Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 20(1): 135, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681192

RESUMO

BACKGROUND: Symbiotic ant-plant associations, in which ants live on plants, feed on plant-provided food, and protect host trees against threats, are ubiquitous across the tropics, with the Azteca-Cecropia associations being amongst the most widespread interactions in the Neotropics. Upon colonization of Cecropia's hollow internodes, Azteca queens form small patches with plant parenchyma, which are then used as waste piles when the colony grows. Patches-found in many ant-plant mutualisms-are present throughout the colony life cycle and may supplement larval food. Despite their initial nitrogen (N)-poor substrate, patches in Cecropia accommodate fungi, nematodes, and bacteria. In this study, we investigated the atmospheric N2 fixation as an N source in patches of early and established ant colonies. RESULTS: Via 15N2 tracer assays, N2 fixation was frequently detected in all investigated patch types formed by three Azteca ant species. Quantified fixation rates were similar in early and established ant colonies and higher than in various tropical habitats. Based on amplicon sequencing, the identified microbial functional guild-the diazotrophs-harboring and transcribing the dinitrogenase reductase (nifH) gene was highly diverse and heterogeneous across Azteca colonies. The community composition differed between early and established ant colonies and partly between the ant species. CONCLUSIONS: Our data show that N2 fixation can result in reasonable amounts of N in ant colonies, which might not only enable bacterial, fungal, and nematode growth in the patch ecosystems but according to our calculations can even support the growth of ant populations. The diverse and heterogeneous diazotrophic community implies a functional redundancy, which could provide the ant-plant-patch system with a higher resilience towards changing environmental conditions. Hence, we propose that N2 fixation represents a previously unknown potential to overcome N limitations in arboreal ant colonies.


Assuntos
Formigas , Cecropia , Animais , Ecossistema , Fixação de Nitrogênio , Plantas , Crescimento Demográfico , Simbiose , Árvores
2.
Chemosphere ; 284: 131243, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34186222

RESUMO

Oxygen diffusion in the anodic chamber is the major limitation of air-cathode microbial fuel cell (MFC) design. To address this drawback, the application of microbial (Escherichia coli EC) patch on cathode was tested. Pseudomonas aeruginosa BR was used as exoelectrogen during the study. The MFC reactor with a patch had a better electron transfer rate, degraded 94.64% of synthetic wastewater (BRSyW) and its current generation was increased by 95.66%. The maximum power density recorded for BRSyW was 259.34 ± 7.28 mW/m2. Application of patch in real wastewater (BR + Sludge) condition registered 63.18% of wastewater degradation, increment in current generation (59.71%) and decreased the charge transfer and ohmic resistances by 97.95% and 97.01% respectively. Apart from hindering oxygen diffusion and better current generation, this simple design also worked as a two-step degradation system. Thus, such MFC reactor is a potential candidate for wastewater management and green energy generation.


Assuntos
Fontes de Energia Bioelétrica , Eletricidade , Eletrodos , Oxigênio , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa