Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
FEMS Yeast Res ; 242024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38632043

RESUMO

Although filamentous Ascomycetes may produce structures that are interpreted as male and female gametangia, ascomycetous yeasts are generally not considered to possess male and female sexes. In haplontic yeasts of the genus Metschnikowia, the sexual cycle begins with the fusion of two morphologically identical cells of complementary mating types. Soon after conjugation, a protuberance emerges from one of the conjugants, eventually maturing into an ascus. The originating cell can be regarded as an ascus mother cell, hence as female. We tested the hypothesis that the sexes, female or male, are determined by the mating types. There were good reasons to hypothesize further that mating type α cells are male. In a conceptually simple experiment, we observed the early stages of the mating reaction of mating types differentially labeled with fluorescent concanavalin A conjugates. Three large-spored Metschnikowia species, M. amazonensis, M. continentalis, and M. matae, were examined. In all three, the sexes were found to be independent of mating type, cautioning that the two terms should not be used interchangeably.


Assuntos
Genes Fúngicos Tipo Acasalamento , Metschnikowia , Metschnikowia/fisiologia , Metschnikowia/classificação
2.
FEMS Yeast Res ; 242024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38140959

RESUMO

Pulcherrimin is an iron (III) chelate of pulcherriminic acid that plays a role in antagonistic microbial interactions, iron metabolism, and stress responses. Some bacteria and yeasts produce pulcherriminic acid, but so far, pulcherrimin could not be produced in Saccharomyces cerevisiae. Here, multiple integrations of the Metschnikowia pulcherrima PUL1 and PUL2 genes in the S. cerevisiae genome resulted in red colonies, which indicated pulcherrimin formation. The coloration correlated positively and significantly with the number of PUL1 and PUL2 genes. The presence of pulcherriminic acid was confirmed by mass spectrometry. In vitro competition assays with the plant pathogenic fungus Botrytis caroliana revealed inhibitory activity on conidiation by an engineered, strong pulcherrimin-producing S. cerevisiae strain. We demonstrate that the PUL1 and PUL2 genes from M. pulcherrima, in multiple copies, are sufficient to transfer pulcherrimin production to S. cerevisiae and represent the starting point for engineering and optimizing this biosynthetic pathway in the future.


Assuntos
Metschnikowia , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Botrytis/genética , Botrytis/metabolismo , Metschnikowia/genética , Metschnikowia/metabolismo , Ferro/metabolismo
3.
Oecologia ; 204(2): 327-337, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37620681

RESUMO

Invasive species can have large effects on native communities. When native and invasive species share parasites, an epidemic in a native species could facilitate or inhibit the invasion. We sought to understand how the incidence and timing of epidemics in native species caused by a generalist parasite influenced the success and impact of an invasive species. We focused on North American native and invasive species of zooplankton (Daphnia dentifera and Daphnia lumholtzi, respectively), that can both become infected with a fungal parasite (Metschnikowia bicuspidata). In a laboratory microcosm experiment, we exposed the native species to varying parasite inocula (none, low, high) and two invasive species introduction times (before or during an epidemic in the native species). We found that the invasive species density in treatments with the parasite was higher compared to uninfected treatments, though only the early invasion, low-parasite and uninfected treatments exhibited significant pairwise differences. However, invasive resting eggs were only found in the uninfected treatments. The density of the native species was lowest with a combination of the parasite present, and the invasive species introduced during the epidemic. Native infection prevalence in these treatments (late invasion, parasite present) was also higher than prevalence in treatments where the invasive species was introduced before the epidemic. Therefore, the timing of an invasion relative to an epidemic can affect both the native and invasive species. Our results suggest that the occurrence and timing of epidemics in native species can influence the impacts of a species invasion.


Assuntos
Daphnia , Espécies Introduzidas , Animais , Zooplâncton
4.
J Fish Dis ; : e13936, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421366

RESUMO

During breeding, some oriental river prawns (Macrobrachium nipponense, de Haan), an important aquaculture species in China, exhibit yellowish-brown body colouration, reduced appetite, and vitality. Diseased prawns revealed characteristic emulsifying disease signs, including whitened musculature, hepatopancreatic tissues, milky haemolymph, and non-coagulation. The present study investigated the causative agent of M. nipponense infection through isolation, histopathology, molecular sequencing, and infection experiments. The pathogenic strain exhibited distinctive white colonies on Bengal red medium, with microscopic examination confirming the presence of yeast cells. Histopathological analysis revealed prominent pathological alterations and yeast cell infiltration in muscles, hepatopancreas and gills. Additionally, 26S rDNA sequencing of the isolated yeast strain LNMN2022 revealed Metschnikowia bicuspidata (GenBank: OR518659) as the causative agent. This strain exhibited a 98.28% sequence homology with M. bicuspidata LNMB2021 (GenBank: OK094821) and 96.62% with M. bicuspidata LNES0119 (GenBank: OK073903). The pathogenicity test confirmed that M. bicuspidata elicited clinical signs in M. nipponense consistent with those observed in natural populations, and the median lethal concentration was determined to be 3.3 × 105 cfu/mL. This study establishes a foundation for further investigations into the host range and epidemiological characteristics of the pathogen M. bicuspidata in aquatic animals and provides an empirical basis for disease management in M. nipponense.

5.
World J Microbiol Biotechnol ; 40(3): 88, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334894

RESUMO

The bioprospection of indigenous microorganism strains with biotechnological potential represents a prominent trend. Metschnikowia yeasts exhibit diverse capabilities, such as ethanol reduction in winemaking, biocontrol potential, and lipid production. In this work, local Metschnikowia strains were isolated from different fruits by their ability to produce pulcherrimic acid, a molecule that has been linked to biocontrol activity and that binds iron giving colored colonies. Five strains were selected, each from one of five distinct sources. All of them were identified as M. pulcherrima. All five were able inhibit other yeasts and one M. pulcherrima, called M7, inhibited the growth of Aspergillus nidulans. The selected strains accumulated lipid bodies in stationary phase. Certain non-conventional yeasts like Hanseniaspora vineae are very sensitive to biomass drying, but cell extracts from M. pulcherrima added to the growth media as a source of antioxidant lipids increased their tolerance to drying. All strains isolated showed good stress tolerance (particularly to heat) and have nutrient requirements similar to a commercial M. pulcherrima strain. In addition, the M7 strain had a good growth in sugarcane and beet molasses and behaved like Saccharomyces cerevisiae in a growth medium derived from agricultural waste, a persimmon hydrolysate. Therefore, the isolation of local strains of Metschnikowia able to grow in a variety of substrates is a good source of biocontrol agents.


Assuntos
Metschnikowia , Vinho , Saccharomyces cerevisiae/metabolismo , Metschnikowia/metabolismo , Vinho/análise , Frutas , Lipídeos
6.
BMC Bioinformatics ; 24(1): 438, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990145

RESUMO

BACKGROUND: Use of alternative non-Saccharomyces yeasts in wine and beer brewing has gained more attention the recent years. This is both due to the desire to obtain a wider variety of flavours in the product and to reduce the final alcohol content. Given the metabolic differences between the yeast species, we wanted to account for some of the differences by using in silico models. RESULTS: We created and studied genome-scale metabolic models of five different non-Saccharomyces species using an automated processes. These were: Metschnikowia pulcherrima, Lachancea thermotolerans, Hanseniaspora osmophila, Torulaspora delbrueckii and Kluyveromyces lactis. Using the models, we predicted that M. pulcherrima, when compared to the other species, conducts more respiration and thus produces less fermentation products, a finding which agrees with experimental data. Complex I of the electron transport chain was to be present in M. pulcherrima, but absent in the others. The predicted importance of Complex I was diminished when we incorporated constraints on the amount of enzymatic protein, as this shifts the metabolism towards fermentation. CONCLUSIONS: Our results suggest that Complex I in the electron transport chain is a key differentiator between Metschnikowia pulcherrima and the other yeasts considered. Yet, more annotations and experimental data have the potential to improve model quality in order to increase fidelity and confidence in these results. Further experiments should be conducted to confirm the in vivo effect of Complex I in M. pulcherrima and its respiratory metabolism.


Assuntos
Metschnikowia , Torulaspora , Vinho , Leveduras/genética , Leveduras/metabolismo , Metschnikowia/genética , Metschnikowia/metabolismo , Torulaspora/metabolismo , Vinho/análise , Fermentação
7.
BMC Microbiol ; 23(1): 120, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120526

RESUMO

BACKGROUND: Metschnikowia bicuspidata is a pathogenic yesst that can cause disease in many different economic aquatic animal species. In recent years, there was a new disease outbreak in ridgetail white prawn (Exopalaemon carinicauda) in coastal areas of Jiangsu Province China that was referred to as zombie disease by local farmers. The pathogen was first isolated and identified as M. bicuspidata. Although the pathogenicity and pathogenesis of this pathogen in other animals have been reported in some previous studies, research on its molecular mechanisms is still very limited. Therefore, a genome-wide study is necessary to better understand the physiological and pathogenic mechanisms of M. bicuspidata. RESULT: In this study, we obtained a pathogenic strain, MQ2101, of M. bicuspidata from diseased E. carinicauda and sequenced its whole genome. The size of the whole genome was 15.98 Mb, and it was assembled into 5 scaffolds. The genome contained 3934 coding genes, among which 3899 genes with biological functions were annotated in multiple underlying databases. In KOG database, 2627 genes were annotated, which were categorized into 25 classes including general function prediction only, posttranslational modification, protein turnover, chaperones, and signal transduction mechanisms. In KEGG database, 2493 genes were annotated, which were categorized into five classes, including cellular processes, environmental information processing, genetic information processing, metabolism and organismal systems. In GO database, 2893 genes were annotated, which were mainly classified in cell, cell part, cellular processes and metabolic processes. There were 1055 genes annotated in the PHI database, accounting for 26.81% of the total genome, among which 5 genes were directly related to pathogenicity (identity ≥ 50%), including hsp90, PacC, and PHO84. There were also some genes related to the activity of the yeast itself that could be targeted by antiyeast drugs. Analysis based on the DFVF database showed that strain MQ2101 contained 235 potential virulence genes. BLAST searches in the CAZy database showed that strain MQ2101 may have a more complex carbohydrate metabolism system than other yeasts of the same family. In addition, two gene clusters and 168 putative secretory proteins were predicted in strain MQ2101, and functional analysis showed that some of the secretory proteins may be directly involved in the pathogenesis of the strain. Gene family analysis with five other yeasts revealed that strain MQ2101 has 245 unique gene families, including 274 genes involved in pathogenicity that could serve as potential targets. CONCLUSION: Genome-wide analysis elucidated the pathogenicity-associated genes of M. bicuspidate while also revealing a complex metabolic mechanism and providing putative targets of action for the development of antiyeast drugs for this pathogen. The obtained whole-genome sequencing data provide an important theoretical basis for transcriptomic, proteomic and metabolic studies of M. bicuspidata and lay a foundation for defining its specific mechanism of host infestation.


Assuntos
Estudo de Associação Genômica Ampla , Proteômica , Animais , Sequência de Bases , Perfilação da Expressão Gênica , Filogenia
8.
New Phytol ; 240(3): 1233-1245, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37614102

RESUMO

Epiphytic microbes frequently affect plant phenotype and fitness, but their effects depend on microbe abundance and community composition. Filtering by plant traits and deterministic dispersal-mediated processes can affect microbiome assembly, yet their relative contribution to predictable variation in microbiome is poorly understood. We compared the effects of host-plant filtering and dispersal on nectar microbiome presence, abundance, and composition. We inoculated representative bacteria and yeast into 30 plants across four phenotypically distinct cultivars of Epilobium canum. We compared the growth of inoculated communities to openly visited flowers from a subset of the same plants. There was clear evidence of host selection when we inoculated flowers with synthetic communities. However, plants with the highest microbial densities when inoculated did not have the highest microbial densities when openly visited. Instead, plants predictably varied in the presence of bacteria, which was correlated with pollen receipt and floral traits, suggesting a role for deterministic dispersal. These findings suggest that host filtering could drive plant microbiome assembly in tissues where species pools are large and dispersal is high. However, deterministic differences in microbial dispersal to hosts may be equally or more important when microbes rely on an animal vector, dispersal is low, or arrival order is important.


Assuntos
Microbiota , Néctar de Plantas , Animais , Polinização/genética , Flores/genética , Plantas/microbiologia , Saccharomyces cerevisiae , Bactérias
9.
FEMS Yeast Res ; 232023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37019825

RESUMO

Metschnikowia pulcherrima is an important yeast species that is attracting increased interest thanks to its biotechnological potential, especially in agri-food applications. Phylogenetically related species of the so-called 'pulcherrima clade' were first described and then reclassified in one single species, which makes the identification an intriguing issue. Starting from the whole-genome sequencing of the protechnological strain Metschnikowia sp. DBT012, this study applied comparative genomics to calculate similarity with the M. pulcherrima clade publicly available genomes with the aim to verify if novel single-copy putative phylogenetic markers could be selected, in comparison with the commonly used primary and secondary barcodes. The genome-based bioinformatic analysis allowed the identification of 85 consensus single-copy orthologs, which were reduced to three after split decomposition analysis. However, wet-lab amplification of these three genes in nonsequenced type strains revealed the presence of multiple copies, which made them unsuitable as phylogenetic markers. Finally, average nucleotide identity (ANI) was calculated between strain DBT012 and available genome sequences of the M. pulcherrima clade, although the genome dataset is still rather limited. Presence of multiple copies of phylogenetic markers as well as ANI values were compatible with the recent reclassification of the clade, allowing the identification of strain DBT012 as M. pulcherrima.


Assuntos
Metschnikowia , Metschnikowia/genética , Filogenia , Leveduras/genética , Genômica , Sequenciamento Completo do Genoma
10.
Crit Rev Food Sci Nutr ; 63(31): 10899-10927, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35687346

RESUMO

Yeast selection for the wine industry in Spain started in 1950 for the understanding of the microbial ecology, and for the selection of optimal strains to improve the performance of alcoholic fermentation and the overall wine quality. This process has been strongly developed over the last 30 years, firstly on Saccharomyces cerevisiae, and, lately, with intense activity on non-Saccharomyces. Several thousand yeast strains have been isolated, identified and tested to select those with better performance and/or specific technological properties. The present review proposes a global survey of this massive ex-situ preservation of eukaryotic microorganisms, a reservoir of biotechnological solutions for the wine sector, overviewing relevant screenings that led to the selection of strains from 12 genera and 22 species of oenological significance. In the first part, the attention goes to the selection programmes related to relevant wine-producing areas (i.e. Douro, Extremadura, Galicia, La Mancha and Uclés, Ribera del Duero, Rioja, Sherry area, and Valencia). In the second part, the focus shifted on specific non-Saccharomyces genera/species selected from different Spanish and Portuguese regions, exploited to enhance particular attributes of the wines. A fil rouge of the dissertation is the design of tailored biotechnological solutions for wines typical of given geographic areas.


Assuntos
Vitis , Vinho , Saccharomyces cerevisiae , Vinho/análise , Portugal , Fermentação , Biotecnologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-37540005

RESUMO

The gut of xylophagous insects such as termites harbours various symbiotic micro-organisms, including many yeast species. In a taxonomic study of gut-associated yeasts, two strains (ATS2.16 and ATS2.18) were isolated from the gut of the wood-feeding termite Nasutitermes sp. in Maharashtra, India. Morphological and physiological characteristics and sequence analyses of the ITS and D1/D2 region of the large subunit rRNA gene revealed that these two strains represent a novel asexual ascomycetous yeast species in the genus Metschnikowia. The species differs from some of its close affiliates in the genus in its inability to utilize ethanol and succinate as the sole carbon source and growth in high sugar concentrations (up to 50 % glucose). In contrast to most members of Metschnikowia, the formation of ascospores was not observed on various sporulation media. Moreover, whole-genome sequencing was used to further confirm the novelty of this species. When compared with other large-spored Metschnikowia species, average nucleotide identity values of 79-80 % and digital DNA-DNA hybridization values of 16-17 % were obtained. The name Metschnikowia ahupensis f.a., sp. nov. is proposed to accommodate this novel yeast species, with ATS2.16 as the holotype and strains NFCCI 4949, MTCC 13085 and PYCC 9152 as isotypes. The MycoBank number is MB 844210.


Assuntos
Isópteros , Metschnikowia , Poríferos , Saccharomycetales , Animais , Madeira , Filogenia , Análise de Sequência de DNA , Índia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Ácidos Graxos/química , Leveduras/genética , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Técnicas de Tipagem Micológica
12.
Antonie Van Leeuwenhoek ; 116(12): 1295-1304, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37755530

RESUMO

Family Chrysopidae is known to harbor specific gut yeasts. However, no studies have been conducted outside of a limited number of these green lacewing species, and the diversity of yeasts in the family as a whole is not known. Therefore, we collected 58 Chrysopidae adults (9 species, 6 genera, 2 subfamilies) in Japan and isolated yeasts from all individuals. The results showed for the first time that not only subfamily Chrysopinae but also subfamily Apochrysinae have gut yeasts. We obtained 58 yeast isolates (one from each host individual), all of which were of the genus Metschnikowia. 28S rDNA- and ITS-based phylogenetic analysis showed that the isolates were divided into three clades, designated clade I, II, and III. Clade I contains two previously described Chrysopidae gut yeasts (M. picachoensis and M. pimensis) as well as a one of our new species named M. shishimaru. Clade II is a new clade, with at least two new species named M. kenjo and M. seizan. Clade III contains the previously described species M. noctiluminum, a Chrysopidae gut yeast, and one of our isolate (We have not described it as new species). However, the phylogenetic relationship between our isolate and M. noctiluminum was unclear. These results indicate that the Japanese Chrysopidae gut yeasts consist mainly of three undescribed species and that they are more unique than those found in previous surveys. The results of this study indicate that Chrysopidae gut yeasts are more diverse than previously thought and should be investigated in various geographical regions in the future.


Assuntos
Metschnikowia , Poríferos , Humanos , Animais , Metschnikowia/genética , Filogenia , Japão , Leveduras/genética
13.
Mycopathologia ; 188(6): 957-971, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37728680

RESUMO

The majority of Candida species are known as non-pathogenic yeasts and rarely involved in human diseases. However, recently case reports of human infections caused by non-albicans Candida species have increased, mostly in immunocompromised hosts. Our study aimed to describe and characterize as thoroughly as possible, a new species of the Metschnikowia clade, named here Candida massiliensis (PMML0037), isolated from a clinical sample of human sputum. We targeted four discriminant genetic regions: "Internal Transcribed Spacers" of rRNA, D1/D2 domains (28S large subunit rRNA) and part of the genes encoding Translation Elongation Factor 1-α and ß-tubulin2. The genetic data were compared to morphological characters, from scanning electron microscopy (TM 4000 Plus, SU5000), physiological, including the results of oxidation and assimilation tests of different carbon sources by the Biolog system, and chemical mapping by Energy-Dispersive X-ray Spectroscopy. Lastly, the in vitro antifungal susceptibility profile was performed using the E-test™ exponential gradient method. The multilocus analysis supported the genetic position of Candida massiliensis (PMML0037) as a new species of the Metschnikowia clade, and the phenotypic analysis highlighted its unique morphological and chemical profile when compared to the other Candida/Metschnikowia species included in the study.


Assuntos
Candida , Metschnikowia , Humanos , DNA Espaçador Ribossômico/genética , DNA Espaçador Ribossômico/química , Filogenia , DNA Fúngico/genética , DNA Fúngico/química , Leveduras/genética , RNA Ribossômico/genética , Metschnikowia/genética , RNA Ribossômico 28S , Análise de Sequência de DNA , Técnicas de Tipagem Micológica
14.
Molecules ; 28(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37446724

RESUMO

Candidiasis is one of the most frequent infections worldwide. In this study, the antimicrobial properties of six strains belonging to the Metschnikowia pulcherrima clade were evaluated against twenty Candida and Candida-related Filobasidiella neoformans var. bacillispora (syn. Cryptococcus neoformans) of different origins, employing the agar cross method. The toxic effect of pulcherrimin, a red metabolite that is responsible for the antimicrobial activities of Metschnikowia spp., was evaluated in various experimental models. The results of agar tests showed that the selected M. pulcherrima strains inhibited the growth of the Candida and non-Candida strains. However, inhibition was dependent on the strain and the environment. The presence of peptone, sodium silicate, and a higher incubation temperature decreased the antifungal action of the M. pulcherrima strains. Pulcherrimin showed cytotoxic and antiproliferative activity, with oxidative stress in cells leading to apoptosis. More research is needed on the mechanism of action of pulcherrimin on somatic cells.


Assuntos
Anti-Infecciosos , Metschnikowia , Candida , Metschnikowia/fisiologia , Ágar , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Anti-Infecciosos/farmacologia
15.
Proc Biol Sci ; 289(1980): 20221106, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35919996

RESUMO

Host density shapes infection risk through two opposing phenomena. First, when infective stages are subdivided among multiple hosts, greater host densities decrease infection risk through 'safety in numbers'. Hosts, however, represent resources for parasites, and greater host availability also fuels parasite reproduction. Hence, host density increases infection risk through 'density-dependent transmission'. Theory proposes that these phenomena are not disparate outcomes but occur over different timescales. That is, higher host densities may reduce short-term infection risk, but because they support parasite reproduction, may increase long-term risk. We tested this theory in a zooplankton-disease system with laboratory experiments and field observations. Supporting theory, we found that negative density-risk relationships (safety in numbers) sometimes emerged over short timescales, but these relationships reversed to 'density-dependent transmission' within two generations. By allowing parasite numerical responses to play out, time can shift the consequences of host density, from reduced immediate risk to amplified future risk.


Assuntos
Daphnia , Parasitos , Animais , Daphnia/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Reprodução , Zooplâncton/fisiologia
16.
Annu Rev Microbiol ; 71: 197-214, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28657889

RESUMO

The fungal phylum Ascomycota comprises three subphyla: Saccharomycotina, Pezizomycotina, and Taphrinomycotina. In many Saccharomycotina species, cell identity is determined by genes at the MAT (mating-type) locus; mating occurs between MATa and MATα cells. Some species can switch between MATa and MATα mating types. Switching in the Saccharomycotina originated in the common ancestor of the Saccharomycetaceae, Pichiaceae, and Metschnikowiaceae families, as a flip/flop mechanism that inverted a section of chromosome. Switching was subsequently lost in the Metschnikowiaceae, including Candida albicans, but became more complex in the Saccharomycetaceae when the mechanism changed from inversion to copy-and-paste between HML/HMR and MAT. Based on their phylogenetic closeness and the similarity of their MTL (mating-type like) loci, some Metschnikowia species may provide useful models for the sexual cycles of Candida species. Conservation of synteny demonstrates that, despite changes in its gene content, a single orthologous locus (MAT/MTL) has controlled cell type throughout ascomycete evolution.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Ascomicetos/genética , Evolução Molecular , Genes Fúngicos Tipo Acasalamento , Hereditariedade , Loci Gênicos
17.
Arch Microbiol ; 204(6): 337, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35587835

RESUMO

Yeasts can produce toxins in protein or glycoprotein structures that can act as an inhibitor on some bacteria and yeast species. The effects of those toxins on the growth of pathogenic and food spoilage microorganisms are subject to various studies. Metschnikowia pulcherrima was determined to be a killer toxin-producing yeast that was tested against three selected microorganisms, namely Escherichia coli Type-I, Micrococcus luteus and Candida albicans. The killer toxin only showed inhibitory activity against M. luteus. Different pH (5-6-7-8), temperature (20-25-30-35 °C) and carbon source (glucose-glycerol-ethanol-acetate) combinations were applied to stimulate the growth and toxin production of the killer yeast. The greatest increase among the different combinations was obtained at 20 °C and pH 7 when glycerol was used as the main carbon source. It was then also tested against other pathogen indicators or pathogens under these conditions. The killer toxin was partially purified by ethanol precipitation and showed inhibitory activity against M. luteus (36 mm). According to the protein profile obtained by SDS-PAGE, the molecular weight of the inhibitor toxin was measured about 7.4 kDa. The molecular weight with amino acid sequence of the killer toxin was 10.3 kDa and determined by MALDI-TOF mass spectrometry.


Assuntos
Glicerol , Metschnikowia , Carbono/metabolismo , Escherichia coli , Etanol/metabolismo , Glicerol/metabolismo , Leveduras
18.
Am J Bot ; 109(3): 393-405, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35315515

RESUMO

PREMISE: Yeasts are often present in floral nectar and can influence plant fitness directly (independently of pollinators) or indirectly by influencing pollinator visitation and behavior. However, few studies have assessed the effect of nectar yeasts on plant reproductive success or compared effects across different plant species, limiting our understanding of the relative impact of direct vs. indirect effects. METHODS: We inoculated the nectar of six plant species in the field with the cosmopolitan yeast Metschnikowia reukaufii to analyze the direct and indirect effects on female reproductive success over 2 years. The pollinator assemblage for each species was recorded during both flowering years. RESULTS: Direct yeast effects on female fecundity were statistically nonsignificant for all plant species. There were significant indirect, pollinator-mediated effects on fruit production and seed mass for the two species pollinated almost exclusively by bumblebees or hawkmoths, with the direction of the effects differing for the quantity- and quality-related fitness components. There were no consistent effects of the yeast on maternal fecundity for any of the species with diverse pollinator assemblages. CONCLUSIONS: Effects of M. reukaufii on plant reproduction ranged from negative to neutral or positive depending on the plant species. The among-species variation in the indirect effects of nectar yeasts on plant pollination could reflect variation in the pollinator community, the specific microbes colonizing the nectar, and the order of microbial infection (priority effects), determining potential species interactions. Elucidating the nature of these multitrophic plant-pollinator-microbe interactions is important to understand complex processes underlying plant pollination.


Assuntos
Néctar de Plantas , Polinização , Flores , Plantas , Reprodução , Leveduras
19.
Biol Lett ; 18(4): 20220018, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35382587

RESUMO

Parasites impose different selection regimes on their hosts, which respond by increasing their resistance and/or tolerance. Parental challenge with parasites can enhance the immune response of their offspring, a phenomenon documented in invertebrates and termed transgenerational immune priming. We exposed two parental generations of the model organism Daphnia magna to the horizontally transmitted parasitic yeast Metschnikowia bicuspidata and recorded resistance- and tolerance-related traits in the offspring generation. We hypothesized that parentally primed offspring will increase either their resistance or their tolerance to the parasite. Our susceptibility assays revealed no impact of parental exposure on offspring resistance. Nonetheless, different fitness-related traits, which are indicative of tolerance, were altered. Specifically, maternal priming increased offspring production and decreased survival. Grandmaternal priming positively affected age at first reproduction and negatively affected brood size at first reproduction. Interestingly, both maternal and grandmaternal priming significantly reduced within-host-parasite proliferation. Nevertheless, Daphnia primed for two consecutive generations had no competitive advantage in comparison to unprimed ones, implying additive maternal and grandmaternal effects. Our findings do not support evidence of transgenerational immune priming from bacterial infections in the same host species, thus, emphasizing that transgenerational immune responses may not be consistent even within the same host species.


Assuntos
Parasitos , Animais , Daphnia
20.
Parasitology ; 149(11): 1515-1520, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36043359

RESUMO

Transgenerational plasticity can help organisms respond rapidly to changing environments. Most prior studies of transgenerational plasticity in host­parasite interactions have focused on the host, leaving us with a limited understanding of transgenerational plasticity of parasites. We tested whether exposure to elevated temperatures while spores are developing can modify the ability of those spores to infect new hosts, as well as the growth and virulence of the next generation of parasites in the new host. We exposed Daphnia dentifera to its naturally co-occurring fungal parasite Metschnikowia bicuspidata, rearing the parasite at cooler (20°C) or warmer (24°C) temperatures and then, factorially, using those spores to infect at 20 and 24°C. Infections by parasites reared at warmer past temperatures produced more mature spores, but only when the current infections were at cooler temperatures. Moreover, the percentage of mature spores was impacted by both rearing and current temperatures, and was highest for infections with spores reared in a warmer environment that infected hosts in a cooler environment. In contrast, virulence was influenced only by current temperatures. These results demonstrate transgenerational plasticity of parasites in response to temperature changes, with fitness impacts that are dependent on both past and current environments.


Assuntos
Parasitos , Animais , Daphnia/microbiologia , Interações Hospedeiro-Parasita , Temperatura , Virulência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa