Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
Nano Lett ; 24(17): 5214-5223, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38649327

RESUMO

Stroke is a leading cause of global mortality and severe disability. However, current strategies used for treating ischemic stroke lack specific targeting capabilities, exhibit poor immune escape ability, and have limited drug release control. Herein, we developed an ROS-responsive nanocarrier for targeted delivery of the neuroprotective agent rapamycin (RAPA) to mitigate ischemic brain damage. The nanocarrier consisted of a sulfated chitosan (SCS) polymer core modified with a ROS-responsive boronic ester enveloped by a red blood cell membrane shell incorporating a stroke homing peptide. When encountering high levels of intracellular ROS in ischemic brain tissues, the release of SCS combined with RAPA from nanoparticle disintegration facilitates effective microglia polarization and, in turn, maintains blood-brain barrier integrity, reduces cerebral infarction, and promotes cerebral neurovascular remodeling in a mouse stroke model involving transient middle cerebral artery occlusion (tMCAO). This work offers a promising strategy to treat ischemic stroke therapy.


Assuntos
Barreira Hematoencefálica , Quitosana , Portadores de Fármacos , AVC Isquêmico , Nanopartículas , Sirolimo , Animais , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/patologia , Camundongos , Quitosana/química , Portadores de Fármacos/química , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Sirolimo/farmacologia , Sirolimo/química , Sirolimo/uso terapêutico , Nanopartículas/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/uso terapêutico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Polissacarídeos/química , Polissacarídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sulfatos/química , Sulfatos/farmacologia , Microglia/efeitos dos fármacos , Microglia/metabolismo
2.
Neurobiol Dis ; 201: 106695, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39370051

RESUMO

BACKGROUND: Spontaneous intracerebral hemorrhage (ICH) is associated with alarmingly high rates of disability and mortality, and current therapeutic options are suboptimal. A critical component of ICH pathology is the initiation of a robust inflammatory response, often termed "cytokine storm," which amplifies the secondary brain injury following the initial hemorrhagic insult. The precise sources and consequences of this cytokine-driven inflammation are not fully elucidated, necessitating further investigation. METHODS: To address this knowledge gap, our study conducted a comprehensive cytokine profiling using Luminex® assays, assessing 23 key cytokines. We then employed single-cell RNA sequencing and spatial transcriptomics at three critical time points post-ICH: the hyperacute, acute, and subacute phases. Integrating these multimodal analyses allowed us to identify the cellular origins of cytokines and elucidate their mechanisms of action. RESULTS: Luminex® cytokine assays revealed a significant upregulation of IL-6 and IL-1ß levels at the 24-h post-ICH time point. Through the integration of scRNA-seq and spatial transcriptomics in the hemorrhagic hemisphere of rats, we observed a pronounced activation of cytokine-related signaling pathways within the choroid plexus. Initially, immune cell presence was sparse, but it surged 24 h post-ICH, particularly in the choroid plexus, indicating a substantial shift in the immune microenvironment. We traced the source of IL-1ß and IL-6 to endothelial cells, establishing a link to pyroptosis. Endothelial pyroptosis post-ICH induced the production of IL-1ß and IL-6, which activated microglial polarization characterized by elevated expression of Msr1, Lcn2, and Spp1 via the NF-κB pathway in the choroid plexus. Furthermore, we identified neuronal populations undergoing apoptosis, mediated by the Lcn2-SLC22A17 pathway in response to IL-1ß and IL-6 signaling. Notably, the inhibition of pyroptosis using VX-765 significantly mitigated neurological impairments. CONCLUSIONS: Our study provides evidence that endothelial pyroptosis, characterized by the release of IL-1ß and IL-6, triggers microglial polarization through NF-κB pathway activation, ultimately leading to microglia-mediated neuronal apoptosis in the choroid plexus post-ICH. These findings suggest that targeted therapeutic strategies aimed at mitigating endothelial cell pyroptosis and neutralizing inflammatory cytokines may offer neuroprotection for both microglia and neurons, presenting a promising avenue for ICH treatment.


Assuntos
Apoptose , Plexo Corióideo , Acidente Vascular Cerebral Hemorrágico , Microglia , Piroptose , Ratos Sprague-Dawley , Animais , Piroptose/fisiologia , Plexo Corióideo/metabolismo , Plexo Corióideo/patologia , Ratos , Microglia/metabolismo , Masculino , Apoptose/fisiologia , Acidente Vascular Cerebral Hemorrágico/metabolismo , Acidente Vascular Cerebral Hemorrágico/patologia , Neurônios/metabolismo , Neurônios/patologia , Citocinas/metabolismo , Células Endoteliais/metabolismo , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patologia
3.
J Neurosci Res ; 102(9): e25385, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39305083

RESUMO

Astrocytes and microglia can adopt two distinct phenotypes in various pathological processes: neurotoxic A1/M1 and neuroprotective A2/M2. Recent evidence suggests that these cells play a significant role in epileptogenesis. The objective of this study was to characterize the phenotype of astrocytes and microglial cells in the hippocampus and temporal cortex of young male Wistar rats at 3 h, 1, 3, and 7 days after pentylenetetrazole-induced seizures. RT-qPCR was employed to examine the expression of glial genes (Gfap, Aif1, Slc1a1, Slc1a2, Slc1a3, Itpr2, Gdnf, Bdnf, Fgf2, Tgfb, Il1b, Tnf, Il1rn, Lcn2, S100a10, Nlrp3, Arg1). The most notable alterations in the expression of glial genes were observed on the first day following seizures in the temporal cortex. An increase in the expression of the Gfap, Slc1a2, Slc1a1, Il1b, Tnfa, Bdnf, and Fgf2 genes, and the A2 astrocyte condition marker S100a10, was observed. An increase in the expression of the Gfap and Slc1a2 genes was observed in the hippocampus on the first day after seizures. However, in contrast to the changes observed in the cortex, the changes in the hippocampus were opposite for the Il1rn, Bdnf, Tgfb, and Arg1 genes. Nevertheless, the alterations in GFAP and EAAT2 protein levels were not corroborated by Western blot analysis. Conversely, a more comprehensive immunohistochemical analysis confirmed an augmentation in the number of GFAP-positive cells in the hippocampus 1 day after seizures. Based on the presented evidence, we can conclude that a single convulsive seizure episode in 3-week-old rats results in transient astroglial activation and polarization to a neuroprotective phenotype (A2).


Assuntos
Astrócitos , Hipocampo , Microglia , Pentilenotetrazol , Ratos Wistar , Convulsões , Lobo Temporal , Animais , Masculino , Hipocampo/metabolismo , Hipocampo/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Convulsões/induzido quimicamente , Convulsões/metabolismo , Convulsões/patologia , Ratos , Pentilenotetrazol/toxicidade , Microglia/metabolismo , Microglia/patologia , Lobo Temporal/metabolismo , Lobo Temporal/patologia , Fenótipo
4.
Synapse ; 78(5): e22306, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39135278

RESUMO

BACKGROUND: Increasing evidence demonstrated the involvement of microRNAs (miRNAs) in the onset and development of neuropathic pain (NP). Exploring the molecular mechanism underlying NP and identifying key molecules could provide potential targets for the therapy of NP. The function and mechanism of miR-125b-5p in regulating NP have been studied, aiming to find a potential therapeutic target for NP. METHODS: NP rat models were established by the chronic constriction injury (CCI) method. The paw withdrawal threshold and paw withdrawal latency were assessed to evaluate the establishment and recovery of rats. Highly aggressive proliferating immortalized (HAPI) micoglia cell, a rat microglia cell line, was treated with lipopolysaccharide (LPS). The M1/M2 polarization and inflammation were evaluated by enzyme-linked immunosorbent assay and western blotting. RESULTS: Decreasing miR-125b-5p and increasing SOX11 were observed in CCI rats and LPS-induced HAPI cells. Overexpressing miR-125b-5p alleviated mechanical allodynia and thermal hyperalgesia and suppressed inflammation in CCI rats. LPS induced M1 polarization and inflammation of HAPI cells, which was attenuated by miR-125b-5p overexpression. miR-125-5p negatively regulated the expression of SOX11 in CCI rats and LPS-induced HAPI cells. Overexpressing SOX11 reversed the protective effects of miR-125b-5p on mechanical pain in CCI rats and the polarization and inflammation in HAPI cells, which was considered the mechanism underlying miR-125b-5p. CONCLUSION: miR-125b-5p showed a protective effect on NP by regulating inflammation and polarization of microglia via negatively modulating SOX11.


Assuntos
Lipopolissacarídeos , MicroRNAs , Microglia , Neuralgia , Ratos Sprague-Dawley , Fatores de Transcrição SOXC , Animais , Masculino , Ratos , Linhagem Celular , Modelos Animais de Doenças , Hiperalgesia/metabolismo , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , Microglia/efeitos dos fármacos , MicroRNAs/metabolismo , MicroRNAs/genética , Neuralgia/metabolismo , Doenças Neuroinflamatórias/metabolismo , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética
5.
Brain Behav Immun ; 115: 43-63, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37774892

RESUMO

Traumatic brain injury (TBI) and stroke share a common pathophysiology that worsens over time due to secondary tissue injury caused by sustained inflammatory response. However, studies on pharmacological interventions targeting the complex secondary injury cascade have failed to show efficacy. Here, we demonstrated that low-dose ionizing radiation (LDIR) reduced lesion size and reversed motor deficits after TBI and photothrombotic stroke. Magnetic resonance imaging demonstrated significant reduction of infarct volume in LDIR-treated mice after stroke. Systems-level transcriptomic analysis showed that genes upregulated in LDIR-treated stoke mice were enriched in pathways associated with inflammatory and immune response involving microglia. LDIR induced upregulation of anti-inflammatory- and phagocytosis-related genes, and downregulation of key pro-inflammatory cytokine production. These findings were validated by live-cell assays, in which microglia exhibited higher chemotactic and phagocytic capacities after LDIR. We observed substantial microglial clustering at the injury site, glial scar clearance and reversal of motor deficits after stroke. Cortical microglia/macrophages depletion completely abolished the beneficial effect of LDIR on motor function recovery in stroke mice. LDIR promoted axonal projections (brain rewiring) in motor cortex and recovery of brain activity detected by electroencephalography recordings months after stroke. LDIR treatment delayed by 8 h post-injury still maintained full therapeutic effects on motor recovery, indicating that LDIR is a promising therapeutic strategy for TBI and stroke.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Acidente Vascular Cerebral , Camundongos , Animais , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo , Acidente Vascular Cerebral/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Microglia/metabolismo , Radiação Ionizante , Camundongos Endogâmicos C57BL
6.
Inflamm Res ; 73(2): 157-174, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183431

RESUMO

OBJECTIVE: Cognitive dysfunction is a common comorbidity in patients with chronic pain. Activation of Liver X receptors (LXRs) plays a potential role in improving cognitive disorders in central nervous diseases. In this study, we investigated the role of LXRs in cognitive deficits induced by neuropathic pain. METHODS: We established the spared nerve injury (SNI) model to investigate pain-induced memory dysfunction. Pharmacological activation of LXRs with T0901317 or inhibition with GSK2033 was applied. PI3K inhibitor LY294002 was administered to explore the underlying mechanism of LXRs. Changes in neuroinflammation, microglia polarization, and synaptic plasticity were assessed using biochemical technologies. RESULTS: We found that SNI-induced cognitive impairment was associated with reduced LXRß expression, increased M1-phenotype microglia, decreased synaptic proteins, and inhibition of PI3K/AKT signaling pathway in the hippocampus. Activation of LXRs using T0901317 effectively alleviated SNI-induced cognitive impairment. Additionally, T0901317 promoted the polarization of microglia from M1 to M2, reduced pro-inflammatory cytokines, and upregulated synaptic proteins in the hippocampus. However, administration of GSK2033 or LY294002 abolished these protective effects of T0901317 in SNI mice. CONCLUSIONS: LXRs activation alleviates neuropathic pain-induced cognitive impairment by modulating microglia polarization, neuroinflammation, and synaptic plasticity, at least partly via activation of PI3K/AKT signaling in the hippocampus. LXRs may be promising targets for addressing pain-related cognitive deficits.


Assuntos
Benzenossulfonamidas , Disfunção Cognitiva , Fluorocarbonos , Neuralgia , Humanos , Camundongos , Animais , Receptores X do Fígado/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Microglia/metabolismo , Doenças Neuroinflamatórias , Neuralgia/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Plasticidade Neuronal
7.
Cell Biol Toxicol ; 40(1): 54, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995476

RESUMO

BACKGROUND: The neuropathic pain with complex networks of neuroinflammatory activation severely limits clinical therapeutic research. TNF receptor-associated factor 6 (TRAF6) is associated with multiple inflammatory diseases. However, there remains confusion about the effects and mechanisms of TRAF6 in neuropathic pain. METHODS: A chronic constriction injury (CCI) model was developed to simulate neuralgia in vivo. We overexpressed or knocked down TRAF6 in CCI mice, respectively. Activation of microglia by TRAF6, the inflammatory response, and disease progression were inspected using WB, qRT-PCR, immunofluorescence, flow cytometry, and ELISA assays. Moreover, the mechanism of M1/M2 polarization activation of microglia by TRAF6 was elaborated in BV-2 cells. RESULTS: TRAF6 was enhanced in the spinal neurons and microglia of the CCI mice model compared with the sham operation group.. Down-regulation of TRAF6 rescued the expression of Iba-1. In response to mechanical and thermal stimulation, PWT and PWL were improved after the knockdown of TRAF6. Decreased levels of pro-inflammatory factors were observed in TRAF6 knockdown groups. Meanwhile, increased microglial M1 markers induced by CCI were limited in mice with TRAF6 knockdown. In addition, TRAF6 overexpression has the precise opposite effect on CCI mice or microglia polarization. We also identifed that TRAF6 activated the c-JUN/NF-kB pathway signaling; the inhibitor of c-JUN/NF-kB could effectively alleviate the neuropathic pain induced by upregulated TRAF6 in the CCI mice model. CONCLUSION: In summary, this study indicated that TRAF6 was concerned with neuropathic pain, and targeting the TRAF6/c-JUN/NF-kB pathway may be a prospective target for treating neuropathic pain.


Assuntos
Microglia , NF-kappa B , Neuralgia , Transdução de Sinais , Fator 6 Associado a Receptor de TNF , Animais , Masculino , Camundongos , Linhagem Celular , Polaridade Celular , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Neuralgia/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Fator 6 Associado a Receptor de TNF/metabolismo
8.
Mol Biol Rep ; 51(1): 919, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158740

RESUMO

BACKGROUND: In addition to primary injury, secondary injuries related to BBB disruption and immune-inflammatory response also play an important role in intracerebral hemorrhage (ICH). And the Golgi apparatus play an important role in the state of ICH. METHODS: ICH model and GM130-silencing ICH model were established in SD rats. The Garcia score was used to score the neurological defects of the rats. Blood-brain barrier (BBB) integrity were assessed by amount of extravasated Evans blue, and tight junction proteins. The expression of PD-L1 and GM130were detected through Western-blot and the subtype of microglia was showing with Immunofluorescence staining. RESULTS: Compared with the ICH group, GM130-silencing ICH rats got a worsened neurological deficit and enlarged volume of the hematoma. Evan's blue extravasation aggravated as well. The expression of GM130 in peri-hematoma tissue was further decreased, and the morphology and structure of the Golgi apparatus were further damaged. Meanwhile, the GM130 deficit resulted in decreased expression of PD-L1 and more polarization of microglia to the M1 subtype. CONCLUSION: We demonstrate that GM130 could influence the integrity of BBB and plays a role in neuroinflammation via regulation of PD-L1 after ICH. The manipulation of GM130 might be a promising therapeutical target in ICH.


Assuntos
Antígeno B7-H1 , Barreira Hematoencefálica , Hemorragia Cerebral , Proteínas de Membrana , Microglia , Animais , Masculino , Ratos , Autoantígenos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/genética , Hemorragia Cerebral/patologia , Modelos Animais de Doenças , Regulação para Baixo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Microglia/metabolismo , Microglia/patologia , Ratos Sprague-Dawley
9.
Tohoku J Exp Med ; 263(4): 277-285, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-38811210

RESUMO

Circular RNA DLGAP4 (circ_DLGAP4) participates in the progression of ischemic stroke (IS), but whether it could regulate microglia activation to affect IS injury is unclear. This study aimed to explore the effect of circ_DLGAP4 on IS-induced microglia polarization and inflammatory cytokines, and the underlying mechanism. BV-2 cells (microglia) were transfected with circ_DLGAP4 overexpression (oeCirc), short hairpin RNA plasmid (shCirc), or corresponding negative control plasmids (oeNC and shNC). oeCirc or oeNC transfected cells were also treated with phorbol 12-myristate 13-acetate (PMA). Subsequently, BV-2 cells were treated with oxygen-glucose deprivation and reperfusion (OGD/R) to mimic IS. Circ_DLGAP4 was reduced in OGD/R-stimulated microglia versus normal microglia. Circ_DLGAP4 overexpression decreased cluster of differentiation (CD)68 and CD86, but increased CD206 and arginase-1 in OGD/R-stimulated microglia, suggesting that circ_DLGAP4 overexpression might inhibit M1 but facilitate M2 polarization of microglia. Besides, circ_DLGAP4 overexpression reduced tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6, but elevated IL-10 in OGD/R-stimulated microglia, indicating that circ_DLGAP4 overexpression reduced proinflammatory cytokines but facilitated anti-inflammatory cytokines. Circ_DLGAP4 overexpression decreased p-nuclear factor kappa-B (NF-κB) and p-NF-κB inhibitor (IκB)-α in OGD/R-stimulated microglia, suggesting its inhibition of the NF-κB pathway. Notably, circ_DLGAP4 downregulation reversed the above phenomenon. PMA facilitated M1 polarization and proinflammatory cytokines but inhibited M2 polarization and anti-inflammatory cytokines in OGD/R-stimulated microglia. Interestingly, PMA attenuated the effect of circ_DLGAP4 overexpression on the above-mentioned processes in OGD/R-stimulated microglia. In conclusion, circ_DLGAP4 may attenuate IS injury by inhibiting microglia M1 polarization and proinflammatory cytokine production, which may be attributed to the inactivation of the NF-κB pathway.


Assuntos
Polaridade Celular , Citocinas , AVC Isquêmico , Microglia , NF-kappa B , RNA Circular , Transdução de Sinais , Microglia/metabolismo , Animais , Citocinas/metabolismo , NF-kappa B/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Camundongos , AVC Isquêmico/metabolismo , AVC Isquêmico/genética , AVC Isquêmico/patologia , Mediadores da Inflamação/metabolismo , Linhagem Celular , Glucose/metabolismo
10.
Nano Lett ; 23(14): 6544-6552, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37401457

RESUMO

As a ROS scavenger, resveratrol exerts a neuroprotective effect by polarizing the M1 microglia to the anti-inflammatory M2 phenotype for ischemic stroke treatment. However, the obstruction of the blood-brain barrier (BBB) seriously impairs the efficacy of resveratrol. Herein, we develop a stepwise targeting nanoplatform for enhanced ischemic stroke therapy, which is fabricated by pH-responsive poly(ethylene glycol)-acetal-polycaprolactone-poly(ethylene glycol) (PEG-Acetal-PCL-PEG) and modified with cRGD and triphenylphosphine (TPP) on a long PEG chain and a short PEG chain, respectively. The as-designed micelle system features effective BBB penetration through cRGD-mediated transcytosis. Once entering the ischemic brain tissues and endocytosed by microglia, the long PEG shell can be detached from the micelles in the acidic lysosomes, subsequently exposing TPP to target mitochondria. Thus, the micelles can effectively alleviate oxidative stress and inflammation by enhanced delivery of resveratrol to microglia mitochondria, reversing the microglia phenotype through the scavenging of ROS. This work offers a promising strategy to treat ischemia-reperfusion injury.


Assuntos
AVC Isquêmico , Micelas , Humanos , Espécies Reativas de Oxigênio , Acetais , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Polímeros/uso terapêutico , Polietilenoglicóis/uso terapêutico , Estresse Oxidativo , Inflamação/tratamento farmacológico
11.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396684

RESUMO

Polysaccharides are one of the main active ingredients of Polygonum sibiricum (PS), which is a food and medicine homolog used throughout Chinese history. The antidepressant-like effects of PSP and its underlying mechanisms remain elusive, especially the regulation of microglial polarization. The current study determined the chemical composition and structural characteristics of PSP. Then, the chronic unpredictable mild stress (CUMS) procedure was carried out on the zebrafish for 5 weeks, and PSP was immersed for 9 days (1 h/d). The body weight of zebrafish was monitored, and behavioral tests, including the novel tank test and light and dark tank test, were performed to evaluate the antidepressant-like effects of PSP. Then, the function of the hypothalamic-pituitary-interrenal (HPI) axis, the levels of peripheral inflammation, neuronal and blood-brain barrier damage in the mesencephalon and telencephalon, and the mRNA expression of M1/M2 phenotype genes in the brain were examined. PSP samples had the typical structural characteristics of polysaccharides, consisting of glucose, mannose, and galactose, with an average Mw of 20.48 kDa, which presented porous and agglomerated morphologies. Compared with untreated zebrafish, the depression-like behaviors of CUMS-induced zebrafish were significantly attenuated. PSP significantly decreased the levels of cortisol and pro-inflammatory cytokines and increased the levels of the anti-inflammatory cytokines in the body of CUMS-induced depressive zebrafish. Furthermore, PSP remarkably reversed the neuronal and blood-brain barrier damage in the mesencephalon and telencephalon and the mRNA expression of M1/M2 phenotype genes in the brain. These findings indicated that the antidepressant-like effects of PSP were related to altering the HPI axis hyperactivation, suppressing peripheral inflammation, inhibiting neuroinflammation induced by microglia hyperactivation, and modulating microglial M1/M2 polarization. The current study provides the foundations for future examinations of PSP in the functional foods of emotional regulation.


Assuntos
Polygonum , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Microglia/metabolismo , Polygonum/metabolismo , Antidepressivos/farmacologia , Inflamação/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Citocinas/metabolismo , RNA Mensageiro/metabolismo , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/metabolismo , Estresse Psicológico/metabolismo , Modelos Animais de Doenças
12.
J Stroke Cerebrovasc Dis ; 33(7): 107736, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38679216

RESUMO

BACKGROUND: Ischemic stroke remains the predominant contributor to mortality and disability globally. Microglia undergo rapid activation and initiate inflammatory cascade reactions by phenotypic polarization, participating in the regulation of inflammatory injury and tissue repair post-ischemic stroke. Regulating microglia-mediated neuroinflammation is a promising therapeutic strategy for ischemic stroke. Previously, we designed and synthesized a novel p55PIK inhibitor, TAT-N15 polypeptide, which presents inhibitive activity on NF-κB signaling-mediated inflammation in acute conjunctivitis and allergic rhinitis. The present study aimed to explore the therapeutic effect and mechanism of TAT-N15 on ischemia stroke. METHODS: The mouse model of transient cerebral ischemia was made using the intraluminal filament method. After being treated with daily intraperitoneal injections of TAT-N15 (10 mg/kg) for 7 d, the neurological outcomes and the cerebral infarction volume were evaluated. Histopathology of the ischemia cerebral hemisphere was observed by H&E and Nissl staining. Neuronal survival, astrogliosis, and co-labeling of CD86/Iba1 and CD206/Iba1 were detected by immunofluorescence. The cell apoptosis was estimated by TUNEL staining. The expression levels of apoptosis-associated proteins, proinflammatory cytokines, protein markers of M1 and M2 microglia, and the phosphorylation of NF-κB and STAT3 proteins in the ischemic penumbra were detected by Western blot. RESULTS: TAT-N15 treatment significantly decreased the infarct volume and alleviated neurological functional impairment, neuronal injury, and neuron apoptosis. Meanwhile, TAT-N15 treatment restrained the activation of microglia and astrocytes as well as the protein expression of proinflammatory cytokine in ischemic penumbra. Additionally, the administration of TAT-N15 treatment resulted in a significant reduction in the density of M1 phenotype microglia while concurrently increasing the density of M2 phenotype microglia within the ischemic penumbra. Finally, mechanical analysis unveiled that TAT-N15 exerted a substantial inhibitory effect on the protein expression of phosphorylated STAT3 and NF-κB. CONCLUSION: TAT-N15 may inhibit neuroinflammation via regulating microglia activation and polarization through the STAT3/NF-κB pathway, which exhibits the neuroprotection effect in ischemic stroke.


Assuntos
Anti-Inflamatórios , Apoptose , Modelos Animais de Doenças , Mediadores da Inflamação , Camundongos Endogâmicos C57BL , Microglia , NF-kappa B , Doenças Neuroinflamatórias , Fármacos Neuroprotetores , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , NF-kappa B/metabolismo , NF-kappa B/antagonistas & inibidores , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Fármacos Neuroprotetores/farmacologia , Masculino , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Ataque Isquêmico Transitório/tratamento farmacológico , Ataque Isquêmico Transitório/metabolismo , Ataque Isquêmico Transitório/patologia , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia
13.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732130

RESUMO

Parkinson's disease (PD), as a neurologically implemented disease with complex etiological factors, has a complex and variable pathogenesis. Accompanying further research, neuroinflammation has been found to be one of the possible factors in its pathogenesis. Microglia, as intrinsic immune cells in the brain, play an important role in maintaining microenvironmental homeostasis in the brain. However, over-activation of neurotoxic microglia in PD promotes neuroinflammation, which further increases dopaminergic (DA) neuronal damage and exacerbates the disease process. Therefore, targeting and regulating the functional state of microglia is expected to be a potential avenue for PD treatment. In addition, plant extracts have shown great potential in the treatment of neurodegenerative disorders due to their abundant resources, mild effects, and the presence of multiple active ingredients. However, it is worth noting that some natural products have certain toxic side effects, so it is necessary to pay attention to distinguish medicinal ingredients and usage and dosage when using to avoid aggravating the progression of diseases. In this review, the roles of microglia with different functional states in PD and the related pathways inducing microglia to transform into neuroprotective states are described. At the same time, it is discussed that abscisic acid (ABA) may regulate the polarization of microglia by targeting them, promote their transformation into neuroprotective state, reduce the neuroinflammatory response in PD, and provide a new idea for the treatment of PD and the selection of drugs.


Assuntos
Ácido Abscísico , Microglia , Doenças Neuroinflamatórias , Doença de Parkinson , Microglia/efeitos dos fármacos , Microglia/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Humanos , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Animais , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/etiologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
14.
J Stroke Cerebrovasc Dis ; 33(6): 107689, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38527567

RESUMO

OBJECTIVES: Microglia-mediated neuroinflammation plays a crucial role in the pathophysiological process of multiple neurological disorders such as ischemic stroke, which still lacks effective therapeutic agents. Shikonin possesses anti-inflammatory and neuroprotective properties. However, its underlying mechanism remains elusive. This study aimed to investigate whether Shikonin confers protection against cerebral ischemia/reperfusion (I/R) injury by modulating microglial polarization and elucidate the associated mechanisms. METHODS: This study employed an oxygen-glucose deprivation and reoxygenation (OGD/R) BV2 microglial cellular model and a middle cerebral artery occlusion/reperfusion (MCAO/R) animal model to investigate the protection and underlying mechanism of Shikonin against ischemic stroke. RESULTS: The results demonstrated that Shikonin treatment significantly reduced brain infarction volume and improved neurological function in MCAO/R rats. Simultaneously, Shikonin treatment significantly reduced microglial proinflammatory phenotype and levels of proinflammatory markers (inducible-NO synthase (iNOS), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1ß), and IL-6), increased microglial anti-inflammatory phenotype and levels of anti-inflammatory markers (Arginase-1 (Arg1), transforming growth factor-beta (TGF-ß), and IL-10), reversed the expression of Nucleotide-binding oligomerization domain 2 (NOD2) and phosphorylation receptor interacting protein 2 (p-RIP2), and suppressed nuclear factor kappa-B (NF-κB) signaling activation in the ischemic penumbra regions. These effects of Shikonin were further corroborated in OGD/R-treated BV2 cells. Furthermore, overexpression of NOD2 markedly attenuated the neuroprotective effects of Shikonin treatment in MCAO/R rats. NOD2 overexpression also attenuated the regulatory effects of Shikonin on neuroinflammation, microglial polarization, and NF-κB signaling activation. CONCLUSION: This study illustrates that Shikonin mitigates inflammation mediated by microglial proinflammatory polarization by inhibiting the NOD2/RIP2/NF-κB signaling pathway, thereby exerting a protective role. The findings uncover a potential molecular mechanism for Shikonin in treating ischemic stroke.


Assuntos
Anti-Inflamatórios , Infarto da Artéria Cerebral Média , NF-kappa B , Naftoquinonas , Fármacos Neuroprotetores , Proteína Adaptadora de Sinalização NOD2 , Proteína Serina-Treonina Quinase 2 de Interação com Receptor , Traumatismo por Reperfusão , Animais , Masculino , Camundongos , Anti-Inflamatórios/farmacologia , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Naftoquinonas/farmacologia , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Fármacos Neuroprotetores/farmacologia , NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Fenótipo , Ratos Sprague-Dawley , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Transdução de Sinais/efeitos dos fármacos
15.
Wei Sheng Yan Jiu ; 53(1): 71-87, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38443175

RESUMO

OBJECTIVE: To investigate the effect of tea polyphenols(TP) on improving depression-like behavior in aged type 2 diabetes(T2DM) model rats. METHODS: A total of 40 8-week-old SD male rats were randomly divided into the control group(n=10) and the modeling group(n=30) according to the body weight. The rats in the modeling group were fed with high-glucose and high-fat diet and treated with 50 mg/kg D-galactose by intraperitoneal injection daily until the end of the experiment, while the rats in the control group were fed with the standard diet and treated with an equal volume of saline by intraperitoneal injection. After 4 weeks, the rats in the modeling group were injected with 25 mg/kg STZ, meanwhile the rats in the control group were injected with an equal volume of citric acid buffer. The level of fasting blood glucose(FBG) was measured on the 14~(th) day. When FBG≥16.7 mmol/L, the rats were identified as successful model of the T2DM rats. Then, the model rats were randomly divided into the model group, 150, 300 mg/kg TP groups(n=10, respectively), and the rats were given intragastric intervention for 8 weeks. The levels of the FBG were detected, and the depression-like behavior of rats was assessed by the open field test(OFT) and forced swimming test(FST). The density of microglia in hippocampus CA1 region was assessed by immunofluorescence staining, and protein expressions of P53, Iba1, iNOS, Arg-1 and BDNF were determined by western blot. RESULTS: Compared with the control group, the levels of FBG in the rats of the model group were obviously increased(P<0.01). In the OFT, the frequencies of rearing and grooming in the rats of model group markedly was decreased, while in the FST, the immobility time extensively was increased(P<0.01). The density of microglia in hippocampus CA1 region was increased(P<0.01). The expressions of P53, Iba1 and iNOS were increased, and the expressions of Arg-1 and BDNF were decreased(P<0.01). Additionally, compared with the model group, in the OFT, the frequencies of rearing and grooming were increased in the rats in 150 and 300 mg/kg TP group(P<0.01). The density of microglia in hippocampus CA1 region was decreased(P<0.01). The expressions of P53, Iba1 and iNOS were down-regulated, and the expression of BDNF was up-regulated(P<0.01). Additionally, compared with the model group, the levels of FBG was decreased in the rats in the 300 mg/kg TP group(P<0.01). The immobility time was decreased in the FST(P<0.01). The expression of Arg-1 was down-regulated(P<0.01). CONCLUSION: TP can improve depression-like behavior in aged T2DM model rats, and its mechanism may be related to regulate microglia M1/M2 polarization and up-regulate expression of BDNF in hippocampus.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Diabetes Mellitus Tipo 2 , Masculino , Animais , Ratos , Depressão/tratamento farmacológico , Microglia , Proteína Supressora de Tumor p53 , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Chá
16.
J Cell Mol Med ; 27(21): 3339-3353, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37581474

RESUMO

It has been reported that Banxia-houpo decoction (BXHPD) serves as the anti-depressant treatment for a mild and severe depressive disease with limited side effects. The present study was performed to evaluate the protective effect of BXHPD on chronic unpredicted mild stress (CUMS)-induced depression and explore its effect on TrkA/Akt-mediated microglia polarization. The CUMS procedure was carried out, and the mice were intragastrically treated with BXHPD once daily. The selective TrkA inhibitor GW441756 was applied to further investigate the role of TrkA in BXHPD-mediated microglia polarization. The behaviour test including open field test (OFT), sucrose preference test (SPT), novelty-suppressed feeding test (NSFT), tail suspension test (TST) and forced swim test (FST) was performed. The concentrations of pro-inflammatory cytokines IL-6, TNF-α, IL-1ß, IL-12 and anti-inflammatory cytokines IL-4, IL-10 were determined using Enzyme-linked immunosorbent assay. The population of Iba1+ cells and the length of microglia processes were observed under the fluorescence microscope. The mRNA expressions of Arg1, Ym1 and Fizzl1 were measured by PCR. The protein expressions of TrkA, p-Tyr490-TrkA, p-Ser473-Akt, p-Ser473-Akt1, p-Ser474-Akt2, p-CREB and Jmjd3 were detected by western blot. Our results showed that BXHPD attenuated CUMS-induced depressive-like behaviour, promoted anti-inflammatory cytokines, inhibited pro-inflammatory cytokines, suppressed microglia activation, promoted M2 phenotype-specific indices and upregulated the expressions of TrkA, p-Tyr490-TrkA, p-Ser473-Akt, p-Ser473-Akt1, p-Ser474-Akt2, p-CREB and Jmjd3. The above beneficial effect of BXHPD can be blocked by TrkA inhibitor GW441756. This work demonstrated that BXHPD exerted an anti-depressant effect by promoting M2 phenotype microglia polarization via TrkA/Akt pathway.


Assuntos
Depressão , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Microglia/metabolismo , Comportamento Animal , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo
17.
Small ; 19(42): e2302284, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37322535

RESUMO

Mitophagy modulators are proposed as potential therapeutic intervention that enhance neuronal health and brain homeostasis in Alzheimer's disease (AD). Nevertheless, the lack of specific mitophagy inducers, low efficacies, and the severe side effects of nonselective autophagy during AD treatment have hindered their application. In this study, the P@NB nanoscavenger is designed with a reactive-oxygen-species-responsive (ROS-responsive) poly(l-lactide-co-glycolide) core and a surface modified with the Beclin1 and angiopoietin-2 peptides. Notably, nicotinamide adenine dinucleotide (NAD+ ) and Beclin1, which act as mitophagy promoters, are quickly released from P@NB in the presence of high ROS levels in lesions to restore mitochondrial homeostasis and induce microglia polarization toward the M2-type, thereby enabling it to phagocytose amyloid-peptide (Aß). These studies demonstrate that P@NB accelerates Aß degradation and alleviates excessive inflammatory responses by restoring autophagic flux, which ameliorates cognitive impairment in AD mice. This multitarget strategy induces autophagy/mitophagy through synergy, thereby normalizing mitochondrial dysfunction. Therefore, the developed method provides a promising AD-therapy strategy.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mitofagia , Peptídeos beta-Amiloides/metabolismo , Proteína Beclina-1
18.
Neurochem Res ; 48(9): 2687-2700, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37071344

RESUMO

Excessive activation of pro-inflammatory (M1) microglia phenotypes after spinal cord injury (SCI) disrupts tissue repair and increases the risk of secondary SCI. We previously reported that adeno-associated virus (AAV) mediated delivery of bone morphogenetic protein 7 (BMP7) promotes functional recovery after SCI by reducing oligodendrocyte loss and demyelination; however, little is known about the early effects of BMP7 in ameliorating neuroinflammation in the acute SCI phase. Herein, we demonstrate that treatment with recombinant human BMP7 (rhBMP7) suppresses the viability of LPS-induced HMC3 microglia cells and increases the proportion with the M2 phenotype. Consistently, in a rat SCI model, rhBMP7 decreases the activation of microglia and promotes M2 polarization. After rhBMP7 administration, the STAT3 signaling pathway was activated in LPS-induced HMC3 cells and microglia in spinal cord lesions. Furthermore, the levels of TNF-α and IL-1ß were significantly decreased in cell culture supernatants, lesion sites of injured spinal cords, and cerebrospinal fluid circulation after rhBMP7 administration, thus reducing neuron loss in the injured spinal cord and promoting functional recovery after SCI. These results provide insight into the immediate early mechanisms by which BMP7 may ameliorate the inflammation response to secondary SCI.


Assuntos
Microglia , Traumatismos da Medula Espinal , Humanos , Ratos , Animais , Microglia/metabolismo , Doenças Neuroinflamatórias , Inflamação/metabolismo , Proteína Morfogenética Óssea 7/metabolismo , Proteína Morfogenética Óssea 7/farmacologia , Lipopolissacarídeos/toxicidade , Traumatismos da Medula Espinal/patologia , Medula Espinal/metabolismo , Fator de Transcrição STAT3/metabolismo
19.
Neurochem Res ; 48(3): 862-873, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36357746

RESUMO

Cerebral ischemia-reperfusion injury (CIRI) may lead to severe disability even death, but the strategies for prevention and treatment are still limited. Transcutaneous electrical acupoint stimulation (TEAS) has been reported to have a significant neuroprotection against CIRI, but the underlying mechanisms remain obscure. In this study, we established a focal cerebral ischemia-reperfusion model in male Sprague-Dawley rats. TEAS pretreatment was applied to Baihui (GV20), Sanyinjiao (SP6) and Zusanli (ST36) acupoints for 5 consecutive days before CIRI. After 24 h reperfusion, the brain damage was assessed using Zea-Longa score, brain water content (BWC) and infarct volume. Meanwhile, the number of activated microglia and the TNF-α were detected by immunofluorescence and ELISA respectively. Moreover, Western Blot and RT-qPCR were conducted to detect the proteins and mRNA expressions of Nrf2, HO-1, iNOS and Arg-1. We found that TEAS pretreatment significantly reduced Longa score, BWC, infarct volume and the number of activated microglia. Besides, TEAS pretreatment increased Nrf2 and HO-1 levels, while lowered the expression of TNF-α. Subsequently, we also discovered that the microglia M1 phenotype maker iNOS decreased and the M2 maker Arg-1 increased after TEAS pretreatment. However, these effects of TEAS pretreatment were markedly eliminated by brusatol. These findings clearly suggested that TEAS pretreatment exerted neuroprotection against CIRI, which might be related to modulating microglia polarization and neuroinflammation via Nrf2/HO-1 pathway.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Fator 2 Relacionado a NF-E2/metabolismo , Pontos de Acupuntura , Doenças Neuroinflamatórias , Microglia/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Isquemia Encefálica/metabolismo , Transdução de Sinais , Traumatismo por Reperfusão/metabolismo , Infarto
20.
Inflamm Res ; 72(12): 2127-2144, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37902837

RESUMO

BACKGROUND: Postoperative cognitive dysfunction (POCD) is a neurological complication occurring after anesthesia and surgery. Neuroinflammation plays a critical role in the pathogenesis of POCD, and the activation of the cluster of differentiation 200 (CD200)/CD200R1 axis improves neurological recovery in various neurological disorders by modulating inflammation. The aim of this study was to investigate the impact and underlying mechanism of CD200/CD200R1 axis on POCD in aged mice. METHODS: The model of POCD was established in aged mice. To assess the learning and memory abilities of model mice, the Morris water maze test was implemented. CD200Fc (CD200 fusion protein), CD200R1 Ab (anti-CD200R1 antibody), and 740Y-P (a specific PI3K activator) were used to evaluate the effects of the CD200/CD200R1/PI3K/Akt/NF-κB signaling pathway on hippocampal microglial polarization, neuroinflammation, synaptic activity, and cognition in mice. RESULTS: It was observed that anesthesia/surgery induced cognitive decline in aged mice, increased the levels of tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1 ß and decreased the levels of postsynaptic density protein 95 (PSD-95), synaptophysin (SYN) in the hippocampus. Moreover, CD200Fc and 740Y-P attenuated neuroinflammation and synaptic deficits and reversed cognitive impairment via the phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (Akt)/nuclear factor-kappa B (NF-κB) signaling pathway, whereas CD200R1 Ab administration exerted the opposite effects. Our results further show that the CD200/CD200R1 axis modulates M1/M2 polarization in hippocampal microglia via the PI3K/Akt/NF-κB signaling pathway. CONCLUSIONS: Our findings indicate that the activation of the CD200/CD200R1 axis reduces neuroinflammation, synaptic deficits, and cognitive impairment in the hippocampus of aged mice by regulating microglial M1/M2 polarization via the PI3K/Akt/NF-κB signaling pathway.


Assuntos
NF-kappa B , Complicações Cognitivas Pós-Operatórias , Animais , Camundongos , Interleucina-6/metabolismo , Microglia/metabolismo , Doenças Neuroinflamatórias , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases/metabolismo , Complicações Cognitivas Pós-Operatórias/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa