Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neurosci Biobehav Rev ; 161: 105683, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649125

RESUMO

The lateral septum (LS) is involved in controlling anxiety, aggression, feeding, and other motivated behaviors. Lesion studies have also implicated the LS in various forms of caring behaviors. Recently, novel experimental tools have provided a more detailed insight into the function of the LS, including the specific role of distinct cell types and their neuronal connections in behavioral regulations, in which the LS participates. This article discusses the regulation of different types of maternal behavioral alterations using the distributions of established maternal hormones such as prolactin, estrogens, and the neuropeptide oxytocin. It also considers the distribution of neurons activated in mothers in response to pups and other maternal activities, as well as gene expressional alterations in the maternal LS. Finally, this paper proposes further research directions to keep up with the rapidly developing knowledge on maternal behavioral control in other maternal brain regions.


Assuntos
Comportamento Materno , Núcleos Septais , Comportamento Materno/fisiologia , Animais , Núcleos Septais/fisiologia , Núcleos Septais/metabolismo , Feminino , Humanos , Ocitocina/metabolismo , Ocitocina/fisiologia
2.
Brain Struct Funct ; 223(7): 3229-3250, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29802523

RESUMO

Nursing has important consequences on mothers. To separate the prolactin-mediated and the neuronally-mediated actions of nursing, neurons directly affected by prolactin were visualized using pSTAT5 immunohistochemistry in relation to Fos-expressing neurons in suckled mother mice. In response to pup exposure following 22-h pup deprivation, we found a markedly elevated number of pSTAT5-containing neurons in several brain regions, including the lateral septum, medial amygdaloid nucleus, subparafascicular area, caudal periaqueductal gray, dorsal raphe, lateral parabrachial nucleus, nucleus of the solitary tract, and the periventricular, medial preoptic, paraventricular, arcuate and ventromedial nuclei of the hypothalamus. Pup exposure also induced Fos expression in all of these brain regions except the arcuate and ventromedial hypothalamic nuclei. Bromocriptine treatment known to reduce prolactin levels eliminated pSTAT5 from most brain regions while it did not affect Fos activation following suckling. The degree of colocalization for pSTAT5 and Fos ranged from 8 to 80% in the different brain regions suggesting that most neurons responding to pup exposure in mother mice are driven either by prolactin or direct neuronal input from the pups, while the number of neurons affected by both types of inputs depends on the examined brain area. In addition, both pSTAT5 and Fos were also double-labeled with estrogen receptor alpha (ERα) in mother mice, which revealed a very high degree of colocalization between pSTAT5 and ERα with much less potential interaction between Fos- and ERα-containing neurons suggesting that estrogen-sensitive neurons are more likely to be affected by prolactin than by direct neuronal activation.


Assuntos
Encéfalo/metabolismo , Lactação/metabolismo , Neurônios/metabolismo , Prolactina/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fator de Transcrição STAT5/metabolismo , Animais , Animais Lactentes , Comportamento Animal , Encéfalo/efeitos dos fármacos , Bromocriptina/farmacologia , Receptor alfa de Estrogênio/metabolismo , Feminino , Antagonistas de Hormônios/farmacologia , Camundongos , Neurônios/efeitos dos fármacos , Fosforilação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa