Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Dairy Sci ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969004

RESUMO

Milk and dairy products are important in the human diet not only for the macro nutrients, such as proteins and fats, that they provide, but also for the supply of essential micronutrients, such as minerals. Minerals are present in milk in soluble form in the aqueous phase and in colloidal form associated with the macronutrients of the milk. These 2 forms affect the nutritional functions of the minerals and their contribution to the technological properties of milk during cheese-making. The aim of the present work was to study and compare the detailed mineral profiles of dairy foods (milk, whey, and cheese) obtained from cows, buffaloes, goats, ewes and dromedary camels, and to analyze the recovery in the curd of the individual minerals according to a model cheese-making procedure applied to the milk of these 5 dairy species. The detailed mineral profile of the milk samples was obtained by inductively coupled plasma - optical emission spectroscopy (ICP - OES). We divided the 21 minerals identified in the 3 different matrices into essential macro- and micro-minerals, and environmental micro-minerals, and calculated the recovery of the individual minerals in the cheeses. The complete mineral profiles and the recoveries in the cheeses were then analyzed using a linear mixed model with Species and Food, and their interaction included as fixed effects, and Sample within Species as a random effect. The mineral profiles of each food matrix were then analyzed separately with a general linear model in which only the fixed effect of Species was included. The results showed that the species could be divided into 2 groups: those producing a more diluted milk characterized by a higher content of soluble minerals (in particular K), and those with a more concentrated milk with a higher colloidal mineral content in the skim of the milk (such as Ca and P). The recoveries of the minerals in the curd were in line with the initial content in the milk, and also highlighted the fact that the influence of the brine was not limited to the Na content but to its whole mineral makeup. These results provide valuable information for the evaluation of the nutritional and technological properties of milk, and for the uses made of the byproducts of cheese making from the milk of different species.

2.
J Environ Manage ; 344: 118695, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37542865

RESUMO

Phosphorous (P) resources are finite. Sewage sludge recyclates (SSR) are not only of interest as plant fertilizer but also as potential source of minerals in animal nutrition. However, besides P and calcium (Ca), SSR contain heavy metals. Under EU legislation, the use of SSR derivatives in animal feed is not permitted, but given the need to improve nutrient recycling, it could be an environmentally sound future mineral source. Black soldier fly larvae (BSFL) convert low-grade biomass into valuable proteins and lipids, and accumulate minerals in their body. It was hypothesized that BSFL modify and increase their mineral content in response to feeding on SSR containing substrates. The objective was to evaluate the upcycling of minerals from SSR into agri-food nutrient cycles through BSFL. Growth, nutrient and mineral composition were compared in BSFL reared either on a modified Gainesville fly diet (FD) or on FD supplemented with either 4% of biochar (FD + BCH) or 3.6% of single-superphosphate (FD + SSP) recyclate (n = 6 BSFL rearing units/group). Larval mass, mineral and nutrient concentrations and yields were determined, and the bioaccumulation factor (BAF) was calculated. The FD + SSP substrate decreased specific growth rate and crude fat of BSFL (P < 0.05) compared to FD. The FD + SSP larvae had higher Ca and P contents and yields but the BAF for Ca was lowest. The FD + BCH larvae increased Ca, iron, cadmium and lead contents compared to FD. Larvae produced on FD + SSP showed lower lead and higher arsenic concentration than on FD + BCH. Frass of FD + BCH had higher heavy metal concentration than FD + SSP and FD (P < 0.05). Except for cadmium and manganese, the larval heavy metal concentration was below the legally permitted upper concentrations for feed. In conclusion, the SSR used could enrich BSFL with Ca and P but at the expense of growth. Due to the accumulation of Cd and Mn, BSFL or products thereof can only be a component of farmed animal feed whereas in BSFL frass heavy metal concentrations remained below the upper limit authorized by EU.


Assuntos
Dípteros , Metais Pesados , Animais , Larva/metabolismo , Esgotos , Cádmio/metabolismo , Ração Animal/análise , Minerais/metabolismo , Cálcio/metabolismo
3.
Sci Total Environ ; 929: 172573, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38641103

RESUMO

The volume of produced water, a by-product of oil & gas operations and other energy processes, has been growing across the United States (U.S.) along with the need to manage or recycle this wastewater. Produced water contains many naturally occurring elements of varying concentrations, including critical minerals which are essential to the clean energy transition. However, the current understanding of critical mineral concentrations in produced water and the associated volumes across the U.S. is limited. This study has assessed available databases and literature to gain insight into the presence and concentration of five high priority critical minerals, namely cobalt, lithium, magnesium, manganese, and nickel. The U.S. Geological Survey's National Produced Waters Geochemical Database was the main data source used for determining average critical mineral concentrations in produced water from the major oil and gas reservoirs in the U.S. The volumes of produced water for these major reservoirs were coupled with these concentrations to provide insights into where critical minerals are likely to have high abundance and therefore more recovery options. The analysis indicated the highest recovery potential for lithium and magnesium from produced water in the Permian basin and the Marcellus shale region. However, these assessments should be considered conservative due to the limited availability of reliable concentration data. It is expected more critical mineral recovery options could emerge with comprehensive characterization data from more recent and representative sources of produced water.

4.
Chemosphere ; 364: 143144, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39168384

RESUMO

High demand for rare earth elements (REEs) has increased interest in their recovery from unconventional sources, such as acid mine drainage (AMD). AMD contains elevated concentrations of Mn, Fe, and Al, which precipitate as (oxy)hydroxide minerals as pH is raised. These precipitates can remove cations including REEs and Co from solution via sorption and/or coprecipitation. In this study we developed a method to recover these critical minerals by sorption to MnO2, precipitated by oxidation of in situ Mn (II) with added KMnO4 at acidic pH. MnO2 solids were prepared with varying concentrations of KMnO4, SO42-, and Cl-, to elucidate the effects of excess KMnO4, SO42- concentration, and ionic strength on adsorption. When using a stoichiometric ratio of Mn (II) and KMnO4, 100% removal of REEs and Co occurred at approximately pH 3.5, nearly 2 pH units lower than was observed by sorption to Fe and Al hydroxysulfates. When using excess KMnO4 nearly 100% removal of REEs and Co was accomplished at approximately pH 2, although SO42- was found to inhibit REE sorption. From these results, we developed a two-stage process for recovery of REEs from AMD; a preliminary pH adjustment to remove Fe and Al hydroxy-sulfates, followed by adding KMnO4, precipitating MnO2, enabling recovery of REEs and Co. We tested this process in a representative synthetic AMD, achieving a grade of 6.16 mg REEs per g of solid, which is 65 % of the maximum possible grade based on solution composition. Fractionation of REEs was observed, with light REEs (LREEs) preferentially sorbed to MnO2 relative to both medium REEs (MREEs) and heavy REEs (HREEs). In contrast, preferential sorption of HREEs was observed for sorption to Fe and Al oxyhydroxides at all pH ranges. These results suggest the mechanisms of REE sorption differ among the solids and warrant further study.


Assuntos
Cobalto , Compostos de Manganês , Metais Terras Raras , Mineração , Óxidos , Óxidos/química , Adsorção , Metais Terras Raras/química , Compostos de Manganês/química , Cobalto/química , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química
5.
Environ Technol ; 44(9): 1228-1237, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34702145

RESUMO

The presence of suspended contaminants in water and wastewater, such as algae, colloids, fats and oil, necessitates the use of systems such as dissolved air flotation (DAF) for their removal. In the current study, a novel setup has been proposed for bubble enhancement. An industrial scale (pilot) DAF system was tested at saturator pressures of 3-7 atm and flow rates of 5-20 L/min in three different configurations, namely, empty, packed, and the innovative two-stage (TS) configuration. In the TS system, after the nucleation of micro bubbles, the water is returned to the saturator to undergo pressurization for a second time before it is passed through the nozzle once more and is released. The results show that the highest volume of released air as well as the smallest microbubbles are seen in the TS configuration, followed by packed mode, with the empty configuration showing the least favourable results. Moreover, the bubbles produced at the lowest residence time and pressure (3 atm) with the novel setup are better than the bubbles produced by the standard configuration, even with pressures as high as 7 atm. Thus, the novel TS setup can allow for significantly lower energy requirements and lower capital costs. For real-world application of the TS system, the feed for the saturator could be extracted from within or near the contact zone, i.e. where the bubbles are released in the DAF tank.


Assuntos
Microbolhas , Purificação da Água , Purificação da Água/métodos , Ar , Água , Águas Residuárias
6.
Waste Manag ; 140: 110-120, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35078075

RESUMO

This study aims to identify suitable processing conditions for converting pyrolytic solid residue from off-the-road tyres (OTR) to improve carbon materials properties that can be used in multiple applications and the recovery of minerals from OTR. Pyrolysis of OTR at 800 °C and a heating rate 2 °C.min-1 gave a carbon material with the highest surface area, most defective carbon structures, and the highest micro-porosity. This operating condition was used to compare the conventional three-step carbonization approach, which involves a demineralization stage that produces high volumes of toxic wastewater, with a two-step approach that bypasses this stage. Analysis of the carbon structures showed that the quality of the carbon material from the two-step approach is similar to the three-step approach. This two-step approach resulted in a solid and a liquid phase, in which âˆ¼ 93.4% of Zn was selectively fractionated to the liquid phase. The wastewater from the acid wash of the carbonized OTR was neutralized to recover the SiO2, of which 55.5% was reactive SiO2. The SiO2 was found to have an exceptionally high cross-linking ratio of 5.94, achievable only when SiO2 is reacted with silane groups. The study demonstrated that the engineered carbon material from OTR has a H2 uptake of 1.03 wt% at 77 K and 1.2 bar, and the sulfonated counterpart was an effective catalyst (64% conversion) for the Aldol condensation of levunilic acid to two dimer products [tetrahydro-2- methyl-5,γ-dioxo-2-furanpentanoic acid (TMDFA) and 3-(2-methyl-5-oxo- tetrahydrofuran-2-yl)-4-oxopentanoic acid (MOTOA)] that are precursors for fuels and chemicals.


Assuntos
Carbono , Silanos , Dióxido de Silício , Zinco
7.
Water Res ; 199: 117171, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33989855

RESUMO

Monovalent selective electrodialysis (MSED) is a variant of conventional electrodialysis (ED) that employs selective ion exchange membranes to preferentially remove monovalent ions relative to divalent ions. This process can be beneficial when the divalent rich stream has potential applications. In agriculture, for example, a stream rich in calcium and magnesium is deemed beneficial for crops and can decrease the use of fertilizers that would otherwise need to be re-introduced to the source water prior to irrigation. MSED has been used for salt production, brine concentration, and irrigation. An experimentally validated computational model to predict its performance, however, is not available in the literature. The present work uses concepts from conventional ED modelling to build a high-resolution predictive model for the performance of MSED. The model was validated with over 32 experiments at different operating conditions and observed to fit the data to within 6% and 8% for two different types of membranes. All voltage predictions were within 10% of experiments conducted. The model was then used to predict permselectivity across different salinities and compositions. These values were extended to investigate the economic benefits of using MSED to save fertilizers for greenhouses across the U.S. Results showed an average of $4991 saved per hectare when employing MSED technology. These values aligned with predictions from two previous techno-economic studies conducted investigating MSED for agriculture.


Assuntos
Purificação da Água , Troca Iônica , Íons , Salinidade , Água
8.
Water Res ; 129: 447-459, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29179124

RESUMO

Shale gas produced water (SGPW) treatment imposes greater technical challenges because of its high concentration of various contaminants. Membrane distillation crystallization (MDC) has a great potential to manage SGPW since it is capable of recovering both water and minerals at high rates, up to near a zero liquid discharge (ZLD) condition. To evaluate the feasibility of MDC for SGPW treatment, MDC performance indicators, such as water recovery rate, solid production rate (SPR) and specific energy consumption (SEC), were systematically investigated, to our knowledge for the first time, by using actual SGPW from Eagle Ford Shale (USA). The main operating parameters including feed cross-flow velocity (CFV) and crystallization temperature (TCr) were optimized by performing a series of MDC experiments. The results reported that water and minerals were effectively recovered with 84% of recovery rate and 2.72 kg/m2day of SPR under respective optimal operating conditions. Furthermore, the scale mechanism was firstly identified as limiting factor for MDC performance degradation. Lastly, SEC of MDC was estimated to be as low as 28.2 kWh/m3 under ideal optimal operating conditions. Our experimental observations demonstrated that MDC could sustainably and effectively recover water and mineral with low energy consumption from SGPW by optimizing operating condition.


Assuntos
Gás Natural , Águas Residuárias/química , Purificação da Água/métodos , Água/química , Cristalização , Destilação , Minerais/isolamento & purificação , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa