Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
1.
FASEB J ; 38(18): e70068, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39302717

RESUMO

Atrial fibrosis plays a critical role in the pathogenesis of atrial fibrillation (AF). Monocyte chemotactic protein-induced protein-1 (MCPIP1), recognized as a functional ribonuclease (RNase), exacerbates cardiac remodeling and contributes to a range of cardiovascular diseases. However, the involvement of MCPIP1 in atrial fibrosis and development of AF, along with its underlying biological mechanisms, remains poorly understood. This study demonstrated that knockdown of MCPIP1 significantly reduced AF inducibility, decreased left atrial diameter, and ameliorated atrial fibrosis, coinciding with reduced FRAT1/2/Wnt/ß-catenin signaling. Furthermore, the MCPIP1-D141N mutation attenuated AF vulnerability and atrial remodeling compared to MCPIP1 overexpression in an acetylcholine and calcium chloride (ACh-CaCl2)-induced rat model of AF. Conversely, overexpression of FRAT1/2 partially reversed the cardioprotective effects of MCPIP1-D141N mutation. Using H9C2 cell lines, we observed that MCPIP1 may induce a transcriptional effect that downregulates miR-26a-5p expression, and luciferase and RNA immunoprecipitation (RIP) assays substantiated the direct interaction between miR-26a-5p and FRAT1/2. Moreover, overexpression of miR-26a-5p countered MCPIP1-induced atrial remodeling and attenuated the progression of AF. In conclusion, these findings indicate that MCPIP1 facilitates atrial remodeling and the progression of AF by exacerbating miR-26a-5p/FRAT/Wnt axis-mediated atrial fibrosis through its RNase activity in an ACh-CaCl2-induced rat model of AF.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Fibrose , Átrios do Coração , MicroRNAs , Ratos Sprague-Dawley , Ribonucleases , Via de Sinalização Wnt , Animais , Ratos , MicroRNAs/genética , MicroRNAs/metabolismo , Remodelamento Atrial/fisiologia , Fibrilação Atrial/metabolismo , Fibrilação Atrial/genética , Fibrilação Atrial/patologia , Masculino , Ribonucleases/metabolismo , Ribonucleases/genética , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Modelos Animais de Doenças , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
2.
FASEB J ; 37(5): e22906, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37052859

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive and life-threatening disease characterized by pulmonary vascular remodeling, which may cause right heart failure and even death. Accumulated evidence confirmed that microRNA-26 family play critical roles in cardiovascular disease; however, their function in PAH remains largely unknown. Here, we investigated the expression of miR-26 family in plasma from PAH patients using quantitative RT-PCR, and identified miR-26a-5p as the most downregulated member, which was also decreased in hypoxia-induced pulmonary arterial smooth muscle cell (PASMC) autophagy models and lung tissues of PAH patients. Furthermore, chromatin immunoprecipitation (ChIP) analysis and luciferase reporter assays revealed that hypoxia-inducible factor 1α (HIF-1α) specifically interacted with the promoter of miR-26a-5p and inhibited its expression in PASMCs. Tandem mRFP-GFP-LC3B fluorescence microscopy demonstrated that miR-26a-5p inhibited hypoxia-induced PAMSC autophagy, characterized by reduced formation of autophagosomes and autolysosomes. In addition, results showed that miR-26a-5p overexpression potently inhibited PASMC proliferation and migration, as determined by cell counting kit-8, EdU staining, wound-healing, and transwell assays. Mechanistically, PFKFB3, ULK1, and ULK2 were direct targets of miR-26a-5p, as determined by dual-luciferase reporter gene assays and western blots. Meanwhile, PFKFB3 could further enhance the phosphorylation level of ULK1 and promote autophagy in PASMCs. Moreover, intratracheal administration of adeno-miR-26a-5p markedly alleviated right ventricular hypertrophy and pulmonary vascular remodeling in hypoxia-induced PAH rat models in vivo. Taken together, the HIF-1α/miR-26a-5p/PFKFB3/ULK1/2 axis plays critical roles in the regulation of hypoxia-induced PASMC autophagy and proliferation. MiR-26a-5p may represent as an attractive biomarker for the diagnosis and treatment of PAH.


Assuntos
Hipertensão Pulmonar , MicroRNAs , Hipertensão Arterial Pulmonar , Ratos , Animais , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Remodelação Vascular/genética , Hipóxia/metabolismo , Hipertensão Arterial Pulmonar/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Artéria Pulmonar/metabolismo , Miócitos de Músculo Liso/metabolismo , Autofagia , Proliferação de Células/genética , Movimento Celular/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo
3.
Mol Biol Rep ; 51(1): 627, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717532

RESUMO

MicroRNAs (miRNAs) are short, non-coding single-stranded RNA molecules approximately 22 nucleotides in length, intricately involved in post-transcriptional gene expression regulation. Over recent years, researchers have focused keenly on miRNAs, delving into their mechanisms in various diseases such as cancers. Among these, miR-26a emerges as a pivotal player in respiratory ailments such as pneumonia, idiopathic pulmonary fibrosis, lung cancer, asthma, and chronic obstructive pulmonary disease. Studies have underscored the significance of miR-26a in the pathogenesis and progression of respiratory diseases, positioning it as a promising therapeutic target. Nevertheless, several challenges persist in devising medical strategies for clinical trials involving miR-26a. In this review, we summarize the regulatory role and significance of miR-26a in respiratory diseases, and we analyze and elucidate the challenges related to miR-26a druggability, encompassing issues such as the efficiency of miR-26a, delivery, RNA modification, off-target effects, and the envisioned therapeutic potential of miR-26a in clinical settings.


Assuntos
Regulação da Expressão Gênica , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Animais , Doenças Respiratórias/genética , Doenças Respiratórias/terapia , Doenças Respiratórias/metabolismo , Asma/genética , Asma/terapia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/terapia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/terapia , Fibrose Pulmonar Idiopática/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia
4.
BMC Cardiovasc Disord ; 24(1): 18, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172711

RESUMO

OBJECTIVE: Many studies have found that miR-26a-5p plays an essential role in the progression of pathological cardiac hypertrophy, however, there is still no evidence on whether miR-26a-5p is related to the activation of autophagy and NLRP3 inflammasome. And the mechanism of miR-26a-5p and NLRP3 inflammasome aggravating pathological cardiac hypertrophy remain unclear. METHODS: Cardiomyocytes were treated with 200µM PE to induce cardiac hypertrophy and intervened with 10mM NLRP3 inhibitor INF39. In addition, we also used the MiR-26a-5p mimic and inhibitor to transfect PE-induced cardiac hypertrophy. RT-qPCR and western blotting were used to detect the expressions of miR-26a-5p, NLRP3, ASC and Caspase-1 in each group, and we used α-SMA immunofluorescence to detect the change of cardiomyocyte area. The expression levels of autophagy proteins LC3, beclin-1 and p62 were detected by western blotting. Finally, we induced the SD rat cardiac hypertrophy model through aortic constriction (TAC) surgery. In the experimental group, rats were intervened with MiR-26a-5p mimic, MiR-26a-5p inhibitor, autophagy inhibitor 3-MA, and autophagy activator Rapamycin. RESULTS: In cell experiments, we observed that the expression of miR-26a-5p was associated with cardiomyocyte hypertrophy and increased surface area. Furthermore, miR-26a-5p facilitated autophagy and activated the NLRP3 inflammasome pathway, which caused changes in the expression of genes and proteins including LC3, beclin-1, p62, ACS, NLRP3, and Caspase-1. We discovered similar outcomes in the TAC rat model, where miR-26a-5p expression corresponded with cardiomyocyte enlargement and fibrosis in the cardiac interstitial and perivascular regions. In conclusion, miR-26a-5p has the potential to regulate autophagy and activate the NLRP3 inflammasome, contributing to the development of cardiomyocyte hypertrophy. CONCLUSION: Our study found a relationship between the expression of miR-26a-5p and cardiomyocyte hypertrophy. The mechanism behind this relationship appears to involve the activation of the NLRP3 inflammasome pathway, which is caused by miR-26a-5p promoting autophagy. Targeting the expression of miR-26a-5p, as well as inhibiting the activation of autophagy and the NLRP3 inflammasome pathway, could offer additional treatments for pathological cardiac hypertrophy.


Assuntos
Cardiopatias Congênitas , MicroRNAs , Ratos , Animais , Inflamassomos/genética , Inflamassomos/metabolismo , Miócitos Cardíacos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína Beclina-1/metabolismo , Ratos Sprague-Dawley , MicroRNAs/genética , MicroRNAs/metabolismo , Cardiopatias Congênitas/metabolismo , Cardiomegalia/genética , Autofagia , Caspases/metabolismo
5.
Arch Toxicol ; 98(5): 1399-1413, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460002

RESUMO

Pulmonary fibrosis involves destruction of the lung parenchyma and extracellular matrix deposition. Effective treatments for pulmonary fibrosis are lacking and its pathogenesis is still unclear. Studies have found that epithelial-mesenchymal transition (EMT) of alveolar epithelial cells (AECs) plays an important role in progression of pulmonary fibrosis. Thus, an in-depth exploration of its mechanism might identify new therapeutic targets. In this study, we revealed that a novel circular RNA, MKLN1 (circMKLN1), was significantly elevated in two pulmonary fibrosis models (intraperitoneally with PQ, 50 mg/kg for 7 days, and intratracheally with BLM, 5 mg/kg for 28 days). Additionally, circMKLN1 was positively correlated with the severity of pulmonary fibrosis. Inhibition of circMKLN1 expression significantly reduced collagen deposition and inhibited EMT in AECs. EMT was aggravated after circMKLN1 overexpression in AECs. MiR-26a-5p/miR-26b-5p (miR-26a/b), the targets of circMKLN1, were confirmed by luciferase reporter assays. CircMKLN1 inhibition elevated miR-26a/b expression. Significantly decreased expression of CDK8 (one of the miR-26a/b targets) was observed after inhibition of circMKLN1. EMT was exacerbated again, and CDK8 expression was significantly increased after circMKLN1 inhibition and cotransfection of miR-26a/b inhibitors in AECs. Our research indicated that circMKLN1 promoted CDK8 expression through sponge adsorption of miR-26a/b, which regulates EMT and pulmonary fibrosis. This study provides a theoretical basis for finding new targets or biomarkers in pulmonary fibrosis.


Assuntos
MicroRNAs , Fibrose Pulmonar , Humanos , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , Células Epiteliais Alveolares , Transição Epitelial-Mesenquimal/genética , Quinase 8 Dependente de Ciclina/metabolismo , Moléculas de Adesão Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
6.
Oral Dis ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501171

RESUMO

OBJECTIVE: This study investigates the DP7-C/miR-26a complex as a stable entity resulting from the combination of miR-26a with the immunomodulatory peptide DP7-C. Our focus is on utilizing DP7-C loaded with miR-26a to modulate the immune microenvironment in bone and facilitate osteogenesis. METHODS: The DP7-C/miR-26a complex was characterized through transmission electron microscopy, agarose electrophoresis, and nanoparticle size potentiometer analysis. Transfection efficiency and cytotoxicity of DP7-C were assessed using flow cytometry and the CCK-8 assay. We validated the effects of DP7-C/miR-26a on bone marrow mesenchymal stem cells (BMSCs) and macrophages RAW 264.7 through gene expression and protein synthesis assays. A comprehensive evaluation of appositional bone formation involved micro-CT imaging, histologic analysis, and immunohistochemical staining. RESULTS: DP7-C/miR-26a, a nanoscale, and low-toxic cationic complex, demonstrated the ability to enter BMSCs and RAW 264.7 via distinct pathways. The treatment with DP7-C/miR-26a significantly increased the synthesis of multiple osteogenesis-related factors in BMSCs, facilitating calcium nodule formation in vitro. Furthermore, DP7-C/miR-26a promoted M1 macrophage polarization toward M2 while suppressing the release of inflammatory factors. Coculture studies corroborated these findings, indicating significant repair of rat skull defects following treatment with DP7-C/miR-26a. CONCLUSION: The DP7-C/miR-26a system offers a safer, more efficient, and feasible technical means for treating bone defects.

7.
Biochem Genet ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223335

RESUMO

Multiple sclerosis (MS) is an inflammatory and neurodegenerative disorder affecting white and gray matter. This study aimed to investigate the association between clinical outcomes in MS patients and the levels of certain molecules in their serum, including ACTH, IL-17, and specific miRNAs: miR-26a, miR-34a, miR-155-5p, and miR-146a. Fifty healthy people and 75 blood samples from MS patients were selected. MS patients had higher expression levels of IL-17, miR-26a, miR-34a, and miR-146a compared to healthy individuals (p < 0.0001). There was no significant difference in miR-155-5p expression between the two groups (p = 0.203). MS patients also had higher serum levels of ACTH compared to the normal population (p < 0.0001). In MS patients, there was a negative correlation between IL-17 and miR-155-5p expression levels (p = 0.048, r = - 0.229). Similarly, a significant negative correlation was observed between ACTH and miR-155-5p in the control group (p = 0.044, r = - 0.286). The study's analysis revealed no significant difference in the expression of miR-155-5p between MS patients and normal individuals; the study's examination revealed that the expression level of IL-17, miR-26a, miR-34a, and miR-146a was higher in MS patients than in normal individuals.

8.
Reprod Domest Anim ; 59(1): e14521, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38268207

RESUMO

For maximum productivity in a dairy farm, the earliest and the most accurate detection of pregnancy is essential. The aim of this study was to determine the efficacy of expression patterns of miR-26a, and serum Preimplantation Factor (PIF) levels for pregnancy diagnosis during the early pregnancy in nulliparous and multiparous cows. A total of 60 cows (30 nulliparous and 30 multiparous Holstein cows) were enrolled in the study. Blood samples were collected for miR-26a on days 8 and 16 (D8 and D16), and for the PIF on days 10 and 20 (D10 and D20) following insemination (D0). Pregnancies were determined by ultrasonography on the 28th day after insemination. Expression levels of miR-26a determined by qPCR. PIF levels were assessed by using commercial ELISA kits. All data were analyzed by using the MIXED procedure of SPSS. The expression levels of miR-26a were 6.64 folds higher on D16 in pregnant compared to non-pregnant multiparous cows (p < .05). On D8 and D16, miR-26a expression levels were found higher 13 folds in pregnant compared to non-pregnant nulliparous cows (p < .05). Additionally, miR-26a expressions were higher 5.42 folds (p < .05) on D8, 7.19 folds higher (p < .01) on D16 in pregnant nulliparous and multiparous cows, and were 6.30 folds higher (p < .001) on D8 and D16 according to non-pregnant animals. PIF levels were greater in pregnant animals (p < .05). Analyzing miR-26a on D8 might be considered as sufficient in nulliparous cows. Pregnancy detection in multiparous cows can be made on the 16th day with this method. Furthermore, PIF evaluations may be sufficient on D10 in multiparous cows. Besides, PIF levels and miR-26a expression levels might be used safely in field conditions and clinical applications.


Assuntos
MicroRNAs , Feminino , Gravidez , Bovinos , Animais , Diagnóstico Precoce , Paridade , Ensaio de Imunoadsorção Enzimática/veterinária , Fazendas
9.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338683

RESUMO

MicroRNAs (miRNAs) are involved in the modulation of pathogenic genes by binding to their mRNA sequences' 3' untranslated regions (3'UTR). Interleukin-6 (IL-6) is known to promote cancer progression and treatment resistance. In this study, we aimed to explore the therapeutic effects of gold nanoparticles (GNP) against IL-6 overexpression and the modulation of miRNA-26a-5p in breast cancer (BC) cells. GNP were synthesized using the trisodium citrate method and characterized through UV-Vis spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM). To predict the binding of miR-26a-5p in the IL-6 mRNA's 3'UTR, we utilized bioinformatics algorithms. Luciferase reporter clone assays and anti-miRNA-26a-5p transfection were employed to validate the binding of miR26a-5p in the IL-6 mRNA's 3'UTR. The activity of RelA and NF-κBp50 was assessed and confirmed using Bay 11-7082. The synthesized GNP were spherical with a mean size of 28.3 nm, exhibiting high stability, and were suitable for BC cell treatment. We found that miR-26a-5p directly regulated IL-6 overexpression in MCF-7 cells activated with PMA. Treatment of MCF-7 cells with GNP resulted in the inhibition of IL-6 overexpression and secretion through the increase of miR26a-5p. Furthermore, GNP deactivated NF-κBp65/NF-κBp50 transcription activity. The newly engineered GNP demonstrated safety and showed promise as a therapeutic approach for reducing IL-6 overexpression. The GNP suppressed IL-6 overexpression and secretion by deactivating NF-κBp65/NF-κBp50 transcription activity and upregulating miR-26a-5p expression in activated BC cells. These findings suggest that GNP have potential as a therapeutic intervention for BC by targeting IL-6 expression and associated pathways.


Assuntos
Neoplasias da Mama , Nanopartículas Metálicas , MicroRNAs , NF-kappa B , Feminino , Humanos , Regiões 3' não Traduzidas , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Ouro , Interleucina-6/genética , Interleucina-6/metabolismo , Nanopartículas Metálicas/química , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Fator de Transcrição RelA/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo
10.
Zhongguo Zhong Yao Za Zhi ; 49(15): 4197-4206, 2024 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-39307758

RESUMO

This study aims to investigate the mechanism of Buyang Huanwu Decoction in treatment of cerebral ischemia-reperfusion injury in rats. A total of 180 SD rats were randomly divided into 5 different groups: sham group, model group, Buyang Huanwu Decoction group, Buyang Huanwu Decoction + miR-26a-5p agomir(agomir) group, Buyang Huanwu Decoction + miR-26a-5p agomir negative control(agomir NC) group. There were 36 rats in each group. Each group was then subdivided into three subgroups for the duration of reperfusion(3, 7, 14 d). A ligature-induced middle cerebral artery occlusion(MCAO) model was carried out on all groups other than sham group. Reperfusion was performed following ischemia for 90 min. Buyang Huanwu Decoction group, agomir group, and agomir NC group were given Buyang Huanwu Decoction twice daily by gavage 24 h after the formation of the model. Sham group and model group were given an equal amount of physiological saline by gavage until the day before sacrifice. At 24 h after ischemia induction, miR-26a-5p agomir was injected into the lateral ventricle in agomir group, miR-26a-5p NC in agomir NC group, and equal amounts of physiological saline in the other groups. 24 h after ischemia induction, BrdU was intraperitoneally injected once daily until the day before sacrifice. Modified neurological severity score(mNSS) was used to evaluate neurological deficits, 2,3,5-triphenyltetrazolium chloride(TTC) staining was used to determine the cerebral infarct volume, TUNEL staining was used to assess the apoptosis of parenchymal ischemic brain tissue, and double immunofluorescence staining was used to examine BrdU/NeuN double positive neurons in the parenchymal ischemic brain tissue to evaluate the neuronal regeneration. We employed a luciferase reporter assay to identify and validate that the target gene of miR-26a-5p is PTEN. Real-time quantitative polymerase chain reaction(RT-qPCR) was used to assess gene expression levels of PTEN and miR-26a-5p and Western blot to assess the protein levels of PTEN, PI3K, p-PI3K, Akt, and p-Akt. The results revealed that compared with model group, Buyang Huanwu Decoction treatment promoted neural function recovery, reduced the cerebral infarct volume, increased the number of BrdU~+/NeuN~+ neurons, upregulated the expression of miR-26a-5p, regulated the PTEN/PI3K/Akt signaling pathway, and promoted neuronal regeneration in the cerebral ischemia-reperfusion rats. These effects were significantly enhanced after lateral ventricle injection of miR-26a-5p agomir. The findings prove that Buyang Huanwu Decoction treatment can promote neural function recovery, reduce the cerebral infarct volume, and promote neuronal regeneration in a cerebral ischemia-reperfusion rat model, which is likely to be achieved via miR-26a-5p mediated PTEN/PI3K/Akt signaling pathway.


Assuntos
Isquemia Encefálica , Medicamentos de Ervas Chinesas , MicroRNAs , PTEN Fosfo-Hidrolase , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Transdução de Sinais , Animais , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Ratos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Masculino , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Humanos , Apoptose/efeitos dos fármacos
11.
J Biol Chem ; 298(12): 102605, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36257404

RESUMO

Podocyte injury is a characteristic pathological hallmark of diabetic nephropathy (DN). However, the exact mechanism of podocyte injury in DN is incompletely understood. This study was conducted using db/db mice and immortalized mouse podocytes. High-throughput sequencing was used to identify the differentially expressed long noncoding RNAs in kidney of db/db mice. The lentiviral shRNA directed against long noncoding RNA small nucleolar RNA host gene 5 (SNHG5) or microRNA-26a-5p (miR-26a-5p) agomir was used to treat db/db mice to regulate the SNHG5/miR-26a-5p pathway. Here, we found that the expression of transient receptor potential canonical type 6 (TRPC6) was significantly increased in injured podocytes under the condition of DN, which was associated with markedly decreased miR-26a-5p. We determined that miR-26a-5p overexpression ameliorated podocyte injury in DN via binding to 3'-UTR of Trpc6, as evidenced by the markedly reduced activity of luciferase reporters by miR-26a-5p mimic. Then, the upregulated SNHG5 in podocytes and kidney in DN was identified, and it was proved to sponge to miR-26a-5p directly using luciferase activity, RNA immunoprecipitation, and RNA pull-down assay. Knockdown of SNHG5 attenuated podocyte injury in vitro, accompanied by an increased expression of miR-26a-5p and decreased expression of TRPC6, demonstrating that SNHG5 promoted podocyte injury by controlling the miR-26a-5p/TRPC6 pathway. Moreover, knockdown of SNHG5 protects against podocyte injury and progression of DN in vivo. In conclusion, SNHG5 promotes podocyte injury via the miR-26a-5p/TRPC6 pathway in DN. Our findings provide novel insights into the pathophysiology of podocyte injury and a potential new therapeutic strategy for DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , MicroRNAs , Podócitos , RNA Longo não Codificante , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Nefropatias Diabéticas/metabolismo , Canal de Cátion TRPC6/genética , Canal de Cátion TRPC6/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Podócitos/metabolismo , Apoptose/genética , Diabetes Mellitus/metabolismo
12.
Breast Cancer Res ; 25(1): 75, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365643

RESUMO

BACKGROUND: DNA damage and DNA damage repair (DDR) are important therapeutic targets for triple-negative breast cancer (TNBC), a subtype with limited chemotherapy efficiency and poor outcome. However, the role of microRNAs in the therapy is emerging. In this study, we explored whether miR-26a-5p could act as BRCAness and enhance chemotherapy sensitivity in TNBC. METHODS: Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to detect the expression of miR-26a-5p in breast cancer tissues and cell lines. CCK-8 was used to measure drug sensitivity in concentration gradient and time gradient. Comet assay was used to detect DNA damage. Flow cytometry was performed to examine apoptosis. Moreover, we used western blot and immunofluorescence to detect biomarkers. Luciferase reporter assay was performed to verify the combination of miR-26a-5p and 3'UTR of target gene. Hormone deprivation and stimulation assay were used to validate the effect of hormone receptors on the expression of miR-26a-5p. Chromatin immunoprecipitation (ChIP) assays were used to verify the binding sites of ER-a or PR with the promoter of miR-26a-5p. Animal experiments were performed to the effect of miR-26a-5p on Cisplatin treatment. RESULTS: The expression of miR-26a-5p was significantly downregulated in TNBC. Overexpressing miR-26a-5p enhanced the Cisplatin-induced DNA damage and following apoptosis. Interestingly, miR-26a-5p promoted the expression of Fas without Cisplatin stimulating. It suggested that miR-26a-5p provided a hypersensitivity state of death receptor apoptosis and promoted the Cisplatin sensitivity of TNBC cells in vitro and in vivo. Besides, miR-26a-5p negatively regulated the expression of BARD1 and NABP1 and resulted in homologous recombination repair defect (HRD). Notably, overexpressing miR-26a-5p not only facilitated the Olaparib sensitivity of TNBC cells but also the combination of Cisplatin and Olaparib. Furthermore, hormone receptors functioned as transcription factors in the expression of miR-26a-5p, which explained the reasons that miR-26a-5p expressed lowest in TNBC. CONCLUSIONS: Taken together, we reveal the important role of miR-26a-5p in Cisplatin sensitivity and highlight its new mechanism in DNA damage and synthetic lethal.


Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNAs/genética , Proteínas de Transporte , Hormônios
13.
Biotechnol Lett ; 45(7): 905-919, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37195490

RESUMO

PURPOSE: As small bioactive molecules, exosomes can deliver osteogenesis-related miRNAs to target cells and promote osteogenesis. This study aimed to investigate miR-26a as a therapeutic cargo to be loaded into bone marrow stromal cell exosomes through a novel immunomodulatory peptide (DP7-C). METHODS: After transfecting BMSCs with DP7-C as a transfection agent, exosomes were extracted by ultracentrifugation from the culture supernatant of miR-26a-modified BMSCs. We then characterized and identified the engineered exosomes. The effect of the engineered exosomes on osteogenesis was then evaluated in vitro and in vivo, including transwell, wound healing, modified alizarin red staining, western blot, real-time quantitative PCR, and experimental periodontitis assays. Bioinformatics and data analyses were conducted to investigate the role of miR-26a in bone regeneration. RESULTS: The DP7-C/miR-26a complex successfully transfected miR-26a into BMSCs and stimulated them to release more than 300 times the amount of exosomes overexpressing miR-26a compared with the ExoNC group. Furthermore, exosomes loaded with miR-26a could enhance proliferation, migration, and osteogenic differentiation of BMSCs in vitro compared with the ExoNC and blank groups. In vivo, the ExomiR-26a group inhibited the destruction of periodontitis compared with the ExoNC and blank groups, as revealed by HE staining. Micro-CT indicated that treatment of ExomiR-26a increased the percent bone volume and the bone mineral density compared with those of the ExoNC (P < 0.05) and blank groups (P < 0.001). Target gene analysis indicated that the osteogenic effect of miR-26a is related to the mTOR pathway. CONCLUSION: miR-26a can be encapsulated into exosomes through DP7-C. Exosomes loaded with miR-26a can promote osteogenesis and inhibit bone loss in experimental periodontitis and serve as the foundation for a novel treatment strategy.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Osteogênese/genética , Exossomos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular
14.
Ecotoxicol Environ Saf ; 257: 114950, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37099959

RESUMO

Silicosis is one of several potentially fatal occupational pathologies caused by the prolonged inhalation of respirable crystalline silica. Previous studies have shown that lung epithelial-mesenchymal transition (EMT) plays a significant role in the fibrosis effect of silicosis. Human umbilical cord mesenchymal stem cells-derived Extracellular vesicles (hucMSC-EVs) have attracted great interest as a potential therapy of EMT and fibrosis-related diseases. However, the potential effects of hucMSC-EVs in inhibiting EMT in silica-induced fibrosis, as well as its underlying mechanisms, remain largely unknown. In this study, we used the EMT model in MLE-12 cells and observed the effects and mechanism of hucMSC-EVs inhibition of EMT. The results revealed that hucMSC-EVs can indeed inhibit EMT. MiR-26a-5p was highly enriched in hucMSC-EVs but was down-regulated in silicosis mice. We found that miR-26a-5p in hucMSC-EVs was over-expressed after transfecting miR-26a-5p expressing lentivirus vectors into hucMSCs. Subsequently, we explored if miR-26a-5p, attained from hucMSC-EVs, was involved in inhibiting EMT in silica-induced lung fibrosis. Our findings suggested that hucMSC-EVs could deliver miR-26a-5p into MLE-12 cells and cause the inhibition of the Adam17/Notch signalling pathway to ameliorate EMT in silica-induced pulmonary fibrosis. These findings might represent a novel insight into treating silicosis fibrosis.


Assuntos
Vesículas Extracelulares , MicroRNAs , Fibrose Pulmonar , Silicose , Humanos , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Transição Epitelial-Mesenquimal , Dióxido de Silício/toxicidade , Fibrose , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Silicose/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína ADAM17/genética
15.
Int J Mol Sci ; 24(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37373175

RESUMO

MicroRNA-26 (miR-26a and miR-26b) plays a critical role in lipid metabolism, but its endogenous regulatory mechanism in fatty acid metabolism is not clear in goat mammary epithelial cells (GMECs). GMECs with the simultaneous knockout of miR-26a and miR-26b were obtained using the CRISPR/Cas9 system with four sgRNAs. In knockout GMECs, the contents of triglyceride, cholesterol, lipid droplets, and unsaturated fatty acid (UFA) were significantly reduced, and the expression of genes related to fatty acid metabolism was decreased, but the expression level of miR-26 target insulin-induced gene 1 (INSIG1) was significantly increased. Interestingly, the content of UFA in miR-26a and miR-26b simultaneous knockout GMECs was significantly lower than that in wild-type GMECs and miR-26a- and miR-26b-alone knockout cells. After decreasing INSIG1 expression in knockout cells, the contents of triglycerides, cholesterol, lipid droplets, and UFAs were restored, respectively. Our studies demonstrate that the knockout of miR-26a/b suppressed fatty acid desaturation by upregulating the target INSIG1. This provides reference methods and data for studying the functions of miRNA families and using miRNAs to regulate mammary fatty acid synthesis.


Assuntos
Cabras , MicroRNAs , Animais , Cabras/genética , Cabras/metabolismo , Glândulas Mamárias Animais/metabolismo , Células Epiteliais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Triglicerídeos/metabolismo , Colesterol/metabolismo , Ácidos Graxos/metabolismo
16.
Biochem Biophys Res Commun ; 630: 92-100, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36152350

RESUMO

PURPOSE: We aim to investigate the potential role and underlying mechanisms of linc00174 on pyroptosis in the pathogenesis of DR. METHODS: Expression patterns of linc00174, miR-26a-5p and PTEN in human retinal microvascular endothelial cells (hRMECs) were detected by quantitative real-time PCR (qRT-PCR) and Western blot, respectively. Biological functions of linc00174 on cell proliferation and pyroptosis were evaluated by CCK-8, flow cytometry, caspase-1 activity assays, respectively. Luciferase reporter assay was employed to verify the interaction between miR-26a-5p and linc00174/PTEN. Streptozotocin (STZ)-induced DR in mice was further constructed to verify the potential role of linc00174 in vivo. Hematoxylin and eosin (H&E) and immunohistochemical staining were performed to assess the pathological changes and caspase-1 expression in retinal tissues. RESULTS: Up-regulated linc00174 and PTEN and down-regulated miR-26a-5p were uncovered in hRMECs treated with high glucose (HG). Mechanistically, linc00174 served as a sponge of miR-26a-5p to facilitate PTEN expression. Functionally, knockdown of linc00174 inhibited HG-induced pyroptosis of hRMECs via targeting miR-26a-5p. Moreover, linc00174/miR-26a-5p axis participated in HG-induced pyroptosis via PTEN/Akt signaling cascade. Further, silencing of linc00174 attenuated pyroptosis via regulating miR-26a-5p/PETN axis in DR mice. CONCLUSIONS: Collectively, our study reveals that linc10074 deteriorates the pathogenesis of DR via miR-26a-5p/PTEN/Akt signalling cascade, which may shed light on the discovery of potential therapeutic agents for DR treatment.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , MicroRNAs , Animais , Caspases/metabolismo , Proliferação de Células , Diabetes Mellitus/metabolismo , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Amarelo de Eosina-(YS)/metabolismo , Glucose/metabolismo , Hematoxilina/metabolismo , Humanos , Camundongos , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piroptose , Sincalida/metabolismo , Estreptozocina
17.
J Neuroinflammation ; 19(1): 221, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071475

RESUMO

BACKGROUND: Mesenchymal stem cell (MSCs)-derived small Extracellular Vesicles (sEVs) are considered as a new cell-free therapy for pain caused by nerve injury, but whether human placental mesenchymal stem cell-derived sEVs relieve pain in sciatic nerve injury and its possible mechanism are still unclear. In this study, we investigated the roles of hPMSCs-derived sEVs and related mechanisms in neuropathic pain. METHODS: The spared nerve injury (SNI) mouse model was employed. Intrathecal injection of sEVs or miR-26a-5p agomir was performed on the seventh day of modeling, to study its anti-nociceptive effect. sEVs' miRNA sequencing (miRNA-Seq) and bioinformatics analysis were performed to study the downstream mechanisms of miRNAs. RT-qPCR, protein assay and immunofluorescence were used for further validation. RESULTS: A single intrathecal injection of sEVs durably reversed mechanical hypersensitivity in the left hind paw of mice with partial sciatic nerve ligation. Immunofluorescence studies found that PKH26-labeled sEVs were visible in neurons and microglia in the dorsal horn of the ipsilateral L4/5 spinal cord and more enriched in the ipsilateral. According to miRNA-seq results, we found that intrathecal injection of miR-26a-5p agomir, the second high counts microRNA in hPMSCs derived sEVs, significantly suppressed neuropathic pain and neuroinflammation in SNI mice. Bioinformatics analysis and dual-luciferase reporter gene analysis identified Wnt5a as a direct downstream target gene of miR-26a-5p. The results showed that overexpression of miR-26a-5p in vivo could significantly reduce the expression level of Wnt5a. In addition, Foxy5, a mimetic peptide of Wnt5a, can significantly reverse the inhibitory effect of miR-26a-5p on neuroinflammation and neuropathic pain, and at the same time, miR-26a-5p can rescue the effect of Foxy5 by overexpression. CONCLUSIONS: We reported that hPMSCs derived sEVs as a promising therapy for nerve injury induced neuropathic pain. In addition, we showed that the miR-26a-5p in the sEVs regulated Wnt5a/Ryk/CaMKII/NFAT partly take part in the analgesia through anti-neuroinflammation, which suggests an alleviating pain effect through non-canonical Wnt signaling pathway in neuropathic pain model in vivo.


Assuntos
Antagomirs , Vesículas Extracelulares , MicroRNAs , Neuralgia , Animais , Antagomirs/farmacologia , Modelos Animais de Doenças , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neuralgia/metabolismo , Placenta/metabolismo , Gravidez , Receptores Proteína Tirosina Quinases , Proteína Wnt-5a/genética
18.
BMC Cancer ; 22(1): 876, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948893

RESUMO

BACKGROUND: Evidences have indicated that miR-26a-5p regulates the malignant properties of various tumor cells. However, the influences of miR-26a-5p on proliferation, apoptosis and invasion are still vague in the cervical cancer (CC) cells. METHODS: The miRNA microarray and real-time quantitative PCR (RT-qPCR) analysis were utilized to detect the expression of miR-26a-5p in the patients with CC. Kaplan-Meier plotter was performed to evaluate the overall survival (OS) of the patients with CC. The CCK-8, flow cytometry, transwell and wound healing analyses were respectively used to analyze proliferation, migration and invasion in the CC cells. RT-qPCR, western blot and IHC analysis were executed to measure the expression of hydroxysteroid dehydrogenase like-2 (HSDL2) in the patients with CC. Bioinformatics and luciferase reporter assay were carried out to verify the relationship of miR-26a-5p and HSDL2. RESULTS: The expression of miR-26a-5p was downregulated and low expression of miR-26a-5p indicated a poor OS in patients with CC. Overexpression of miR-26a-5p significantly inhibited proliferation, migration and invasion, accelerated apoptosis in the Hela and C33A cells. The expression of HSDL2 was upregulated, and negatively correlated with miR-26a-5p in the patients with CC. HSDL2 was directly targeted by miR-26a-5p and rescue experiments displayed that HSDL2 partially abolished proliferation, apoptosis, migration, and invasion induced by miR-26a-5p in CC cells. CONCLUSIONS: MiR-26a-5p alleviated progression of CC by suppressing proliferation, migration and invasion, promoting apoptosis through downregulating HSDL2.


Assuntos
MicroRNAs , Neoplasias do Colo do Útero , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Humanos , Hidroxiesteroide Desidrogenases , MicroRNAs/genética , MicroRNAs/metabolismo , Processos Neoplásicos , Neoplasias do Colo do Útero/patologia
19.
BMC Cancer ; 22(1): 332, 2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35346116

RESUMO

BACKGROUND: Tyrosine kinase inhibitors (TKIs) as first-line therapy for Chronic Myeloid Leukemia (CML) show a high success rate. However, a low number of patients with long-term treatment-free remission (TFR) were observed. Molecular relapse after imatinib discontinuation occurred at 50% at 24 months, with 80% occurrence within the first 6 months. One of the reasons for relapse is untimely TKIs discontinuation caused by large errors from estimates at very low-level or undetectable disease, thus warranting new biomarkers for CML. METHODS: Next Generation Sequencing (NGS) was used to identify microRNAs (miRNAs) at the molecular response in CML adult patients receiving TKIs treatment. A total of 86 samples were collected, 30 from CML patients responsive and 28 from non-responsive to imatinib therapy, and 28 from blood donors. NGS was conducted whereby 18 miRNAs were selected and validated by real-time RT-qPCR in triplicate. RESULTS: Hsa-miR-181a-5p was expressed significantly (p-value< 0.05) with 2.14 and 2.33-fold down-regulation in both patient groups, respectively meanwhile hsa-miR-182-5p and hsa-miR-26a-5p were significant only in the non-responsive group with 2.08 and 2.39 fold up-regulation. The down-regulation was consistent with decreased amounts of BCR-ABL1 in patients taking TKIs regardless of molecular responses. The up-regulation was consistent with the substantial presence of BCR-ABL1 in CML patients treated with TKIs at the molecular response. CONCLUSIONS: Therefore, these miRNAs have potential as new therapeutic biomarkers for BCR-ABL1 status in adult CML patients treated with TKIs at molecular responses. These could improve current approaches and require further analysis to look for targets of these miRNAs in CML.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , MicroRNAs , Adulto , Biomarcadores , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , MicroRNAs/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
20.
FASEB J ; 35(10): e21924, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34582059

RESUMO

Breastmilk miRNAs may act as epigenetic regulators of metabolism and energy homeostasis in offspring. Here, we aimed to investigate the regulatory effects of miR-26a on adipose tissue development. First, the 3T3-L1 cell model was used to identify putative target genes for miR-26a. Then, target genes were analysed in adipose tissue of offspring from dams that supplied lower levels of breastmilk miR-26a to determine whether miR-26a milk concentration might have a long-lasting impact on adipose tissue in the progeny. In the in vitro model, both over- and under-expression of miR-26a were induced by transfecting into 3T3-L1 with miR-26a mimic and inhibitor. Array analysis was performed after induction of miR-26a to ascertain the impact on mRNA target genes and influence of differentiation status. Focusing on genes related to adipose tissue development, transfection with miR-26a mimic reduced the expression of Pten, Hmga1, Stk11, Rb1, and Adam17 in both pre- and mature adipocytes. Data mostly confirmed the results found in the animal model. After weaning, descendants of cafeteria-fed dams breastfed with lower levels of miR-26a displayed greater expression of Hmag1, Rb1, and Adam17 in retroperitoneal white adipose tissue in comparison with controls. Hence, alterations in the amount of miR-26a supplied through milk during lactation is able to alter the expression of target genes in the descendants and may affect adipose tissue development. Thus, milk miR-26a may act as an epigenetic regulator influencing early metabolic program in the progeny, which emerges as a relevant component of an optimal milk composition for correct development.


Assuntos
Tecido Adiposo/metabolismo , Regulação da Expressão Gênica/genética , Glândulas Mamárias Animais/metabolismo , MicroRNAs/genética , Leite/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Feminino , Camundongos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa