RESUMO
This study uses a rapid tandem mass-spectrometry method to determine water content in complex organic solutions. Emphasis is placed on trace-water analysis by a fast and accurate alternative to the Karl-Fischer method. In this new method, water is captured by a charge-labeled molecular probe. Water binds strongly with high specificity to the strongly electrophilic aldehyde site in a charge-labelled molecule (N-methylpyridinium); competitive binding by other analytes is effectively discriminated against in the mass-measurement step. Quantitative determinations are made over a wide concentration range, 0.001 % (10â ppm) to 99 %, with better than 10 % relative standard deviation, along with short (1â min) analysis times using small sample volumes (several µL). Applications include water measurement in simple organic solvents, for example, deuterated solvents, as well as in complex mixtures, for example, organic reaction mixtures. Additionally, this method allows for water monitoring in levitated droplets. Mechanistic investigations into the impact of water on important chemical processes in organic synthesis and environmental science are reported.
RESUMO
The fusion of non-thermal plasma with charged microdroplets facilitates catalyst-free N-alkylation for a variety of primary amines, without halide salt biproduct generation. Significant reaction enhancement (up to >200×) is observed over microdroplet reactions generated from electrospray. This enhancement for the plasma-microdroplet system is attributed to the combined effects of energetic collisions and the presence of reactive oxygen species (ROS). The ROS (e.g., O2 â - ) act as a proton sink to increase abundance of free neutral amines in the charged microdroplet environment. The effect of ROS on N-alkylation is confirmed through three unique experiments: (i) utilization of radical scavenging reagent, (ii) characterization of internal energy distribution, and (iii) controls performed without plasma, which lacked reaction acceleration. Establishing plasma discharge in the wake of charged microdroplets as a green synthetic methodology overcomes two major challenges within conventional gas-phase plasma chemistry, including the lack of selectivity and product scale-up. Both limitations are overcome here, where dual tunability is achieved by controlling reagent concentration and residence time in the microdroplet environment, affording single or double N-alkylated products. Products are readily collected yielding milligram quantities in eight hours. These results showcase a novel synthetic strategy that represents a straightforward and sustainable C-N bond-forming process.
RESUMO
Field desorption mass spectrometry under ambient conditions is used to study solution-phase organic reactions in micro-volumes. Reagent solution is transferred onto the microdendrites of the field emitter, and reaction products are examined online by mass spectrometry. Three reactions, hydrazone formation by phenyl hydrazine and indoline-2,3-dione, the Katritzky reaction between a pyrylium salt and anisidine, and the Hantzsch synthesis of 1,4-dihydropyridine, were investigated, and reaction acceleration was observed to different extents. The increase in rate relative to the corresponding bulk reactions is attributed to solvent evaporation (simple concentration effect) and to the increase of surface-to-volume ratio (enhanced interfacial reactions). A distinguishing feature of this method of reaction acceleration, relative to that based on nano electrospray ionization, is the observation of radical cations and the formation of radical cation products. The study also breaks new ground in using field emitters at atmospheric pressure.