Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 373
Filtrar
1.
Anal Bioanal Chem ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834789

RESUMO

We developed a sensing strategy that mimics the bead-based electrogenerated chemiluminescence immunoassay. However, instead of the most common metal complexes, such as Ru or Ir, the luminophore is luminol. The electrogenerated chemiluminescence of luminol was promoted by in situ electrochemical generation of hydrogen peroxide at a boron-doped diamond electrode. The electrochemical production of hydrogen peroxide was achieved in a carbonate solution by an oxidation reaction, while at the same time, microbeads labelled with luminol were deposited on the electrode surface. For the first time, we proved that was possible to obtain light emission from luminol without its direct oxidation at the electrode. This new emission mechanism is obtained at higher potentials than the usual luminol electrogenerated chemiluminescence at 0.3-0.5 V, in conjunction with hydrogen peroxide production on boron-doped diamond at around 2-2.5 V (vs Ag/AgCl).

2.
Part Fibre Toxicol ; 21(1): 39, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334292

RESUMO

BACKGROUND: There has been an exponential increase in the number of studies reporting on the toxicological effects associated with exposure to nano and microplastic particles (NMPs). The majority of these studies, however, have used monodispersed polystyrene microspheres (PSMs) as 'model' particles. Here we review the differences between the manufacture and resulting physicochemical properties of polystyrene used in commerce and the PSMs most commonly used in toxicity studies. MAIN BODY: In general, we demonstrate that significant complexity exists as to the properties of polystyrene particles. Differences in chemical composition, size, shape, surface functionalities and other aspects raise doubt as to whether PSMs are fit-for-purpose for the study of potential adverse effects of naturally occurring NMPs. A realistic assessment of potential health implications of the exposure to environmental NMPs requires better characterisation of the particles, a robust mechanistic understanding of their interactions and effects in biological systems as well as standardised protocols to generate relevant model particles. It is proposed that multidisciplinary engagement is necessary for the development of a timely and effective strategy towards this end. We suggest a holistic framework, which must be supported by a multidisciplinary group of experts to work towards either providing access to a suite of environmentally relevant NMPs and/or developing guidance with respect to best practices that can be adopted by research groups to generate and reliably use NMPs. It is emphasized that there is a need for this group to agree to a consensus regarding what might best represent a model NMP that is consistent with environmental exposure for human health, and which can be used to support a variety of ongoing research needs, including those associated with exposure and hazard assessment, mechanistic toxicity studies, toxicokinetics and guidance regarding the prioritization of plastic and NMPs that likely represent the greatest risk to human health. It is important to acknowledge, however, that establishing a multidisciplinary group, or an expert community of practice, represents a non-trivial recommendation, and will require significant resources in terms of expertise and funding. CONCLUSION: There is currently an opportunity to bring together a multidisciplinary group of experts, including polymer chemists, material scientists, mechanical engineers, exposure and life-cycle assessment scientists, toxicologists, microbiologists and analytical chemists, to provide leadership and guidance regarding a consensus on defining what best represents environmentally relevant NMPs. We suggest that given the various complex issues surrounding the environmental and human health implications that exposure to NMPs represents, that a multidisciplinary group of experts are thus critical towards helping to progress the harmonization and standardization of methods.


Assuntos
Microplásticos , Nanopartículas , Tamanho da Partícula , Poliestirenos , Poliestirenos/toxicidade , Poliestirenos/química , Medição de Risco , Microplásticos/toxicidade , Microplásticos/química , Humanos , Nanopartículas/toxicidade , Nanopartículas/química , Animais , Exposição Ambiental/efeitos adversos , Microesferas , Testes de Toxicidade
3.
J Immunoassay Immunochem ; : 1-17, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169555

RESUMO

Conventional oral vaccine delivery in poultry is challenging due to vaccine degradation in the gastrointestinal (GI) environment and the need for cold-chain storage. Microencapsulation offers a solution by protecting vaccines from GI degradation and improving stability. Natural polymers like alginate and cashew gum have mucoadhesive properties, making them promising candidates for oral vaccine delivery. This study developed cashew-alginate microbeads and a powdered dose form for oral vaccine delivery in chickens. The microbeads were created using ionotropic gelation, while the powdered form was obtained via freeze-drying. These formulations were characterized for size, shape, and stability using scanning electron microscopy (SEM), light microscopy, X-ray diffraction (XRD), and Energy Dispersive X-ray (EDX). Peak adhesion time (PAT) was determined using chicken intestinal and esophageal tissues, and antigenicity was assessed with in-vitro hemagglutination (HA) and hemagglutination inhibition (HI) assays. The microbeads exhibited a spherical shape with a porous structure, suggesting enhanced antigen accommodation. Hemagglutination Inhibition tests indicated that the experimental vaccine remained effective without cold-chain storage for three months. These findings suggest that cashew-alginate microbeads are promising for oral vaccine delivery in poultry.

4.
Mikrochim Acta ; 191(5): 285, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652174

RESUMO

One significant constraint in the advancement of biosensors is the signal-to-noise ratio, which is adversely affected by the presence of interfering factors such as blood in the sample matrix. In the present investigation, a specific aptamer binding was chosen for its affinity, while exhibiting no binding affinity towards non-target bacterial cells. This selective binding property was leveraged to facilitate the production of magnetic microparticles decorated with aptamers. A novel assay was developed to effectively isolate S. pneumoniae from PBS or directly from blood samples using an aptamer with an affinity constant of 72.8 nM. The capture experiments demonstrated efficiencies up to 87% and 66% are achievable for isolating spiked S. pneumoniae in 1 mL PBS and blood samples, respectively.


Assuntos
Aptâmeros de Nucleotídeos , Dióxido de Silício , Aptâmeros de Nucleotídeos/química , Dióxido de Silício/química , Streptococcus pneumoniae/isolamento & purificação , Streptococcus pneumoniae/química , Humanos , Técnicas Biossensoriais/métodos , Nanopartículas de Magnetita/química
5.
Mikrochim Acta ; 191(5): 251, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38589663

RESUMO

Nanocomposite microbeads (average diameter = 10-100 µm) were prepared by a microemulsion-solidification method and applied to the magnetic solid-phase extraction (m-SPE) of fourteen analytes, among pesticides, drugs, and hormones, from human urine samples. The microbeads, perfectly spherical in shape to maximize the surface contact with the analytes, were composed of magnetic nanoparticles dispersed in a polylactic acid (PLA) solid bulk, decorated with multi-walled carbon nanotubes (mPLA@MWCNTs). In particular, PLA was recovered from filters of smoked electronic cigarettes after an adequate cleaning protocol. A complete morphological characterization of the microbeads was performed via Fourier-transform infrared (FTIR) spectroscopy, UV-Vis spectroscopy, thermogravimetric and differential scanning calorimetry analysis (TGA and DSC), scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). The recovery study of the m-SPE procedure showed yields ≥ 64%, with the exception of 4-chloro-2-methylphenol (57%) at the lowest spike level (3 µg L-1). The method was validated according to the main FDA guidelines for the validation of bioanalytical methods. Using liquid chromatography-tandem mass spectrometry, precision and accuracy were below 11% and 15%, respectively, and detection limits of 0.1-1.8 µg L-1. Linearity was studied in the range of interest 1-15 µg L-1 with determination coefficients greater than 0.99. In light of the obtained results, the nanocomposite microbeads have proved to be a valid and sustainable alternative to traditional sorbents, offering good analytical standards and being synthetized from recycled plastic material. One of the main objectives of the current work is to provide an innovative and optimized procedure for the recycling of a plastic waste, to obtain a regular and reliable microstructure, whose application is here presented in the field of analytical chemistry. The simplicity and greenness of the method endows the procedure with a versatile applicability in different research and industrial fields.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Nanocompostos , Nanotubos de Carbono , Humanos , Nanotubos de Carbono/química , Xenobióticos , Microesferas , Poliésteres , Extração em Fase Sólida/métodos , Nanocompostos/química , Fenômenos Magnéticos
6.
Int J Mol Sci ; 25(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38396974

RESUMO

Endotoxin, a synonym for lipopolysaccharide (LPS), is anchored in the outer membranes of Gram-negative bacteria. Even minute amounts of LPS entering the circulatory system can have a lethal immunoactivating effect. Since LPS is omnipresent in the environment, it poses a great risk of contaminating any surface or solution, including research products and pharmaceuticals. Therefore, monitoring LPS contamination and taking preventive or decontamination measures to ensure human safety is of the utmost importance. Nevertheless, molecules used for endotoxin detection or inhibition often suffer from interferences, low specificity, and low affinity. For this reason, the selection of new binders that are biocompatible, easy to produce, and that can be used for biopharmaceutical applications, such as endotoxin removal, is of high interest. Powerful techniques for selecting LPS-binding molecules in vitro are display technologies. In this study, we established and compared the selection and production of LPS-specific, monoclonal, human single-chain variable fragments (scFvs) through two display methods: yeast and phage display. After selection, scFvs were fused to a human constant fragment crystallizable (Fc). To evaluate the applicability of the constructs, they were conjugated to polystyrene microbeads. Here, we focused on comparing the functionalized beads and their LPS removal capacity to a polyclonal anti-lipid A bead. Summarized, five different scFvs were selected through phage and yeast display, with binding properties comparable to a commercial polyclonal antibody. Two of the conjugated scFv-Fcs outperformed the polyclonal antibody in terms of the removal of LPS in aqueous solution, resulting in 265 times less residual LPS in solution, demonstrating the potential of display methods to generate LPS-specific binding molecules.


Assuntos
Bacteriófagos , Anticorpos de Cadeia Única , Humanos , Anticorpos Monoclonais , Bacteriófagos/genética , Saccharomyces cerevisiae/metabolismo , Biblioteca de Peptídeos , Endotoxinas , Lipopolissacarídeos
7.
Waste Manag Res ; 42(4): 308-320, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37491847

RESUMO

Plastic pollution is a global problem and many countries are strengthening their regulations to mitigate the related environmental degradation and health risks and to support the development and deployment of circular economy for various types of plastics. As Canada also develops its strategy for regulating single-use plastic as one element of the plastic pollution, aligned federal and provincial policies are essential. This study presents an analysis of existing and emerging policies to provide guidance on Canada's future regulations. Qualitative and quantitative data regarding plastic regulations were gathered from similar countries including Australia, the United Kingdom, the European Union, the United States and relevant scientific articles. Analysis was also conducted of current Canadian regulations that both impact and guide the path for plastic regulation, international examples provided guidance for future Canadian regulations. The analysis found that there is a need for public education on the gravity of plastic pollution to gain their support; for establishing pioneering provinces or cities in plastic regulations to learn from and provide other cities with support; and to start with banning items with available alternatives, to be followed by phasing out other items that are more difficult to replace. The study also showed potential areas of improvement in impact data. The need for reliable regulatory performance data against a baseline scenario; consistency in methodology; and proper scoping to reduce the risk of displacement or exclusivity in policy were identified.


Assuntos
Poluição Ambiental , Plásticos , Estados Unidos , Canadá , Poluição Ambiental/prevenção & controle , União Europeia , Cidades
8.
Cytometry A ; 103(5): 455-457, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36161760

RESUMO

The availability of cross-reacting antibodies and/or of antibodies working in flow cytometry is a major issue in the veterinary field. One of the main problems is the availability of certain positive controls. With this brief communication, we report an method to quickly screen a wide number of products without the need to look for positive biological samples. We propose this approach as a first step to select the best antibodies to test on biological specimens.


Assuntos
Anticorpos , Antígenos , Animais , Citometria de Fluxo
9.
Biotechnol Bioeng ; 120(8): 2371-2377, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37366284

RESUMO

Adeno-associated virus (AAV)-based gene therapy holds promise as a fundamental treatment for genetic disorders. For clinical applications, it is necessary to control AAV release timing to avoid an immune response to AAV. Here we propose an ultrasound (US)-triggered on-demand AAV release system using alginate hydrogel microbeads (AHMs) with a release enhancer. By using a centrifuge-based microdroplet shooting device, the AHMs encapsulating AAV with tungsten microparticles (W-MPs) are fabricated. Since W-MPs work as release enhancers, the AHMs have high sensitivity to the US with localized variation in acoustic impedance for improving the release of AAV. Furthermore, AHMs were coated with poly-l-lysine (PLL) to adjust the release of AAV. By applying US to the AAV encapsulating AHMs with W-MPs, the AAV was released on demand, and gene transfection to cells by AAV was confirmed without loss of AAV activity. This proposed US-triggered AAV release system expands methodological possibilities in gene therapy.


Assuntos
Dependovirus , Hidrogéis , Dependovirus/genética , Alginatos , Microesferas , Preparações de Ação Retardada , Vetores Genéticos
10.
Biomed Eng Online ; 22(1): 15, 2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36803418

RESUMO

BACKGROUND: Hydroxyapatite (HAp) possesses osteoconductive properties, and its granular form can serve as an effective drug delivery vehicle for bone regeneration. Quercetin (Qct), a plant-derived bioflavonoid, is known to promote bone regeneration; however, its comparative and synergistic effects with the commonly used bone morphogenetic protein-2 (BMP-2) have not been investigated. METHODS: We examined the characteristics of newly formed HAp microbeads using an electrostatic spraying method and analyzed the in vitro release pattern and osteogenic potential of ceramic granules containing Qct, BMP-2, and both. In addition, HAp microbeads were transplanted into a rat critical-sized calvarial defect and the osteogenic capacity was assessed in vivo. RESULTS: The manufactured beads had a microscale size of less than 200 µm, a narrow size distribution, and a rough surface. The alkaline phosphatase (ALP) activity of osteoblast-like cells cultured with the BMP-2-and-Qct-loaded HAp was significantly higher than that of either Qct- or BMP-2-loaded HAp groups. The mRNA levels of osteogenic marker genes such as ALP and runt-related transcription factor 2 were found to be upregulated in the HAp/BMP-2/Qct group compared to the other groups. In micro-computed tomographic analysis, the amount of newly formed bone and bone surface area within the defect was significantly higher in the HAp/BMP-2/Qct group, followed by the HAp/BMP-2 and HAp/Qct groups, which is consistent with the histomorphometrical results. CONCLUSIONS: These results imply that electrostatic spraying can be an efficient strategy to produce homogenous ceramic granules and that the BMP-2-and-Qct-loaded HAp microbeads can serve as effective implants for bone defect healing.


Assuntos
Durapatita , Quercetina , Ratos , Animais , Durapatita/farmacologia , Quercetina/farmacologia , Eletricidade Estática , Microesferas , Regeneração Óssea , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/farmacologia , Osteogênese
11.
Environ Res ; 216(Pt 1): 114416, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181897

RESUMO

In this study, an adsorbent made of alginate (Alg) caged magnesium sulfide nanoparticles (MgS) microbeads were used to treat lead ions (Pb2+ ions). The MgS nanoparticles were synthesized at low temperatures, and Alg@MgS hydrogel microbeads were made by the ion exchange process of the composite materials. The newly fabricated Alg@MgS was characterized by XRD, SEM, and FT-IR. The adsorption conditions were optimized for the maximum removal of Pb2+ ions by adjusting several physicochemical parameters, including pH, initial concentration of lead ions, Alg/MgS dosage, reaction temperature, equilibration time, and the presence of co-ions. This is accomplished by removing the maximum amount of Pb2+ ions. Moreover, the adsorbent utilized more than six times with a substantial amount (not less than 60%) of Pb2+ ions was eliminated. Considering the ability of sodium alginate (SA) for excellent metal chelation and controlled nanosized pore structure, the adsorption equilibrium of Alg@MgS can be reached in 60 min, and the highest adsorption capacity for Pb2+ was 84.7 mg/g. The sorption mechanism was explored by employing several isotherms. It was found that the Freundlich model fits the adsorption process quite accurately. The pseudo-second-order model adequately described the adsorption kinetics.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Purificação da Água , Alginatos/química , Águas Residuárias , Magnésio , Microesferas , Chumbo , Poluentes Químicos da Água/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Adsorção , Cinética , Sulfetos , Concentração de Íons de Hidrogênio
12.
Mikrochim Acta ; 190(3): 95, 2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36808576

RESUMO

In this paper, we report on the utilization of micro-technology based tools to fight viral infections. Inspired by various hemoperfusion and immune-affinity capture systems, a blood virus depletion device has been developed that offers highly efficient capture and removal of the targeted virus from the circulation, thus decreasing virus load. Single-domain antibodies against the Wuhan (VHH-72) virus strain produced by recombinant DNA technology were immobilized on the surface of glass micro-beads, which were then utilized as stationary phase. For feasibility testing, the virus suspension was flown through the prototype immune-affinity device that captured the viruses and the filtered media left the column. The feasibility test of the proposed technology was performed in a Biosafety Level 4 classified laboratory using the Wuhan SARS-CoV-2 strain. The laboratory scale device actually captured 120,000 virus particles from the culture media circulation proving the feasibility of the suggested technology. This performance has an estimated capture ability of 15 million virus particles by using the therapeutic size column design, representing three times over-engineering with the assumption of 5 million genomic virus copies in an average viremic patient. Our results suggested that this new therapeutic virus capture device could significantly lower virus load thus preventing the development of more severe COVID-19 cases and consequently reducing mortality rate.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Estudos de Viabilidade , Pandemias , Microesferas
13.
Sensors (Basel) ; 23(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36905070

RESUMO

A sensitive and selective electrochemical dopamine (DA) sensor has been developed using gold nanoparticles decorated marimo-like graphene (Au NP/MG) as a modifier of the glassy carbon electrode (GCE). Marimo-like graphene (MG) was prepared by partial exfoliation on the mesocarbon microbeads (MCMB) through molten KOH intercalation. Characterization via transmission electron microscopy confirmed that the surface of MG is composed of multi-layer graphene nanowalls. The graphene nanowalls structure of MG provided abundant surface area and electroactive sites. Electrochemical properties of Au NP/MG/GCE electrode were investigated by cyclic voltammetry and differential pulse voltammetry techniques. The electrode exhibited high electrochemical activity towards DA oxidation. The oxidation peak current increased linearly in proportion to the DA concentration in a range from 0.02 to 10 µM with a detection limit of 0.016 µM. The detection selectivity was carried out with the presence of 20 µM uric acid in goat serum real samples. This study demonstrated a promising method to fabricate DA sensor-based on MCMB derivatives as electrochemical modifiers.

14.
Sensors (Basel) ; 23(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067919

RESUMO

Optical sensors excel in performance but face efficacy challenges when submerged due to potential surface colonization, leading to signal deviation. This necessitates robust solutions for sustained accuracy. Protein and microorganism adsorption on solid surfaces is crucial in antibiofilm studies, contributing to conditioning film and biofilm formation. Most studies focus on surface characteristics (hydrophilicity, roughness, charge, and composition) individually for their adhesion impact. In this work, we tested four materials: silica, titanium dioxide, aluminum oxide, and parylene C. Bovine Serum Albumin (BSA) served as the biofouling conditioning model, assessed with X-ray photoelectron spectroscopy (XPS). Its effect on microorganism adhesion (modeled with functionalized microbeads) was quantified using a shear stress flow chamber. Surface features and adhesion properties were correlated via Principal Component Analysis (PCA). Protein adsorption is influenced by nanoscale roughness, hydrophilicity, and likely correlated with superficial electron distribution and bond nature. Conditioning films alter the surface interaction with microbeads, affecting hydrophilicity and local charge distribution. Silica shows a significant increase in microbead adhesion, while parylene C exhibits a moderate increase, and titanium dioxide shows reduced adhesion. Alumina demonstrates notable stability, with the conditioning film minimally impacting adhesion, which remains low.


Assuntos
Óxido de Alumínio , Dióxido de Silício , Óxido de Alumínio/química , Dióxido de Silício/química , Propriedades de Superfície , Soroalbumina Bovina/química , Titânio/química , Adsorção
15.
Environ Monit Assess ; 196(1): 50, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38108910

RESUMO

Microbeads used in personal care products (PCPs) as an exfoliating agent or as a sorbent phase for delivering active ingredients are the most common sources of microplastics. The release of these plastic microbeads into aquatic environments has raised significant concerns due to their direct availability for ingestion by organisms upon entering the recipient waters. In this study, twelve personal care products (PCPs; 5 face washes and 7 scrubs) were analyzed for microbead content, size, polymer type, and buoyant behavior. Among the face washes, the highest microbead content (i.e., 11 ± 1.2 mg/g) was found in Neutrogena (NS), while the lowest was found in Nivea (NI) with 0.33 ± 0 mg/g. In case of scrubs, Cool and Cool (CL) contained a higher concentration of microbeads (i.e., 57.08±14.15 mg/g) and a lower concentration was found in Yong Chin (YC) (i.e., 10.5±1.5 mg/g). The sizes of microbeads ranged from 3.14 ± 0 to 747 ± 313 µm, and most of the isolated microbeads showed negative buoyant behavior in both freshwater and seawater. The FTIR spectra showed that the microbeads were mainly composed of ethyl-vinyl acetate (66.66%), high-density polyethylene (16.66%), polyethylene terephthalate (8.3%), and nitrile (8.3%). The presence of plastic microbeads in PCPs highlights the need to regulate their use as an exfoliating agent and to raise public awareness to prevent the discharge of these persistent and potentially harmful elements into the environment.


Assuntos
Cosméticos , Plásticos , Microesferas , Paquistão , Monitoramento Ambiental
16.
Eur J Immunol ; 51(11): 2633-2640, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34358329

RESUMO

Here, we describe a new, simple, highly multiplexed serological test that generates a more complete picture of seroconversion than single antigen-based assays. Flow cytometry is used to detect multiple Ig isotypes binding to four SARS-CoV-2 antigens: the Spike glycoprotein, its RBD fragment (the main target for neutralizing antibodies), the nucleocapsid protein, and the main cysteine-like protease in a single reaction. Until now, most diagnostic serological tests measured antibodies to only one antigen and in some laboratory-confirmed patients no SARS-CoV-2-specific antibodies could be detected. Our data reveal that while most patients respond against all the viral antigens tested, others show a marked bias to make antibodies against either proteins exposed on the viral particle or those released after cellular infection. With this assay, it was possible to discriminate between patients and healthy controls with 100% confidence. Analysing the response of multiple Ig isotypes to the four antigens in combination may also help to establish a correlation with the severity degree of disease. A more detailed description of the immune responses of different patients to SARS-CoV-2 virus might provide insight into the wide array of clinical presentations of COVID-19.


Assuntos
Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Citometria de Fluxo/métodos , Antígenos Virais/imunologia , COVID-19/imunologia , Ensaios de Triagem em Larga Escala , Humanos , SARS-CoV-2 , Sensibilidade e Especificidade , Testes Sorológicos
17.
Small ; 18(8): e2105225, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34889511

RESUMO

Photonic microbeads containing crystalline colloidal arrays are promising as a key component of structural-color inks for various applications including printings, paintings, and cosmetics. However, structural colors from microbeads usually have low color saturation and the production of the beads requires delicate and time-consuming protocols. Herein, elastic photonic microbeads are designed with enhanced color saturation through facile photocuring of oil-in-oil emulsion droplets. Dispersions of highly-concentrated silica particles in elastomer precursors are microfluidically emulsified into immiscible oil to produce monodisperse droplets. The silica particles spontaneously form crystalline arrays in the entire volume of the droplets due to interparticle repulsion which is unperturbed by the diffusion of the surrounding oil whereas weakened for oil-in-water droplets. The crystalline arrays are permanently stabilized by photopolymerization of the precursor, forming elastic photonic microbeads. The microbeads are transferred into the refractive-index-matched biocompatible oil. The high crystallinity of colloidal arrays increases the reflectivity at stopband and the index matching reduces incoherent scattering at the surface of the microbeads, enhancing color saturation. The colors can be adjusted by mixing two distinctly colored microbeads. Also, low stiffness and high elasticity reduce foreign-body sensation and enhance fluidity, potentially serving as pragmatic structural colorants for photonic inks.


Assuntos
Óptica e Fotônica , Fótons , Cor , Emulsões , Microesferas
18.
Crit Rev Food Sci Nutr ; : 1-11, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36384368

RESUMO

Edible microcarriers are essential for developing cell-based meat in large-scale cell cultures. As they are required to be embedded in the final products, the microcarriers should be edible, biocompatible, cost-effective, and pathogen-free. The invention of edible animal-free microcarriers would be a breakthrough for cell-based meat culture. We reviewed the fabrication techniques and the materials of microcarriers, and found that plant proteins, having diverse structures and composition, could possess the active domains that are hypnotized to replace the animal-based extracellular matrix (ECM) for meat culture applications. In addition, the bioactive peptides in plants have been reviewed and most of them were resulted from enzyme hydrolysis. Therefore, plant proteins with rich bioactive peptides have the potential in the development microcarriers. Our work provided some new trains of thought for developing plant-based biomaterials as ECM materials and advances the fabrication of microcarriers for meat culture.

19.
Environ Res ; 204(Pt B): 112123, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34571033

RESUMO

Microplastics are considered environmental pollutants of serious concern. In freshwater environments, they can affect aquatic biota and accumulate along the food web. Therefore, this study investigated the capacity of bacterivorous freshwater ciliates, essential members of the aquatic food chain, to ingest plain and fluorescently-labeled polystyrene microspheres. Two holotrich ciliates were isolated from a stream in KwaZulu-Natal (South Africa) and identified as members of the genera Paramecium and Tetrahymena based on morphological characteristics and 18S rRNA gene sequence analysis. While the larger bacterivorous ciliate Paramecium sp. strain RB1 ingested all three sizes of plain polystyrene microbeads tested (2,5,10 µm), the smaller sized Tetrahymena sp. strain RB2 only ingested microbeads of 2 and 5 µm. The two ciliates ingested polystyrene microbeads at rates ranging from 1650 to 3870 particles x ciliate-1 x hour-1 for all particle sizes ingested, matching rates determined for selected microbial prey (E. coli, S. cerevisiae) of similar size. The ability to ingest non-nutritious microplastic particles was confirmed for both ciliates using fluorescently-labeled microbeads as these were detected in food vacuoles by fluorescence microscopy. Therefore, ciliates such as Paramecium sp. strain RB1 and Tetrahymena sp. strain RB2 can contribute to the transfer and bioaccumulation of microplastics in freshwater food webs in South Africa.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Escherichia coli , Água Doce , Plásticos , Rios , Saccharomyces cerevisiae , África do Sul , Poluentes Químicos da Água/análise
20.
Mikrochim Acta ; 189(11): 407, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36198915

RESUMO

Uniform and monodisperse quantum dot (QD)-encoded magnetic microbeads with Janus structure were produced in a microfluidic device via photopolymerization. UV light through a microscope objective was used to solidify the microbeads which showed sharp interfaces and excellent magnetic responses. QDs with different emission peaks (450 nm for blue and 640 nm for red) were mixed at different ratios to provide three spectral codes. The QD-encoded microbeads can be distinguished by analyzing their fluorescent images in HSV color space. After hydrolysis of the anhydride group in alkaline solution, protein was immobilized on microbeads via activation of carboxyl groups using (1-ethyl-3(3-dimethylaminoprophyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS). A microhole array in polydimethylsiloxane (PDMS) substrates with a specific size was fabricated to trap individual microbeads in a single microhole. The combination of Janus-structured QD-encoded magnetic microbeads and microhole arrays facilitates both flexibility, binding kinetics, sensitivity for suspension assay, and fluorescence mapping analysis for conventional biochips, thus providing a novel platform for multiplex bioanalysis. The capability of this integration for multiplex immunoassays was verified using three kinds of IgG and their corresponding anti-IgG. A detection limit of 0.07 ng/mL was achieved for human IgG, indicating practical applications in various fields.


Assuntos
Pontos Quânticos , Anidridos , Carbodi-Imidas , Dimetilpolisiloxanos , Humanos , Imunoensaio/métodos , Microfluídica/métodos , Microesferas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa