patients and pigs in Taiwan. This study aimed to investigate the prevalence and molecular characterization of C. difficile isolated from a pig slaughterhouse, retail meat, ready-to-eat meals, and humans in Taiwan. We collected samples from one slaughterhouse (n=422), 29 retail markets (raw pork, n=62; ready-to-eat pork, n=65), and one hospital (non-diarrheal humans, stool, n=317) in 2015. The isolated C. difficile were subjected to ribotyping and multilocus variable-number tandem-repeat analysis (MLVA). In the slaughterhouse, the isolation rate from carcasses was high (23%, 21/92) and ribotype 126 dominated. Scalding water was found to have C. difficile contamination (44%, 4/9), and two of the seven isolates were ribotype 126. The isolation rates from raw pork and ready-to-eat pork were between 20% and 29%. Ribotypes 126, 127, and 014 were found in raw pork, whereas ribotype 078 was not identified in this study. Eight isolates-seven non-toxigenic isolates and one ribotype 017-were found in non-diarrheal human samples. Notably, MLVA showed that ribotype 126 isolates from the slaughterhouse, pig stool, colons, carcasses, and scalding water were closely genetically related, indicating serious risk for cross-contamination. However, the genetic evidence of foodborne transmission from carcasses to food and humans is still lacking.


Assuntos
Clostridioides difficile/genética , Clostridioides difficile/isolamento & purificação , Contaminação de Alimentos/análise , Carne Vermelha/microbiologia , Matadouros/estatística & dados numéricos , Animais , Clostridioides difficile/classificação , Infecções por Clostridium/microbiologia , Fast Foods/economia , Fast Foods/microbiologia , Fezes/microbiologia , Feminino , Manipulação de Alimentos , Humanos , Prevalência , Carne Vermelha/análise , Ribotipagem , Suínos , Taiwan
11.
Int J Pharm ; 463(1): 10-21, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24406672

RESUMO

Gastroretentive drug delivery system is a promising option for the treatment of Helicobacter pylori infection, which can prolong gastric residence time and supply high drug concentration in the stomach. In the present study, a low density system of metronidazole-loaded porous Eudragit® RS microparticle with high drug loading capacity (>25%) was fabricated via electrospray method. The porous structure and size distribution of microparticles were affected by polymer concentration and flow rate of solution. FTIR and XRD analyses indicated that drug has been entrapped into the porous microparticles. In addition, sustained release profiles and slight cytotoxicity in vitro were detected. Gamma scintigraphy study in vivo demonstrated that ¹³¹I-labeled microparticles retained in stomach for over 8h, and about 65.50% radioactive counts were finally detected in the region of interest. The biodistribution study confirmed that hotspot of radioactivity was remaining in the stomach. Furthermore, metronidazole-loaded porous microparticles can eradicate H. pylori completely with lower dose and administration frequency of antibiotic compared with pure drug, which were also more helpful for the healing of mucosal damages. These results suggest that prepared porous microparticle has the potential to provide better treatment for H. pylori infection.


Assuntos
Anti-Infecciosos/administração & dosagem , Sistemas de Liberação de Medicamentos , Infecções por Helicobacter/tratamento farmacológico , Metronidazol/administração & dosagem , Resinas Acrílicas/química , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacocinética , Anti-Infecciosos/uso terapêutico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Contagem de Colônia Microbiana , Composição de Medicamentos , Feminino , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/patologia , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/crescimento & desenvolvimento , Humanos , Metronidazol/química , Metronidazol/farmacocinética , Metronidazol/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Porosidade , Estômago/efeitos dos fármacos , Estômago/microbiologia , Estômago/patologia
12.
Int J Pharm ; 457(1): 224-36, 2013 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-24076230

RESUMO

The adsorption profiles of the antibiotic metronidazole (MNE) into the K10-montmorillonite (MMT-K10) clay and the subsequent release have been investigated as a function of pH and MNE/MMT-K10 ratio, in order to evaluate the potential of the MNE/MMT-K10 hybrids as controlled drug delivery system. The adsorption mechanism has been first elucidated by performing complementary equilibrium and kinetic studies and through the X-ray diffractometry (XRD) characterization of the obtained composite materials. The gathered results allowed us to propose a mechanism consisting of a multi-step pathway involving the neutral and the cationic form of the drug, which interact with different sites of the clay surfaces, i.e. the interlayer region and the faces of the lamella. In a second step the drug release kinetics has been studied under physiological pH mimicking conditions simulating the oral drug administration and delivery. For the sake of comparison the commercial formulation has also been employed for the release studies. The investigation of the release profiles and the comparison with the commercial formulation of the drug reveal that the new-tailor made formulation could be fruitful exploited for successfully prolonged the action of drug in the desired site.


Assuntos
Antibacterianos/química , Bentonita/química , Sistemas de Liberação de Medicamentos , Metronidazol/química , Nanoestruturas/química , Antibacterianos/administração & dosagem , Colo/metabolismo , Metronidazol/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa