Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 18119, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103480

RESUMO

Urban runoff appears to be a pathway for transferring new emerging pollutants from land-based sources to the aquatic environment. This paper aimed to identify and describe the groups of pollutants present in rainwater surface runoff as well as their mixture with wastewater in the combined sewer system from urbanized catchments and to determine the correlations between these pollutants. Four leading groups of new emerging pollutants have been identified that may be present in rainwater and municipal wastewater mixtures. The samples were tested for microplastics, phthalic acid esters, pesticides, and polycyclic aromatic hydrocarbons as well as basic parameters. The pilot site was Slupsk (northwestern Poland). We conducted nine sampling campaigns at three points. The results of the present study revealed that (i) polycyclic aromatic hydrocarbons were not present in the tested samples; (ii) the selected organochlorine pesticides were detected during one campaign in the dry season and therefore were not of critical importance; (iii) out of the 11 analyzed phthalic acid esters, five selected substances released from commonly used plastic products were present; and (iv) the number of microplastics contained in the tested samples ranged from 1,400 to 14,036 pcs/L and even occurred during pure rainfall.

2.
Environ Sci Pollut Res Int ; 31(34): 47055-47070, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38985427

RESUMO

The factors limiting micropollutant biodegradation in the environment and how to stimulate this process have often been investigated. However, little information is available on the capacity of microbial communities to retain micropollutant biodegradation capacity in the absence of micropollutants or to reactivate micropollutant biodegradation in systems with fluctuating micropollutant concentrations. This study investigated how a period of 2 months without the addition of micropollutants and other organic carbon affected micropollutant biodegradation by a micropollutant-degrading microbial community. Stimulation of micropollutant biodegradation was performed by adding different types of dissolved organic carbon (DOC)-extracted from natural sources and acetate-increasing 10 × the micropollutant concentration, and inoculating with activated sludge. The results show that the capacity to biodegrade 3 micropollutants was permanently lost. However, the biodegradation activity of 2,4-D, antipyrine, chloridazon, and its metabolites restarted when these micropollutants were re-added to the community. Threshold concentrations similar to those obtained before the period of no substrate addition were achieved, but biodegradation rates were lower for some compounds. Through the addition of high acetate concentrations (108 mg-C/L), gabapentin biodegradation activity was regained, but 2,4-D biodegradation capacity was lost. An increase of bentazon concentration from 50 to 500 µg/L was necessary for biodegradation to be reactivated. These results provide initial insights into the longevity of micropollutant biodegradation capacity in the absence of the substance and strategies for reactivating micropollutant biodegrading communities.


Assuntos
Biodegradação Ambiental , Poluentes Químicos da Água/metabolismo , Esgotos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa