Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Hum Nutr Diet ; 37(4): 1091-1099, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38798237

RESUMO

BACKGROUND: Milk fat globule membranes (MFGM) present a nutritional intervention with the potential to improve psychological well-being and mitigate the negative effects of stress on health. The present study aimed to investigate participant's experience of different aspects of health during a trial of MFGM supplementation and determine the effect of MFGM on qualitative measures of psychological and physical well-being. METHODS: Seventy-three adults in New Zealand who were enrolled in a clinical trial to test MFGM supplementation for improvement of psychological well-being took part in a post-intervention interview. Participants and researchers remained blinded to intervention group allocation. Interviews were conducted over the video conferencing platform Zoom and transcribed. A mixed methods analytical approach included thematic analysis to identify emerging themes and χ2 regression models to examine frequency of improvements in different aspects of well-being between the MFGM and placebo groups. RESULTS: There were no significant demographic or psychological differences between interviewees and non-interviewed study participants. Four central themes emerged from the data for all participants: improved well-being, increased ability to cope with stress and improvements in mood, improvement in physical energy or activity, and improved sleep. The frequency of improved ability to cope with stress and improved sleep quality was significantly higher in participants who received MFGM supplementation compared to those receiving the placebo. CONCLUSIONS: Qualitative data may capture aspects of improved sleep or psychological well-being not measured by rating scales. The results suggest that MFGM supplementation may improve the ability to cope with stress and improve sleep quality in healthy adults.


Assuntos
Suplementos Nutricionais , Glicolipídeos , Glicoproteínas , Gotículas Lipídicas , Resiliência Psicológica , Humanos , Feminino , Masculino , Adulto , Nova Zelândia , Glicoproteínas/administração & dosagem , Pessoa de Meia-Idade , Estresse Psicológico/psicologia , Fosfolipídeos/administração & dosagem , Adaptação Psicológica , Saúde Mental , Qualidade do Sono , Afeto , Adulto Jovem , Leite , Animais , Exercício Físico/psicologia , Pesquisa Qualitativa
2.
Molecules ; 27(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35458740

RESUMO

Reactive oxygen species (ROS) generated by ultraviolet (UV) exposure cause skin barrier dysfunction, which leads to dry skin. In this study, the skin moisturizing effect of sphingomyelin-containing milk phospholipids in UV-induced hairless mice was evaluated. Hairless mice were irradiated with UVB for eight weeks, and milk phospholipids (50, 100, and 150 mg/kg) were administered daily. Milk phospholipids suppressed UV-induced increase in erythema and skin thickness, decreased transepidermal water loss, and increased skin moisture. Milk phospholipids increased the expression of filaggrin, involucrin, and aquaporin3 (AQP3), which are skin moisture-related factors. Additionally, hyaluronic acid (HA) content in the skin tissue was maintained by regulating the expression of HA synthesis- and degradation-related enzymes. Milk phospholipids alleviated UV-induced decrease in the expression of the antioxidant enzymes superoxidase dismutase1 and 2, catalase, and glutathione peroxidase1. Moreover, ROS levels were reduced by regulating heme oxygenase-1 (HO-1), an ROS regulator, through milk phospholipid-mediated activation of nuclear factor erythroid-2-related factor 2 (Nrf2). Collectively, sphingomyelin-containing milk phospholipids contributed to moisturizing the skin by maintaining HA content and reducing ROS levels in UVB-irradiated hairless mice, thereby, minimizing damage to the skin barrier caused by photoaging.


Assuntos
Envelhecimento da Pele , Esfingomielinas , Animais , Ácido Hialurônico/metabolismo , Camundongos , Camundongos Pelados , Leite , Fosfolipídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Pele , Esfingomielinas/farmacologia , Raios Ultravioleta/efeitos adversos
3.
J Dairy Sci ; 103(9): 7707-7718, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32684482

RESUMO

The mechanisms of bacterial adhesion to human cells involve several complex reactions and activation of genes and proteins. It has been reported that the food components in dairy matrices, such as sugar or salt, can decrease bacterial adhesion to Caco-2 cells. However, it has not been evaluated whether the bacteria grown in media supplemented with milk phospholipids (MPL) can increase or decrease the adhesion of these cells. The objective of this work was to evaluate the effects of MPL on the kinetic growth of lactic acid bacteria (LAB) and their functional characteristics as probiotics, expression of surface protein genes, and adherence to Caco-2 cells. Seven LAB strains isolated from various dairy products were characterized. Five of the tested LAB strains were able to grow in a chemically defined medium supplemented with MPL. Lactobacillus reuteri OSU-PECh-48 showed the highest growth rate and the greatest optical density. All of the strains tested showed tolerance to acidic conditions at pH 3.0 and to bile salts at 0.5 and 1% concentrations. Auto-aggregation and cell surface hydrophobicity ability were evaluated, with nonsignificant differences between the strains grown in MPL and without MPL. Gene expression of 6 surface proteins was evaluated in the presence or absence of MPL. Pediococcus acidilactici OSU-PECh-L and OSU-PECh-48 were the strains with highest relative expression of 5 of the 6 genes evaluated. Lactobacillus paracasei OSU-PECh-BA was the strain with the lowest level of expression of surface protein genes. Most of the bacteria tested had increased adhesion to Caco-2 cells after growth in MPL. The bacteria with the highest degrees of adhesion observed were Lactobacillus paracasei OSU-PECh-3B, Pediococcus acidilactici OSU-PECh-L, and Lactobacillus reuteri OSU-PECh-48. The genes Cnb and EF-Tu increased in expression in the presence of MPL in most of the LAB tested. The results obtained in this work demonstrate the high potential of these LAB strains for use as starters or beneficial cultures in fermentation of not only dairy products but also other food fermentation processes, with promising ability to increase residence time in the gut, modify the microbiome, and improve human health.


Assuntos
Aderência Bacteriana , Meios de Cultura/metabolismo , Lactobacillales/fisiologia , Leite/microbiologia , Fosfolipídeos/metabolismo , Probióticos/metabolismo , Animais , Células CACO-2 , Fermentação , Humanos , Lactobacillales/crescimento & desenvolvimento , Lacticaseibacillus paracasei/crescimento & desenvolvimento , Lacticaseibacillus paracasei/fisiologia , Microbiota
4.
J Anim Physiol Anim Nutr (Berl) ; 104(6): 1606-1619, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32410273

RESUMO

The aim of this experiment was to investigate the effect of dietary supplementation of crushed high oleic sunflower seeds (HOS) and rumen-protected choline (RPC) on the fatty acid (FA) profile of phospholipids and sphingomyelin and mammary transcription of genes that are important for milk fat synthesis and de novo synthesis of sphingolipids. Twenty-four cows were divided into four groups that either received an unsupplemented diet (Control), the Control diet supplemented with 50 g RPC per day, a diet supplemented with HOS at 10% of dry matter, or RPC and HOS in combination (RPC + HOS). RPC supplementation had no effect on the FA composition of milk or sphingomyelin. Cows receiving RPC and RPC + HOS had increased incorporation of C22:5 (n-3) into phospholipids. Milk FA proportion of C18:0 and C18:1 isomers was increased in cows receiving HOS (HOS and RPC + HOS). Sphingomyelin proportion of C22:0 was increased in cows receiving HOS and RPC + HOS, at the expense of C23:0. HOS supplementation further increased the proportion of unsaturated fatty acids (UFA) in milk phospholipids. HOS supplementation increased mammary transcription of UDP-glucose ceramide glycosyltransferase (UGCG), sterol response element-binding protein cleavage-activating protein (SCAP) and peroxisome proliferation-activated receptor Gamma subunit C 1b (PPARGC1b), and reduced transcription of insulin induced gene 1 (INSIG1) and fatty acid-binding protein 3 (FABP3). Dietary supplementation of RPC increased mammary transcription of fatty acid desaturase 1 (FADS1) and longevity assurance gene 2 (LASS2), and reduced transcription of sphingomyelin synthase (SGMS). The results show that the FA profile of milk phospholipids is sensitive to dietary lipid supplementation and, to a minor degree, RPC supplementation. Furthermore, transcription of genes that are important for milk fat synthesis and sphingolipids synthesis is affected by dietary supplementation of RPC and HOS.


Assuntos
Helianthus , Rúmen , Ração Animal/análise , Animais , Bovinos , Colina , Dieta/veterinária , Suplementos Nutricionais , Ácidos Graxos , Glicolipídeos , Glicoproteínas , Lactação , Gotículas Lipídicas , Fosfolipídeos
5.
Foods ; 13(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39272491

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide, with dyslipidemia being a significant risk factor. This meta-analysis provides a comprehensive evaluation of the impact of bovine dairy-derived milk fat globule membrane (MFGM) supplementation on blood lipid profiles in adults. A systematic search was conducted across various databases up until March 2024, resulting in the inclusion of 6 trials with a total of 464 participants. The findings indicated that MFGM phospholipid supplementation may significantly reduce total cholesterol (TC) and low-density lipoprotein (LDL) cholesterol levels. A combined analysis of the effects on TC, LDL, and triglycerides (TG) revealed a significant overall reduction in these markers. However, no significant increase or reduction was observed on high-density lipoprotein (HDL) and TG levels. Overall, MFGM phospholipid intake may significantly decrease the level of TC and LDL, while no significant changes in TG and HDL were observed. These results suggest that MFGM supplementation could be a promising dietary intervention for improving lipid profiles in adults. Nonetheless, further research is warranted to confirm these results and to better understand the potential variability in the impact of MFGM on blood lipid levels.

6.
Food Chem ; 429: 136841, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37459709

RESUMO

Proteosomes (P) based on milk fat globule membrane's phospholipids (MPs), whey protein isolate (WPI) and sodium caseinate (CasNa) were developed by ultrasonication to encapsulate ß-carotene. Entirely milk-ingredients based proteosomes (WPI-MPs-P and CasNa-MPs-P) revealed homogenous distribution with size diameters < 250 nm. WPI-MPs-P depicted positive ζ-potential values (+15.7 ± 0.5 mV), while CasNa-MPs-P demonstrated negative (-32.5 ± 3.4 mV) values of surface charge, respectively and hydrophilic nature of proteosomes was observed by measuring contact-angle (θ). AFM and SEM exhibited spherical to oval and slightly irregular morphology of nanocarriers. For various concentrations of ß-carotene, the highest encapsulation efficiency of ß-carotene was 90 ± 0.2% and 92 ± 0.8% in WPI-MPs-P and CasNa-MPs-P respectively. FTIR analyses confirmed the hydrophobic and electrostatic interactions-based encapsulation of ß-carotene. Beneficial antioxidant-potential of ß-carotene was retained after its encapsulation in the proteosomes. Proteosomes increased the digestive-stability (>50%) and bioaccessibility (>85%) of ß-carotene. Thus, milk-ingredients based proteosomes offer a novel-strategy to develop functional dairy products to overcome widespread vitamin-A-deficiency.


Assuntos
Fosfolipídeos , beta Caroteno , beta Caroteno/química , Emulsões/química , Proteínas do Soro do Leite/química , Caseínas/química , Proteínas do Leite/química
7.
Front Nutr ; 10: 1194945, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38024346

RESUMO

Bifidobacterium longum subsp. infantis is associated with the gut microbiota of breast-fed infants. Bifidobacterium infantis promotes intestinal barrier and immune function through several proposed mechanisms, including interactions between their surface polysaccharides, the host, and other gut microorganisms. Dairy foods and ingredients are some of the most conspicuous food-based niches for this species and may provide benefits for their delivery and efficacy in the gut. Milk phospholipid (MPL)-rich ingredients have been increasingly recognized for their versatile benefits to health, including interactions with the gut microbiota and intestinal cells. Therefore, our objective was to investigate the capacity for MPL to promote survival of B. infantis during simulated digestion and to modulate bacterial polysaccharide production. To achieve these aims, B. infantis was incubated with or without 0.5% MPL in de Man, Rogosa, and Sharpe (MRS) media at 37°C under anaerobiosis. Survival across the oral, gastric, and intestinal phases using in vitro digestion was measured using plate count, along with adhesion to goblet-like intestinal cells. MPL increased B. infantis survival at the end of the intestinal phase by at least 7% and decreased adhesion to intestinal cells. The bacterial surface characteristics, which may contribute to these effects, were assessed by ζ-potential, changes in surface proteins using comparative proteomics, and production of bound polysaccharides. MPL decreased the surface charge of the bifidobacteria from -17 to -24 mV and increased a 50 kDa protein (3-fold) that appears to be involved in protection from stress. The production of bound polysaccharides was measured using FTIR, HPLC, and TEM imaging. These techniques all suggest an increase in bound polysaccharide production at least 1.7-fold in the presence of MPL. Our results show that MPL treatment increases B. infantis survival during simulated digestion, induces a stress resistance surface protein, and yields greater bound polysaccharide production, suggesting its use as a functional ingredient to enhance probiotic and postbiotic effects.

8.
Antioxidants (Basel) ; 11(9)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36139878

RESUMO

This study investigated the protective effects of glucocerebroside-containing buttermilk concentrated powder (GCBM) on oxidative stress and photoaging in ultraviolet B (UVB)-irradiated hairless mice. We measured antioxidant enzyme activities, collagen synthesis-related pathways, and moisturizing-related factors in the dorsal skin of mice. We observed that dietary supplementation with GCBM increased antioxidant enzyme activity and decreased pro-inflammatory cytokine expression in the UVB-irradiated dorsal skin. Furthermore, dietary supplementation with GCBM inhibited wrinkle formation by suppressing the JNK/c-FOS/c-Jun/MMP pathway and stimulating the TGF-ßRI/Smad3/procollagen type I pathway. Dietary supplementation with GCBM also increased skin moisturization by stimulating hyaluronic acid and ceramide synthesis in the dorsal skin. Therefore, buttermilk powder supplementation helps prevent photoaging and can be used as an effective component in developing anti-photoaging products.

9.
Mol Nutr Food Res ; 66(3): e2100665, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34851032

RESUMO

SCOPE: Increasing scientific evidence is validating the use of dietary strategies to support and improve brain health throughout the lifespan, with tailored nutritional interventions catering for specific life stages. Dietary phospholipid supplementations in early life and adulthood are shown to alleviate some of the behavioral consequences associated with chronic stress. This study aims to explore the protective effects of a tailored phospholipid-enriched buttermilk on behavioral and endocrine responses induced by chronic psychosocial stress in adulthood, and to compare these effects according to the life stage at which the supplementation is started. METHODS AND RESULTS: A novel developed phospholipid-enriched dairy product is assessed for its effects on social, anxiety- and depressive-like behaviors, as well as the stress response and cognitive performance following chronic psychosocial stress in C57BL/6J mice, with supplementation beginning in adulthood or early life. Milk phospholipid supplementation from birth protects adult mice against chronic stress-induced changes in endocrine response to a subsequent acute stressor and reduces innate anxiety-like behavior in non-stressed animals. When starting in adulthood, the dietary intervention reverses the anxiety-like phenotype caused by chronic stress exposure. CONCLUSION: Dairy-derived phospholipids exert differential protective effects against chronic psychosocial stress depending on the targeted life stage and duration of the dietary supplementation.


Assuntos
Leite , Estresse Psicológico , Animais , Ansiedade/etiologia , Ansiedade/prevenção & controle , Comportamento Animal , Longevidade , Camundongos , Camundongos Endogâmicos C57BL , Fosfolipídeos/farmacologia
10.
Metabolites ; 11(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34357348

RESUMO

Studies have indicated that the dairy matrix can affect postprandial responses of dairy products, but little is known about the effect on postprandial plasma phospholipid levels. This study investigated postprandial plasma phospholipid levels following consumption of four different dairy products that are similar in micro and macro nutrients, but different in texture and structure: cheddar cheese (Cheese), homogenized cheddar cheese (Hom. Cheese), micellar casein isolate with cream (MCI Drink) or a gel made from the MCI Drink (MCI Gel). The study was an acute randomized, crossover trial in human volunteers with four test days. Blood samples were collected during an 8 h postprandial period and the content of 53 plasma phospholipids was analysed using liquid chromatography-mass spectrometry (LC-MS). No meal-time interactions were revealed; however, for nine of the 53 phospholipids, a meal effect was found. Thus, the results indicated a lower plasma level of specific lyso-phosphatidylethanolamines (LPEs) and lyso-phosphatidylcholines (LPCs) following consumption of the MCI Gel compared to the MCI Drink and Hom. Cheese, which might be attributed to an effect of viscosity. However, further studies are needed in order to reveal more details on the effect of the dairy matrix on postprandial phospholipids.

11.
Nutr Rev ; 79(Suppl 2): 16-35, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34879146

RESUMO

Low-quality dietary patterns impair cardiometabolic health by increasing the risk of obesity-related disorders. Cardiometabolic risk relative to dairy-food consumption continues to be a controversial topic, due to recommendations that endorse low-fat and nonfat dairy foods over full-fat varieties despite accumulated evidence that does not strongly support these recommendations. Controlled human studies and mechanistic preclinical investigations support that full-fat dairy foods decrease cardiometabolic risk by promoting gut health, reducing inflammation, and managing dyslipidemia. These gut- and systemic-level cardiometabolic benefits are attributed, at least in part, to milk polar lipids (MPLs) derived from the phospholipid- and sphingolipid-rich milk fat globule membrane that is of higher abundance in full-fat dairy milk. The controversy surrounding full-fat dairy food consumption is discussed in this review relative to cardiometabolic health and MPL bioactivities that alleviate dyslipidemia, shift gut microbiota composition, and reduce inflammation. This summary, therefore, is expected to advance the understanding of full-fat dairy foods through their MPLs and the need for translational research to establish evidence-based dietary recommendations.


Assuntos
Doenças Cardiovasculares , Dislipidemias , Microbioma Gastrointestinal , Animais , Doenças Cardiovasculares/prevenção & controle , Laticínios , Dieta com Restrição de Gorduras , Dislipidemias/prevenção & controle , Humanos , Leite
12.
Food Res Int ; 146: 110471, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34119244

RESUMO

The importance of various Lactobacillus strains and milk components, such as the milk fat globule membrane, has been studied from various perspectives and proven to have a positive role in human health. On one end, lactic acid bacteria produce metabolites with direct effect in the immune system, changes of pH in the gut, and antagonistic substances for pathogenic bacteria as well as competition. On the other end, the milk fat globule membrane improves gastrointestinal status by promoting cell proliferation, epithelial tight junction patterns, and development of intestinal epithelial cells. Interaction between beneficial bacteria and milk fat is a natural occurring phenomenon in dairy products; however, it has not been fully characterized. In this work, we studied the effect of milk phospholipids in the adhesion of Lactobacillus to mucus-producing Caco-2/Goblet cell co-cultures and found that treatment with phospholipids produced bacterial cells with increased surface electronegativity, which was correlated with increased bacterial cells adhered to the intestinal model. Moreover, we utilized an original means of characterizing the adhesion using quartz crystal microbalance. All strains studied, experienced modification of adhesion either physicochemical or kinetic parameters studied. Furthermore, by imaging bacterial cells by electron microscopy, we identified that some strains, such as L. acidophillus and L. casei, metabolized MPL, which improved their adhesion to hydrophilic surfaces such as gold. We identified another group of bacteria, such as L. delbrueckii and L. plantarum, that, instead of metabolizing MPL, kept the phospholipids bound irreversibly to the surface of the cell envelope thus decreasing their adherence to gold surfaces. One of the most important aspects of probiotic lactic acid bacteria -besides survival in the stomach-is the colonization and extended resident time in the intestine to effectively change the gut microbiome. We found that bacterial treatment with milk phospholipids enhances adhesion to intestinal models and will in turn, increase the residence time with the concomitant benefits to the consumer.


Assuntos
Lactobacillus , Fosfolipídeos , Aderência Bacteriana , Células CACO-2 , Glicolipídeos , Glicoproteínas , Células Caliciformes , Humanos , Gotículas Lipídicas , Muco
13.
J Food Biochem ; 44(2): e13104, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31808955

RESUMO

In this work, the known antiproliferative activity of the untreated milk fat globule membrane (MFGM) against human colon cancer cells was employed to test the hypothesis that the supramolecular structure of the MFGM is of important biological significance. The results indicated that there is a relationship between the extent of thermal denaturation and the loss of antiproliferative capacity. There was also a clear reduction of the biological activity, when the MFGM was treated by hydrolysis using trypsin or phospholipase A2 , enzymes specific either for the protein or the phospholipids components present in the MFGM. It was concluded that the bioactivity of the MFGM can not be explained only by the presence of bioactive components, but that their structural organization plays a critical role in the antiproliferative activities of the extracts. PRACTICAL APPLICATIONS: The milk fat globule membrane (MFGM) is characterized by a complex composition and structure, with biological significance. It is known that with processing, the composition of the MFGM is modified, due to protein-protein interactions at the interface. In this work, the MFGM was isolated from untreated milk and while maintaining its overall composition, its molecular and supramolecular structures were modified using heating or specific hydrolysis to the protein or phospholipids' components. All targeted modifications affected the bioefficacy of the MFGM against colon cancer cells, thus demonstrating the importance of processing history on the functionality of the MFGM.


Assuntos
Neoplasias do Colo , Glicolipídeos , Glicoproteínas , Gotículas Lipídicas , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Glicolipídeos/farmacologia , Humanos , Fosfolipídeos
14.
Foods ; 9(3)2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32121655

RESUMO

Milk phospholipids (MPLs) have been used as ingredients for food fortification, such as bakery products, yogurt, and infant formula, because of their technical and nutritional functionalities. Starting from either buttermilk or beta serum as the original source, this review assessed four typical extraction processes and estimated that the life-cycle carbon footprints (CFs) of MPLs were 87.40, 170.59, 159.07, and 101.05 kg CO2/kg MPLs for membrane separation process, supercritical fluid extraction (SFE) by CO2 and dimethyl ether (DME), SFE by DME, and organic solvent extraction, respectively. Regardless of the MPL content of the final products, membrane separation remains the most efficient way to concentrate MPLs, yielding an 11.1-20.0% dry matter purity. Both SFE and solvent extraction processes are effective at purifying MPLs to relatively higher purity (76.8-88.0% w/w).

15.
Food Chem ; 324: 126837, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32339791

RESUMO

Evidences have shown that phytosome assemblies are novel drug delivery system. However, studies of phytosomes in food applications are scarce. The characteristics of milk phospholipid assemblies and their functionality in terms of in vitro digestibility and bioavailability of encapsulated nutrients (ascorbic acid and α-tocopherol) were studied. The phytosomes were fabricated using ethanolic evaporation technique. Spectral analysis revealed that polar parts of phospholipids formed hydrogen bonds with ascorbic acid hydroxyl groups, further, incorporating ascorbic acid or α-tocopherol into the phospholipid assembly changed the chemical conformation of the complexes. Phospholipid-ascorbic acid phytosomes yielded an optimal complexing index of 98.52 ± 0.03% at a molar ratio of 1:1. Phytosomes exhibited good biocompatibility on intestinal epithelial cells. The cellular uptake of ascorbic acid was 29.06 ± 1.18% for phytosomes. It was higher than that for liposomes (24.14 ± 0.60%) and for ascorbic acid aqueous solution (1.17 ± 0.70%).


Assuntos
Antioxidantes/química , Ácido Ascórbico/química , Lipossomos/química , Leite/química , Fosfolipídeos/química , alfa-Tocoferol/química , Animais , Ácido Ascórbico/farmacocinética , Varredura Diferencial de Calorimetria , Linhagem Celular , Liberação Controlada de Fármacos , Células Epiteliais/efeitos dos fármacos , Ligação de Hidrogênio , Absorção Intestinal/efeitos dos fármacos , Fosfolipídeos/farmacocinética , Ratos , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
16.
Food Sci Biotechnol ; 28(2): 423-432, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30956854

RESUMO

In the present study, the effects of different ratios of milk phospholipids, cholesterol and phytosterols (Campesterol) powder (50-100%, 0-50%, and 0-50%, respectively) and sonication time (20, 25, 30, 35 and 40 min) were investigated to produce a new formulation of nanoliposomes for encapsulation of vitamin C. The results showed that increasing the time of sonication and decreasing the ratio of phospholipid to phytosterol significantly decreased nanoliposomes' particle size (p < 0.05). The maximum encapsulation efficiency was obtained at 35 and 40 min of sonication time and 75-25 ratio of phospholipid: phytosterol. Also, reducing the sonication time in the same ratio of phospholipid/phytosterol caused to increase the controlled release. The highest stability of vitamin C during 20 days was obtained in the ratio of 75-25 (phospholipids: campesterol). The results showed a positive effect of cholesterol replacement with campesterol on encapsulation efficiency, control release and stability of vitamin C in nanoliposomes.

17.
Ann Med ; 51(7-8): 345-359, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31729238

RESUMO

Epidemiologically, high-density lipoprotein (HDL) cholesterol levels have been inversely associated to cardiovascular (CV) events, although a Mendelian Randomisation Study had failed to establish a clear causal role. Numerous atheroprotective mechanisms have been attributed to HDL, the main being the ability to promote cholesterol efflux from arterial walls; anti-inflammatory effects related to HDL ligands such as S1P (sphingosine-1-phosphate), resolvins and others have been recently identified. Experimental studies and early clinical investigations have indicated the potential of HDL to slow progression or induce regression of atherosclerosis. More recently, the availability of different HDL formulations, with different phospholipid moieties, has allowed to test other indications for HDL therapy. Positive reports have come from studies on coronary stent biocompatibility, where the use of HDL from different sources reduced arterial cell proliferation and thrombogenicity. The observation that low HDL-C levels may be associated with an enhanced risk of heart failure (HF) has also suggested that HDL therapy may be applied to this condition. HDL infusions or apoA-I gene transfer were able to reverse heart abnormalities, reduce diastolic resistance and improve cardiac metabolism. HDL therapy may be effective not only in atherosclerosis, but also in other conditions, of relevant impact on human health.Key messagesHigh-density lipoproteins have as a major activity that of removing excess cholesterol from tissues (particularly arteries).Knowledge on the activity of high-density lipoproteins on health have however significantly widened.HDL-therapy may help to improve stent biocompatibility and to reduce peripheral arterial resistance in heart failure.


Assuntos
Aterosclerose/terapia , Insuficiência Cardíaca/terapia , Lipoproteínas HDL , Terapia de Alvo Molecular , Animais , Materiais Biocompatíveis , Terapia Genética , Humanos , Intervenção Coronária Percutânea , Stents
18.
J Nutr Sci ; 5: e21, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27293558

RESUMO

The present study examined the effect of milk phospholipids (milk-PL) on lipid metabolism and on other risk factors for CVD, in comparison with milk fat (control) or soya phospholipids (soya-PL), respectively. Two double-blind parallel-group intervention trials were conducted in overweight or obese male subjects. In the first trial (trial 1), sixty-two men consumed milk enriched with either 2 g milk-PL or 2 g milk fat (control) for 8 weeks. In trial 2, fifty-seven men consumed milk enriched with either 3 g milk-PL or 2·8 g soya-PL for 7 weeks. In trial 1, milk-PL as compared with control reduced waist circumference but did not affect plasma lipids (total, HDL- and LDL-cholesterol, total cholesterol:HDL-cholesterol ratio, TAG, phospholipids), apoB, apoA1, glucose, insulin, insulin sensitivity index, C-reactive protein, IL-6, soluble intracellular adhesion molecule and total homocysteine (tHcy). Serum activities of alanine transaminase and aspartate transaminase were not changed. Activity of γ-glutamyl transferase (GGT), a marker of fatty liver, increased in the control but not in the milk-PL group, with a significant intervention effect. In trial 2, milk-PL as compared with soya-PL did not affect the above-mentioned parameters, but decreased GGT. Subjects with the methylenetetrahydrofolate reductase mutations CT and TT had 11 % (P < 0·05) higher baseline tHcy concentrations than those with the wild-type CC. However, genotype did not modulate the phospholipid intervention effect on tHcy. In conclusion, supplementation with milk-PL as compared with control fat reduced waist circumference and, as compared with both control fat and soya-PL, GGT activity.

19.
Colloids Surf B Biointerfaces ; 136: 329-39, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26432620

RESUMO

Human milk (HM) provides all nutrients to support an optimal growth and development of the neonate. The composition and structure of HM lipids, the most important energy provider, have an impact on the digestion, uptake and metabolism of lipids. In HM, the lipids are present in the form of dispersed fat globules: large fat droplets enveloped by a phospholipid membrane. Currently, infant milk formula (Control IMF) contains small fat droplets primarily coated by proteins. Recently, a novel IMF concept (Concept IMF) was developed with a different lipid architecture, Nuturis(®), comprising large fat droplets with a phospholipid coating. Confocal laser scanning microscopy (CLSM), with appropriate fluorescent probes, and transmission electron microscopy were used to determine and compare the interfacial composition and structure of HM fat globules, Concept IMF fat droplets and Control IMF fat droplets. The presence of a trilayer-structured HM fat globule membrane, composed of phospholipids, proteins, glycoproteins and cholesterol, was confirmed; in addition exosome-like vesicles are observed within cytoplasmic crescents. The Control IMF fat droplets had a thick protein-only interface. The Concept IMF fat droplets showed a very thin interface composed of a mixture of phospholipids, proteins and cholesterol. Furthermore, the Concept IMF contained fragments of milk fat globule membrane, which has been suggested to have potential biological functions in infants. By mimicking more closely the structure and composition of HM fat globules, this novel IMF concept with Nuturis(®) may have metabolic and digestive properties that are more similar to HM compared to Control IMF.


Assuntos
Glicolipídeos/química , Glicoproteínas/química , Fórmulas Infantis/química , Humanos , Gotículas Lipídicas , Microscopia Eletrônica de Transmissão , Leite Humano , Estrutura Molecular , Tamanho da Partícula
20.
J Dermatol Sci ; 78(3): 224-31, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25816721

RESUMO

BACKGROUND: Dietary milk phospholipids (MPLs) increase hydration of the stratum corneum and reduced transepidermal water loss (TEWL) in hairless mice fed a standard diet. However, the mechanism by which MPLs improve skin barrier functions has yet to be established. OBJECTIVE: This study was designed to examine the mechanism by which MPLs may affect covalently bound ceramides and markers of skin inflammation and improve the skin barrier defect in hairless mice fed a magnesium-deficient (HR-AD) diet. METHODS: Four-week-old female hairless mice were randomized into four groups (n=10/group), and fed a standard (control) diet, the HR-AD diet, the HR-AD diet supplemented with either 7.0 g/kg MPLs (low [L]-MPL) or 41.0 g/kg MPLs (high [H]-MPL). RESULTS: Dietary MPLs improved the dry skin condition of hairless mice fed the HR-AD diet. MPLs significantly increased the percentage of covalently bound ω-hydroxy ceramides in the epidermis, and significantly decreased both thymus and activation-regulated chemokine (TARC) mRNA and thymic stromal lymphopoietin (TSLP) mRNA levels in skin, compared with the HR-AD diet. Furthermore, the MPL diets significantly decreased serum concentrations of immunoglobulin-E, TARC, TSLP, and soluble P-selectin versus the HR-AD diet. CONCLUSION: Our study showed for the first time that dietary MPLs may modulate epidermal covalently bound ceramides associated with formation of lamellar structures and suppress skin inflammation, resulting in improved skin barrier function.


Assuntos
Ceramidas/análise , Dermatite/prevenção & controle , Epiderme/química , Leite/química , Fosfolipídeos/administração & dosagem , Animais , Água Corporal/metabolismo , Dieta , Epiderme/metabolismo , Feminino , Imunoglobulina E/sangue , Camundongos , Camundongos Pelados , Selectina-P/sangue
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa