Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Neuroinflammation ; 20(1): 134, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37259140

RESUMO

BACKGROUND: Mutations in colony-stimulating factor 1 receptor (CSF1R) are known to cause adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP), which has been recently demonstrated as a primary microgliopathy characterized by cognitive impairment. Although the molecular mechanism underlying CSF1R-mediated microgliopathy remains unclear, therapeutic strategies have generally targeted modulation of microglial function. In particular, the microglial inhibitor, minocycline, has been shown to attenuate learning and memory deficits in several neurodegenerative diseases. The objectives of this study were to investigate the pathogenic mechanisms underlying ALSP and to explore the therapeutic effects of minocycline in an in vivo model of ALSP. We hypothesized that inhibiting microglial activation via minocycline could reverse the behavior and pathological defects in ALSP model mice. METHODS: We generated a Csf1r haploinsufficiency mouse model of ALSP using CRISPR/Cas9 genome editing and conducted electrophysiological recordings of long-term potentiation (LTP) and behavioral tests to validate the recapitulation of clinical ALSP characteristics in 8- to 11-month-old mice. RNA-sequencing was used to explore enriched gene expression in the molecular pathogenesis of ALSP. Microglial activation was assessed by immunofluorescent detection of Iba1 and CD68 in brain sections of male ALSP mice and pro-inflammatory activation and phagocytosis were assessed in Csf1r+/- microglia. Therapeutic effects were assessed by behavioral tests, histological analysis, and morphological examination after four weeks of intraperitoneal injection with minocycline or vehicle control in Csf1r+/- mice and wild-type control littermates. RESULTS: We found that synaptic function was reduced in LTP recordings of neurons in the hippocampal CA1 region, while behavioral tests showed impaired spatial and cognitive memory specifically in male Csf1r+/- mice. Increased activation, pro-inflammatory cytokine production, and enhanced phagocytic capacity were also observed in Csf1r+/- microglia. Treatment with minocycline could suppress the activation of Csf1r+/- microglia both in vitro and in vivo. Notably, the behavioral and pathological deficits in Csf1r+/- mice were partially rescued by minocycline administration, potentially due to inhibition of microglial inflammation and phagocytosis in Csf1r+/- mice. CONCLUSIONS: Our study shows that CSF1R deficiency results in aberrant microglial activation, characterized by a pro-inflammatory phenotype and enhanced phagocytosis of myelin. Our results also indicate that microglial inhibition by minocycline can ameliorate behavioral impairment and ALSP pathogenesis in CSF1R-deficient male mice, suggesting a potential therapeutic target for CSF1R-related leukoencephalopathy. Collectively, these data support that minocycline confers protective effects against CSF1R-related microgliopathy in male ALSP model mice.


Assuntos
Leucoencefalopatias , Minociclina , Masculino , Animais , Camundongos , Minociclina/farmacologia , Minociclina/uso terapêutico , Neuroglia/metabolismo , Leucoencefalopatias/etiologia , Leucoencefalopatias/genética , Encéfalo/metabolismo , Microglia/metabolismo , Receptores de Fator Estimulador de Colônias/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo
2.
J Intern Med ; 291(3): 269-282, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34875121

RESUMO

Colony-stimulating factor 1 receptor (CSF1R)-related leukoencephalopathy is a rare but fatal microgliopathy. The diagnosis is often delayed due to multifaceted symptoms that can mimic several other neurological disorders. Imaging provides diagnostic clues that help identify cases. The objective of this study was to integrate the literature on neuroimaging phenotypes of CSF1R-related leukoencephalopathy. A systematic review and meta-analysis were performed for neuroimaging findings of CSF1R-related leukoencephalopathy via PubMed, Web of Science, and Embase on 25 August 2021. The search included cases with confirmed CSF1R mutations reported under the previous terms hereditary diffuse leukoencephalopathy with spheroids, pigmentary orthochromatic leukodystrophy, and adult-onset leukoencephalopathy with axonal spheroids and pigmented glia. In 78 studies providing neuroimaging data, 195 cases were identified carrying CSF1R mutations in 14 exons and five introns. Women had a statistically significant earlier age of onset (p = 0.041, 40 vs 43 years). Mean delay between symptom onset and neuroimaging was 2.3 years. Main magnetic resonance imaging (MRI) findings were frontoparietal white matter lesions, callosal thinning, and foci of restricted diffusion. The hallmark computed tomography (CT) finding was white matter calcifications. Widespread cerebral hypometabolism and hypoperfusion were reported using positron emission tomography and single-photon emission computed tomography. In conclusion, CSF1R-related leukoencephalopathy is associated with progressive white matter lesions and brain atrophy that can resemble other neurodegenerative/-inflammatory disorders. However, long-lasting diffusion restriction and parenchymal calcifications are more specific findings that can aid the differential diagnosis. Native brain CT and brain MRI (with and without a contrast agent) are recommended with proposed protocols and pictorial examples are provided.


Assuntos
Leucoencefalopatias , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Feminino , Humanos , Leucoencefalopatias/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Mutação , Neuroimagem/métodos , Fenótipo
3.
Acta Neurol Scand ; 145(5): 599-609, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35119108

RESUMO

Colony stimulating factor 1 receptor (CSF1R)-related leukoencephalopathy is a rare, genetic disease caused by heterozygous mutations in the CSF1R gene with rapidly progressive neurodegeneration, behavioral, cognitive, motor disturbances. OBJECTIVE: To describe four cases of CSF1R-related leukoencephalopathy from three families with two different pathogenic mutations in the tyrosine kinase domain of CSF1R and to develop an integrated presentation of inter-individual diversity of clinical presentations. METHODS: This is an observational study of a case series. Patients diagnosed with CSF1R encephalopathy were evaluated with standardized functional estimation scores and subject to analysis of cerebrospinal fluid biomarkers. Brain computed tomography (CT) and magnetic resonance imaging (MRI) were evaluated. We performed a functional phosphorylation assay to confirm the dysfunction of mutated CSF1R protein. RESULTS: Two heterozygous missense mutations in the CSF1R gene were identified, c.2344C>T; p.Arg777Trp and c.2329C>T; p.Arg782Cys. A phosphorylation assay in vitro showed markedly reduced autophosphorylation in cells expressing mutations. According to ACMG criteria, both mutations were pathogenic. A radiological investigation revealed typical white matter lesions in all cases. There was inter-individual diversity in the loss of cognitive, motor-neuronal, and extrapyramidal functions. CONCLUSIONS: Including the present cases, currently three CSF1R mutations are known in Sweden. We present a visualization tool to describe the clinical diversity, with potential use for longitudinal follow-up for this and other leukoencephalopathies.


Assuntos
Leucoencefalopatias , Humanos , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/genética , Imageamento por Ressonância Magnética , Mutação/genética , Neuroimagem/métodos , Fenótipo , Suécia
4.
Glia ; 69(3): 779-791, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33079443

RESUMO

Adult onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a dementia resulting from dominantly inherited CSF1R inactivating mutations. The Csf1r+/- mouse mimics ALSP symptoms and pathology. Csf1r is mainly expressed in microglia, but also in cortical layer V neurons that are gradually lost in Csf1r+/- mice with age. We therefore examined whether microglial or neuronal Csf1r loss caused neurodegeneration in Csf1r+/- mice. The behavioral deficits, pathologies and elevation of Csf2 expression contributing to disease, previously described in the Csf1r+/- ALSP mouse, were reproduced by microglial deletion (MCsf1rhet mice), but not by neural deletion. Furthermore, increased Csf2 expression by callosal astrocytes, oligodendrocytes, and microglia was observed in Csf1r+/- mice and, in MCsf1rhet mice, the densities of these three cell types were increased in supraventricular patches displaying activated microglia, an early site of disease pathology. These data confirm that ALSP is a primary microgliopathy and inform future therapeutic and experimental approaches.


Assuntos
Doenças Desmielinizantes , Leucoencefalopatias , Doenças Neurodegenerativas , Animais , Leucoencefalopatias/genética , Camundongos , Microglia , Neuroglia , Receptores Proteína Tirosina Quinases , Receptores de Fator Estimulador de Colônias , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética
6.
Neuropathology ; 37(5): 452-464, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27859676

RESUMO

Current immunohistochemical techniques have made the identification of microglia possible in routinely processed tissue sections from human brains. Previous studies have indicated that almost no neurological diseases exist without microglial activation. Activated microglia often secrete inflammatory cytokines in various diseases, including Alzheimer's disease, but microglial activation is not always associated with inflammation. The equation microglial activation means "neuroinflammation" is absurd and misleading. Neuropathologists are in the best position to provide clarity to end the existing confusion. The functions of microglia in the non-diseased brain probably include a role in synaptic maintenance, but defects in the expression of specific molecules on microglia can also cause leukoencephalopathy, such as Nasu-Hakola disease (NHD) and hereditary leukoencephalopathy with spheroids (HDLS). "Microgliopathies" is a new term used to designate conditions where microglial dysfunction is primary and at the center of the disease process. The molecules responsible are DAP12 or TREM2 in NHD and CSF1R in HDLS, respectively, but further studies are needed to clarify how exactly these microglial molecules influence the pathogenesis of axonal and myelin loss. Diffusely infiltrating glial tumors showing microglial differentiation (true microglioma) are exceedingly rare but recent evidence suggests that they indeed exist, although their molecular genetic characterization is still lacking. Participation of the expert neuropathology community will be required to identify additional cases and provide the latter. A large number of tumor-associated macrophages (TAMs), which are partly derived from microglia, have been observed in glioblastomas. In TAMs, the expression of M2-like molecules is higher than that of M1-like molecules, but the number and differentiation state of TAMs vary in the intratumoral area and with the type of macrophage markers used. In future studies, we should focus on the morphological and molecular alterations of the microglia that are specific to the disease where they are observed.


Assuntos
Encéfalo , Macrófagos , Microglia , Animais , Humanos
7.
Dement Geriatr Cogn Dis Extra ; 14(1): 14-28, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38910897

RESUMO

Introduction: Microglia exert a crucial role in homeostasis of white matter integrity, and several studies highlight the role of microglial dysfunctions in neurodegeneration. Primary microgliopathy is a disorder where the pathogenic abnormality of the microglia causes white matter disorder and leads to a neuropsychiatric disease. Triggering receptor expressed on myeloid cells (TREM2), TYRO protein tyrosine kinase binding protein (TYROBP) and colony-stimulating factor 1 receptor (CSF1R) are genes implicated in primary microgliopathy. The clinical manifestations of primary microgliopathy are myriad ranging from neuropsychiatric syndrome, motor disability, gait dysfunction, ataxia, pure dementia, frontotemporal dementia (FTD), Alzheimer's dementia (AD), and so on. It becomes imperative to establish the diagnosis of microgliopathy masquerading as degenerative dementia, especially with promising therapies on horizon for the same. We aimed to describe a case series of subjects with dementia harbouring novel genes of primary microgliopathy, along with their clinical, neuropsychological, cognitive profile and radiological patterns. Methods: The prospective study was conducted in a university referral hospital in South India, as a part of an ongoing clinico-genetic research on dementia subjects, and was approved by the Institutional Ethics Committee. All patients underwent detailed assessment including sociodemographic profile, clinical and cognitive assessment, pedigree analysis and comprehensive neurological examination. Subjects consenting for blood sampling underwent genetic testing by whole-exome sequencing (WES). Results: A total of 100 patients with dementia underwent genetic analysis using WES and three pathogenic variants, one each of TREM2, TYROBP, and CSF1R and two variants of uncertain significance in CSF1R were identified as cause of primary microgliopathy. TREM2 and TYROBP presented as frontotemporal syndrome whereas CSF1R presented as frontotemporal syndrome and as AD. Conclusion: WES has widened the spectrum of underlying neuropathology of degenerative dementias, and diagnosing primary microglial dysfunction with emerging therapeutic options is of paramount importance. The cases of primary microgliopathy due to novel mutations in TREM2, TYROBP, and CSF1R with the phenotype of degenerative dementia are being first time reported from Indian cohort. Our study enriches the spectrum of genetic variants implicated in degenerative dementia and provides the basis for exploring complex molecular mechanisms like microglial dysfunction, as underlying cause for neurodegeneration.

8.
Mol Neurodegener ; 16(1): 9, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602265

RESUMO

BACKGROUND: We generated a mouse model of primary microglial dysfunction by deleting two negative immune regulatory genes, Cx3cr1 and Socs3 (in LysM+ cells). This study aimed to understand how primary microglial dysfunction impacts retinal neurons during aging. METHODS: The LysMCre-Socs3fl/flCx3cr1gfp/gfp double knockout (DKO), LysMCre-Socs3fl/fl, Cx3cr1gfp/gfp and Socs3fl/fl mice were maintained up to 12 months. Eyes were collected and processed for immunohistochemistry of IBA-1, cone arrestin, secretagogin, PKCα and GABA. Brain microglia from DKO and WT mice were stimulated with LPS + IFN-γ or IL-4. The expression of TNF-α, IL-1ß, IL-6, iNOS, IL-12p40, IL-23p19, CCL2, CCL5, CXCL2, IL-10, CD206 and Arg1 were examined by qRT-PCR and protein production was measured by Luminex assay. Retinal explants from C57BL/6 J mice were co-cultured with microglia from DKO or WT mice for 24 h, after which the number of cone arrestin+ cells in retinal flatmount were quantified. RESULTS: In 3-5 month old mice, the number of microglia in retinal ganglion cell layer (GCL) and inner plexiform layer (IPL) were comparable in all strains of mice. The DKO mice had a significantly higher number of microglia in the outer plexiform layer (OPL) but significantly lower numbers of cone arrestin+, secretagogin+ and GABA+ cells compared to Socs3fl/fl and single KO mice. During aging, 57% of the DKO mice died before 12 months old. The 10-12 months old DKO mice had significantly higher numbers of microglia in GCL/IPL and OPL than age-matched Socs3fl/fl and single KO mice. The aged DKO mice developed retinal pigment epithelial (RPE) dysmorphology accompanied by subretinal microglial accumulation. The number of photoreceptors, bipolar cells (Secretagogin+ or PKCα+) and GABA+ amacrine cells was significantly lower in aged DKO mice compared to age-matched Socs3fl/fl and single KO mice. Microglia from DKO mice showed significantly higher levels of phagocytic activity and produced higher levels of TNF-α, IL-6, CCL2, CCL5, CXCL2 and CXCL10 compared to microglia from Socs3fl/fl mice. Co-culture of retinal explants with LPS + IFN-γ or IL-4 pre-treated DKO microglia significantly reduced cone photoreceptor survival. CONCLUSIONS: The LysMCre-Socs3fl/flCx3cr1gfp/gfp DKO mice displayed primary microglial dysfunction and developed age-related retinal microgliopathy characterized by aggragated microglial activation and multiple retinal neuronal and RPE degeneration. TRIAL REGISTRATION: Not applicable. The article does not contain any results from human participants.


Assuntos
Fatores Etários , Receptor 1 de Quimiocina CX3C/metabolismo , Retina/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Animais , Modelos Animais de Doenças , Camundongos Transgênicos , Microglia/metabolismo , Retina/patologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Células Ganglionares da Retina/metabolismo
9.
J Clin Neurosci ; 48: 42-49, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29122458

RESUMO

Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a progressive degenerative white matter disorder. ALSP was previously recognized as two distinct entities, hereditary diffuse leukoencephalopathy with spheroids (HDLS) and pigmentary orthochromatic leukodystrophy (POLD). However, recent identification of mutations in the tyrosine kinase domain of the colony stimulating factor 1 receptor (CSF1R) gene, which regulates mononuclear cell lineages including microglia, have provided genetic and mechanistic evidence that POLD and HDLS should be regarded as a single clinicopathologic entity. We describe two illustrative cases of ALSP which presented with neuropsychiatric symptoms, progressive cognitive decline, and motor and gait disturbances. Antemortem diagnoses of autopsy-confirmed ALSP vary significantly, and include primary progressive multiple sclerosis, frontotemporal dementia, Alzheimer disease, atypical cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), corticobasal syndrome, and atypical Parkinson disease, suggesting that ALSP may be significantly underdiagnosed. This article presents a systematic review of ALSP in the context of two illustrative cases to help integrate the literature on HDLS and POLD. Consistent use of the term ALSP is suggested for clarity in the literature going forward.


Assuntos
Leucodistrofia Metacromática/patologia , Leucoencefalopatias/patologia , Neuroglia/patologia , Adulto , Idade de Início , Demência/etiologia , Progressão da Doença , Evolução Fatal , Humanos , Leucodistrofia Metacromática/diagnóstico por imagem , Leucoencefalopatias/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X
10.
Gene Regul Syst Bio ; 8: 127-39, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25574134

RESUMO

Microglia are resident mononuclear phagocytes that play a principal role in the maintenance of normal tissue homeostasis in the central nervous system (CNS). Microglia, rapidly activated in response to proinflammatory stimuli, are accumulated in brain lesions of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. The E26 transformation-specific (ETS) family transcription factor PU.1/Spi1 acts as a master regulator of myeloid and lymphoid development. PU.1-deficient mice show a complete loss of microglia, indicating that PU.1 plays a pivotal role in microgliogenesis. However, the comprehensive profile of PU.1/Spi1 target genes in microglia remains unknown. By analyzing a chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) dataset numbered SRP036026 with the Strand NGS program, we identified 5,264 Spi1 target protein-coding genes in BV2 mouse microglial cells. They included Spi1, Irf8, Runx1, Csf1r, Csf1, Il34, Aif1 (Iba1), Cx3cr1, Trem2, and Tyrobp. By motif analysis, we found that the PU-box consensus sequences were accumulated in the genomic regions surrounding ChIP-Seq peaks. By using pathway analysis tools of bioinformatics, we found that ChIP-Seq-based Spi1 target genes show a significant relationship with diverse pathways essential for normal function of monocytes/macrophages, such as endocytosis, Fc receptor-mediated phagocytosis, and lysosomal degradation. These results suggest that PU.1/Spi1 plays a crucial role in regulation of the genes relevant to specialized functions of microglia. Therefore, aberrant regulation of PU.1 target genes might contribute to the development of neurodegenerative diseases with accumulation of activated microglia.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa