Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 378
Filtrar
1.
J Biol Chem ; 299(12): 105478, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37981211

RESUMO

The renin-angiotensin system plays a crucial role in the regulation of blood pressure. Activation of the angiotensin II (Ang II)-Ang II type 1 receptor (AT1R) signaling pathway contributes to the pathogenesis of hypertension and subsequent organ damage. AT1R-associated protein (ATRAP) has been identified as an endogenous inhibitory protein of the AT1R pathological activation. We have shown that mouse Atrap (Atrap) represses various Ang II-AT1R-mediated pathologies, including hypertension in mice. The expression of human ATRAP (ATRAP)/Atrap can be altered in various pathological states in humans and mice, such as Ang II stimulation and serum starvation. However, the regulatory mechanisms of ATRAP/Atrap are not yet fully elucidated. miRNAs are 21 to 23 nucleotides of small RNAs that post-transcriptionally repress gene expression. Single miRNA can act on hundreds of target mRNAs, and numerous miRNAs have been identified as the Ang II-AT1R signaling-associated disease phenotype modulator, but nothing is known about the regulation of ATRAP/Atrap. In the present study, we identified miR-125a-5p/miR-125b-5p as the evolutionarily conserved miRNAs that potentially act on ATRAP/Atrap mRNA. Further analysis revealed that miR-125a-5p/miR-125b-5p can directly repress both ATRAP and Atrap. In addition, the inhibition of miR-125a-5p/miR-125b-5p resulted in the suppression of the Ang II-AT1R signaling in mouse distal convoluted tubule cells. Taken together, miR-125a-5p/miR-125b-5p activates Ang II-AT1R signaling by the suppression of ATRAP/Atrap. Our results provide new insights into the potential approaches for achieving the organ-protective effects by the repression of the miR-125 family associated with the enhancement of ATRAP/Atrap expression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Hipertensão , MicroRNAs , Receptor Tipo 1 de Angiotensina , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Hipertensão/metabolismo , Túbulos Renais Distais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo
2.
Respir Res ; 25(1): 64, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302925

RESUMO

BACKGROUND: Among patients with chronic obstructive pulmonary disease (COPD), some have features of both asthma and COPD-a condition categorized as asthma-COPD overlap (ACO). Our aim was to determine whether asthma- or COPD-related microRNAs (miRNAs) play a role in the pathogenesis of ACO. METHODS: A total of 22 healthy subjects and 27 patients with ACO were enrolled. We selected 6 miRNAs that were found to correlate with COPD and asthma. The expression of miRNAs and target genes was analyzed using quantitative reverse-transcriptase polymerase chain reaction. Cell apoptosis and intracellular reactive oxygen species production were evaluated using flow cytometry. In vitro human monocytic THP-1 cells and primary normal human bronchial epithelial (NHBE) cells under stimuli with cigarette smoke extract (CSE) or ovalbumin (OVA) allergen or both were used to verify the clinical findings. RESULTS: We identified the upregulation of miR-125b-5p in patients with ACO and in THP-1 cells stimulated with CSE plus OVA allergen. We selected 16 genes related to the miR-125b-5p pathway and found that IL6R and TRIAP1 were both downregulated in patients with ACO and in THP-1 cells stimulated with CSE plus OVA. The percentage of late apoptotic cells increased in the THP-1 cell culture model when stimulated with CSE plus OVA, and the effect was reversed by transfection with miR-125b-5p small interfering RNA (siRNA). The percentage of reactive oxygen species-producing cells increased in the NHBE cell culture model when stimulated with CSE plus OVA, and the effect was reversed by transfection with miR-125b-5p siRNA. In NHBE cells, siRNA transfection reversed the upregulation of STAT3 under CSE+OVA stimulation. CONCLUSIONS: Our study revealed that upregulation of miR-125b-5p in patients with ACO mediated late apoptosis in THP-1 cells and oxidative stress in NHBE cells via targeting IL6R and TRIAP1. STAT3 expression was also regulated by miR-125b-5p.


Assuntos
Apoptose , Asma , MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Humanos , Alérgenos , Apoptose/genética , Asma/genética , Asma/complicações , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MicroRNAs/metabolismo , Estresse Oxidativo/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Espécies Reativas de Oxigênio , Receptores de Interleucina-6/metabolismo , RNA Interferente Pequeno/metabolismo , Masculino , Idoso
3.
FASEB J ; 37(8): e23054, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37402070

RESUMO

Intercellular communication is a critical process that ensures cooperation between distinct cell types at the embryo-maternal interface. Extracellular vesicles (EVs) are considered to be potent mediators of this communication by transferring biological information in their cargo (e.g., miRNAs) to the recipient cells. miRNAs are small non-coding RNAs that affect the function and fate of neighboring and distant cells by regulating gene expression. Focusing on the maternal side of the dialog, we recently revealed the impact of embryonic signals, including miRNAs, on EV-mediated cell-to-cell communication. In this study, we show the regulatory mechanism of the miR-125b-5p ESCRT-mediated EV biogenesis pathway and the further secretion of EVs by trophoblasts at the time when the crucial steps of implantation are taking place. To test the ability of miR-125b-5p to influence the expression of genes involved in the generation and release of EV subpopulations in porcine conceptuses, we used an ex vivo approach. Next, in silico and in vitro analyses were performed to confirm miRNA-mRNA interactions. Finally, EV trafficking and release were assessed using several imaging and particle analysis tools. Our results indicated that conceptus development and implantation are accompanied by changes in the abundance of EV biogenesis and trafficking machinery. ESCRT-dependent EV biogenesis and the further secretion of EVs were modulated by miR-125b-5p, specifically impacting the ESCRT-II complex (via VPS36) and EV trafficking in primary porcine trophoblast cells. The identified miRNA-ESCRT interplay led to the generation and secretion of specific subpopulations of EVs. miRNA present at the embryo-maternal interface governs EV-mediated communication between the mother and the developing conceptus, leading to the generation, trafficking, and release of characteristic subpopulations of EVs.


Assuntos
Vesículas Extracelulares , MicroRNAs , Suínos , Animais , Trofoblastos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Implantação do Embrião , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo
4.
Part Fibre Toxicol ; 21(1): 17, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561847

RESUMO

BACKGROUND: Amorphous silica nanoparticles (SiNPs) have been gradually proven to threaten cardiac health, but pathogenesis has not been fully elucidated. Ferroptosis is a newly defined form of programmed cell death that is implicated in myocardial diseases. Nevertheless, its role in the adverse cardiac effects of SiNPs has not been described. RESULTS: We first reported the induction of cardiomyocyte ferroptosis by SiNPs in both in vivo and in vitro. The sub-chronic exposure to SiNPs through intratracheal instillation aroused myocardial injury, characterized by significant inflammatory infiltration and collagen hyperplasia, accompanied by elevated CK-MB and cTnT activities in serum. Meanwhile, the activation of myocardial ferroptosis by SiNPs was certified by the extensive iron overload, declined FTH1 and FTL, and lipid peroxidation. The correlation analysis among detected indexes hinted ferroptosis was responsible for the SiNPs-aroused myocardial injury. Further, in vitro tests, SiNPs triggered iron overload and lipid peroxidation in cardiomyocytes. Concomitantly, altered expressions of TfR, DMT1, FTH1, and FTL indicated dysregulated iron metabolism of cardiomyocytes upon SiNP stimuli. Also, shrinking mitochondria with ridge fracture and ruptured outer membrane were noticed. To note, the ferroptosis inhibitor Ferrostatin-1 could effectively alleviate SiNPs-induced iron overload, lipid peroxidation, and myocardial cytotoxicity. More importantly, the mechanistic investigations revealed miR-125b-2-3p-targeted HO-1 as a key player in the induction of ferroptosis by SiNPs, probably through regulating the intracellular iron metabolism to mediate iron overload and ensuing lipid peroxidation. CONCLUSIONS: Our findings firstly underscored the fact that ferroptosis mediated by miR-125b-2-3p/HO-1 signaling was a contributor to SiNPs-induced myocardial injury, which could be of importance to elucidate the toxicity and provide new insights into the future safety applications of SiNPs-related nano products.


Assuntos
Ferroptose , Sobrecarga de Ferro , MicroRNAs , Nanopartículas , Humanos , Miócitos Cardíacos , Dióxido de Silício/metabolismo , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/patologia , Ferro/metabolismo , Ferro/farmacologia , MicroRNAs/metabolismo , Nanopartículas/toxicidade
5.
Alzheimers Dement ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210637

RESUMO

INTRODUCTION: Blood-derived microRNAs (miRNAs) are potential candidates for detecting and preventing subclinical cognitive dysfunction. However, replication of previous findings and identification of novel miRNAs associated with cognitive domains, including their relation to brain structure and the pathways they regulate, are still lacking. METHODS: We examined blood-derived miRNAs and miRNA co-expression clusters in relation to cognitive domains, structural magnetic resonance imaging measures, target gene expression, and genetic variants in 2869 participants of a population-based cohort. RESULTS: Five previously identified and 14 novel miRNAs were associated with cognitive domains. Eleven of these were also associated with cortical thickness and two with hippocampal volume. Multi-omics analysis showed that certain identified miRNAs were genetically influenced and regulated genes in pathways like neurogenesis and synapse assembly. DISCUSSION: We identified miRNAs associated with cognitive domains, brain regions, and neuronal processes affected by aging and neurodegeneration, making them promising candidate blood-based biomarkers or therapeutic targets of subclinical cognitive dysfunction. HIGHLIGHTS: We investigated the association of blood-derived microRNAs with cognitive domains. Five previously identified and 14 novel microRNAs were associated with cognition. Eleven cognition-related microRNAs were also associated with cortical thickness. Identified microRNAs were linked to genes associated with neuronal functions. Results provide putative biomarkers or therapeutic targets of cognitive aging.

6.
Mod Rheumatol ; 34(3): 632-638, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37747366

RESUMO

OBJECTIVES: To identify the specific microRNAs (miRNAs) in IgG4-related dacryoadenitis and sialadenitis (IgG4-DS) and predict the targeted genes. METHODS: miRNAs in the serum of nine patients with IgG4-DS, three patients with primary Sjögren's syndrome, and three healthy controls were analysed using the human miRNA chip, and miRNAs that exhibited significant fluctuation in expression in IgG4-DS patients were extracted. The respective target genes were predicted using an existing database, and expression of the target genes was evaluated in actual submandibular gland tissues affected by IgG4-DS. RESULTS: Serum miR-125a-3p and miR-125b-1-3p levels were elevated in IgG4-DS. Six candidate target genes (glypican 4, forkhead box C1, protein tyrosine phosphatase non-receptor type 3, hydroxycarboxylic acid receptor 1, major facilitator superfamily domain containing 11, and tumour-associated calcium signal transducer 2) were downregulated in the affected submandibular gland tissue. CONCLUSION: Overexpression of miR-125a-3p and miR-125b-1-3p is a hallmark of IgG4-DS. These miRNAs appear to be involved in the pathogenesis of IgG4-DS.


Assuntos
Dacriocistite , MicroRNAs , Sialadenite , Síndrome de Sjogren , Humanos , MicroRNAs/genética , Síndrome de Sjogren/genética , Imunoglobulina G , Sialadenite/genética , Dacriocistite/genética
7.
BMC Cancer ; 23(1): 202, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869286

RESUMO

BACKGROUND: Relapse is a frequent occurrence in autologous hematopoietic stem cell transplantation (AHSCT), and early relapse after AHSCT results in poor survival and low quality of life. Predictive marker determination for AHSCT outcomes could be helpful in the prevention of relapse through personalized medicine. Here the predictive value of circulatory microRNAs (miRs) expression for AHSCT outcomes was studied. METHODS: 50 MM and lymphoma candidates for AHSCT participated in this study. Two plasma samples were obtained before AHSCT from each candidate; one before mobilization and the other after conditioning. Extracellular vesicles (EVs) were isolated by ultracentrifugation. miR-125b, miR-126, miR-150, and miR-155 expression were analyzed in both plasma and EVs using real time polymerase chain reaction analysis. Other data related to AHSCT and its outcomes were also collected. The predictive value of miRs and other factors for outcomes was assessed by multi-variant analysis. RESULTS: By 90 weeks follow up after AHSCT, multi-variant and ROC analysis showed miR-125b as a predictive marker for relapse, high lactate dehydrogenase (LDH), and high erythrocyte sedimentation rate (ESR). The cumulative incidence of relapse, high LDH, and high ESR increased with an increase in circulatory miR-125b expression. CONCLUSION: miR-125b could be applicable in prognosis evaluation and also create a possible new targeted therapy opportunity for enhanced outcomes and survival after AHSCT. TRIAL REGISTRATION: The study was retrospectively registered. Ethic code No: IR.UMSHA.REC.1400.541.


Assuntos
Vesículas Extracelulares , Transplante de Células-Tronco Hematopoéticas , MicroRNAs , Humanos , Qualidade de Vida , L-Lactato Desidrogenase
8.
Exp Cell Res ; 410(1): 112955, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34875217

RESUMO

The retinal pigment epithelium cells (RPE) are sensitive to oxidative stimuli due to long-term exposure to various environmental stimuli. Thus, the oxidative injury of RPE cells caused by the imbalance of redox homeostasis is one of the main pathogenic factors of age-related macular degeneration (AMD). But the sophisticated mechanisms linking AMD to oxidative stress are not fully elucidated. Activation of Nrf2 signal pathway can protect RPE cells from oxidative damage. The present study investigated the regulating mechanism of miR-125b in Nrf2 cascade and evaluated its antioxidant capacity. The in vitro studies indicated that overexpression of miR-125b substantially inhibited Keap1 expression, enhanced Nrf2 expression and induced Nrf2 nuclear translocation. Importantly, functional studies demonstrated that forced expression of miR-125b could significantly elevate cell proliferation and superoxide dismutase (SOD) levels while reduce reactive oxygen species (ROS) overproduction and malondialdehyde (MDA) formation. Further studies showed that miR-125b had no effect when Nrf2 was silenced in ARPE-19 cells. Additionally, the results identified that Nrf2 silence induced ROS accumulation enhances HIF-1α protein expression, while miR-125b could offset this effect via promoting HIF-1α protein degradation. Subsequent in vivo studies demonstrated that sodium iodate induced outer retina thinner was reversed with exogenous supplementation of miR-125b, which was cancelled in Nrf2 knockout mice. In conclusion, this study illustrated that miR-125b can protect RPE from oxidative damage via targeting Nrf2/HIF-1α signal pathway and potentially may serve as a therapeutic agent of AMD.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Degeneração Macular/genética , MicroRNAs/genética , Fator 2 Relacionado a NF-E2/genética , Regulação da Expressão Gênica/genética , Humanos , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Transdução de Sinais
9.
Cell Biochem Funct ; 41(2): 177-188, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36575629

RESUMO

This study aimed to evaluate the involvement of miR-125b and its interrelationship with follicle-stimulating hormone (FSH) in the control of basic ovarian granulosa cell functions. The effect of miR-125b mimics on basic functions of porcine ovarian granulosa cells cultured with and without FSH, and the effect of FSH on the expression of endogenous miR-125b was examined. Expression levels of miR-125b, viability, proliferation (accumulation of PCNA and cyclin B1), apoptosis (accumulation of bax and caspase 3), the accumulation of FSH receptors (FSHR), steroid hormones, insulin-like growth factor I (IGF-I), oxytocin, and prostaglandin E2 release were analysed by reverse transcription-quantitative polymerase chain reaction, Trypan blue exclusion test, quantitative immunocytochemistry, and ELISA. Transfection of cells with miR-125b mimics inhibited cell viability, proliferation, apoptosis, the occurrence of FSHR, progesterone, testosterone, estradiol, and oxytocin release but stimulated prostaglandin E2 output. FSH promoted cell viability, proliferation, steroid hormones, IGF-I, oxytocin, and prostaglandin E2 output and reduced the expression of miR-125b and apoptosis. Furthermore, miR-125b mimics supported the effect of FSH on the release of estradiol, IGF-I, and prostaglandin E2, and inverted FSH influence on cell viability, proliferation, apoptosis, progesterone, and testosterone output. FSH supported both inhibitory and stimulatory action of miR-125b on ovarian cell functions. Present observations indicate that: miR-125b can be involved in the control of basic ovarian functions and that miR-125b and FSH are antagonists in their actions on ovarian cell functions. The ability of FSH to reduce miR-125b expression and the ability of miR-125b mimics to decrease the occurrence of FSHR and to modify FSH effects indicate the existence of the self-inhibiting FSH-miR-125b axis and that miR-125b can mediate the actions of FSH on ovarian cells.


Assuntos
Hormônio Foliculoestimulante , MicroRNAs , Feminino , Suínos , Animais , Hormônio Foliculoestimulante/metabolismo , Hormônio Foliculoestimulante/farmacologia , Progesterona/metabolismo , Progesterona/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , MicroRNAs/metabolismo , Ocitocina/metabolismo , Ocitocina/farmacologia , Dinoprostona/metabolismo , Proliferação de Células , Células da Granulosa/metabolismo , Estradiol/farmacologia , Testosterona/farmacologia , Apoptose , Células Cultivadas
10.
J Nanobiotechnology ; 21(1): 189, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308908

RESUMO

INTRODUCTION: Ischemic diseases caused by diabetes continue to pose a major health challenge and effective treatments are in high demand. Mesenchymal stem cells (MSCs) derived exosomes have aroused broad attention as a cell-free treatment for ischemic diseases. However, the efficacy of exosomes from adipose-derived mesenchymal stem cells (ADSC-Exos) in treating diabetic lower limb ischemic injury remains unclear. METHODS: Exosomes were isolated from ADSCs culture supernatants by differential ultracentrifugation and their effect on C2C12 cells and HUVECs was assessed by EdU, Transwell, and in vitro tube formation assays separately. The recovery of limb function after ADSC-Exos treatment was evaluated by Laser-Doppler perfusion imaging, limb function score, and histological analysis. Subsequently, miRNA sequencing and rescue experiments were performed to figure out the responsible miRNA for the protective role of ADSC-Exos on diabetic hindlimb ischemic injury. Finally, the direct target of miRNA in C2C12 cells was confirmed by bioinformatic analysis and dual-luciferase report gene assay. RESULTS: ADSC-Exos have the potential to promote proliferation and migration of C2C12 cells and to promote HUVECs angiogenesis. In vivo experiments have shown that ADSC-Exos can protect ischemic skeletal muscle, promote the repair of muscle injury, and accelerate vascular regeneration. Combined with bioinformatics analysis, miR-125b-5p may be a key molecule in this process. Transfer of miR-125b-5p into C2C12 cells was able to promote cell proliferation and migration by suppressing ACER2 overexpression. CONCLUSION: The findings revealed that miR-125b-5p derived from ADSC-Exos may play a critical role in ischemic muscle reparation by targeting ACER2. In conclusion, our study may provide new insights into the potential of ADSC-Exos as a treatment option for diabetic lower limb ischemia.


Assuntos
Diabetes Mellitus , Células-Tronco Mesenquimais , Animais , Ceramidase Alcalina , Isquemia , Membro Posterior
11.
Gen Comp Endocrinol ; 334: 114215, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36669691

RESUMO

The existing knowledge of the involvement of miR-125b in the control of ovarian functions is insufficient. To evaluate the role of miR-125b in the control of basic porcine ovarian granulosa cell functions, we examined the upregulation (using miR-125b mimics) and downregulation (using miR-125b inhibitor) of this miR-125b. Expression levels of miR-125b, viability, proliferation (expression and accumulation of PCNA and cyclin B1), the proportion of proliferative active cells, apoptosis (expression and accumulation of bax and caspase 3), the proportion of cells containing DNA fragmentation, steroid hormones, IGF-I, oxytocin, and prostaglandin E2 release were analysed by RT-qPCR, Trypan blue exclusion test, quantitative immunocytochemistry, XTT and TUNEL assays, and ELISA. Transfection of cells with miR-125b mimics decreased cell viability, proliferation, and the release of progesterone, testosterone, estradiol, and oxytocin, but stimulated apoptosis and prostaglandin E2 output. Transfection of cells with miR-125b inhibitor had the opposite effect. Moreover, it prevented the effects of miR-125b mimics. Our observations suggest that miR-125b is a potent physiological inhibitor of granulosa ovarian cell functions - cell cycle, apoptosis, and secretory activity.


Assuntos
MicroRNAs , Ocitocina , Feminino , Suínos , Animais , Ocitocina/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Dinoprostona/metabolismo , Ovário/metabolismo , Progesterona/metabolismo , Células da Granulosa/metabolismo , Apoptose/genética , Células Cultivadas , Proliferação de Células/genética
12.
Oral Dis ; 29(3): 880-891, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34614259

RESUMO

OBJECTIVE: Tongue squamous cell carcinoma is one of the most common carcinomas in oral cancer with a high morbidity and mortality. Ferroptosis is a novel type of cell death involved in various diseases including cancers. Additionally, Enhancer of Zeste homolog 2 (EZH2) is significantly associated with a poor prognosis in esophageal squamous cell carcinoma patients but its role in TSCC is unclear. MATERIALS AND METHODS: In this study, we tried to investigate the possible mechanism of EZH2 involved in the ferroptosis of TSCC. Expression of EZH2 and SLC7A11 was determined by RT-qPCR. CCK-8 assays were performed to quantify the cell death rate of TSCC cells. Malondialdehyde (MDA) assays were performed to quantify the lipid accumulation. Western blot was performed to analyze the expression level of SLC7A11. We used dual-luciferase reporter assays to determine the association between EZH2 and miR-125b-5p promoter, and miR-125b-5p and the SLC7A11 3' untranslated region (UTR). RESULT: Overexpression of EZH2 and SLC7A11 inhibits erastin-induced ferroptosis in TSCC cells. MiR-125b-5p regulates ferroptosis in TSCC cells by targeting SLC7A11. EZH2 inhibits the ferroptosis of TSCC cells by inhibiting miR-125b-5p and enhancing SLC7A11. CONCLUSION: EZH2 inhibits erastin-induced ferroptosis in TSCC cells via miR-125b-5p/SLC7A11 axis.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Ferroptose , MicroRNAs , Neoplasias da Língua , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação para Cima , Carcinoma de Células Escamosas/patologia , Ferroptose/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Neoplasias da Língua/patologia , Proliferação de Células , Linhagem Celular Tumoral , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo
13.
Acta Biochim Biophys Sin (Shanghai) ; 55(12): 1938-1949, 2023 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-37964606

RESUMO

Intervertebral disc degeneration (IVDD) is the pathological basis of a range of degenerative spinal diseases and is the primary cause of lower back pain. Mesenchymal stem cell (MSC) transplantation inhibits IVDD progression. However, the specific mechanisms that underlie these effects remain unclear. In this study, candidate microRNAs (miRNAs) are screened using bioinformatics and high-throughput sequencing. TNF-α is used to induce nucleus pulposus cell (NPC) degeneration. MSC-derived exosomes (MSC-exosomes) are obtained using high-speed centrifugation and identified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and western blot analysis. Cell viability is determined by CCK-8 assay. Flow cytometry and TUNEL assays are used to detect cell apoptosis. The expression levels of miR-125b-5p are detected by RT-qPCR, and a dual-luciferase gene reporter assay confirms the downstream target genes of miR-125b-5p. Protein expression is determined by western blot analysis. Rat models are used to validate the function of miR-125b-5p in MSC-exosomes. The results show that miR-125b-5p is expressed at low levels in degenerated disc tissues compared with that in normal disc tissues; however, it is highly expressed in MSC-exosomes. Furthermore, MSC-exosomes are efficiently taken up by NPCs while miR-125b-5p is delivered into NPCs; thus, MSC-exosomes act as inhibitors of apoptosis in NPCs. Overexpression of miR-125b-5p downregulates TRAF6 expression and inhibits NF-κB activation. However, TRAF6 overexpression reverses these effects of miR-125b-5p. We demonstrate that MSC-exosomes attenuate IVDD in vivo by delivering miR-125b-5p. MSC-exosomes can deliver miR-125b-5p to target TRAF6, inhibit NF-κB activation, and attenuate the progression of IVDD.


Assuntos
Exossomos , Degeneração do Disco Intervertebral , Células-Tronco Mesenquimais , MicroRNAs , Núcleo Pulposo , Ratos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Exossomos/genética , Exossomos/metabolismo , Núcleo Pulposo/patologia , MicroRNAs/metabolismo , Apoptose/genética , Células-Tronco Mesenquimais/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/terapia , Degeneração do Disco Intervertebral/metabolismo
14.
Anim Biotechnol ; 34(2): 357-364, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34487480

RESUMO

With the development of miRNAs identification technology, more and more miRNAs have been discovered, and the role of miRNAs in the development of animal hair follicles has become a focus of research on hair-producing animals. In the previous experiment, compare the microRNA (miRNA) trancriptomes of goats and sheep skin using Solexa sequencing and differentially expressed miR-125b was screened. However, the mechanism of miR-125b regulating hair follicle development is not clear. Therefore, in the present study, the expression of miR-125b, MXD4 and FGFR2 in skin tissue of Fine-wool Sheep and Cashmere goats and HEK-293T cells was examined by qPCR and Western blot. Furthermore, the correlation between miR-125b and the predicted target gene (MXD4, FGFR2) was verified using the Dual-luciferase Reporter assay. We demonstrated that the expression of MXD4 and FGFR2 in Cashmere goats was significantly higher than that of Fine-wool Sheep, and the expression was opposite to that of miR-125b. miR-125b can down-regulate the levels of MXD4 and FGFR2. Dual-luciferase reporter gene assay showed that miR-125b could bind to the 3'-UTR region of target genes FGFR2 and MXD4, suggesting that MXD4 and FGFR2 were target genes of miR-125b. This study has shown that the growth and development of hair follicles in skin tissue of Fine-wool Sheep and Cashmere goats from the new regulatory levels of miRNAs, and clarified the mechanism of miR-125b and its target genes in the development of hair follicles in the skin.


Assuntos
Folículo Piloso , MicroRNAs , Ovinos/genética , Animais , Folículo Piloso/metabolismo , , Cabras/genética , Perfilação da Expressão Gênica , MicroRNAs/genética , Diferenciação Celular
15.
Allergol Immunopathol (Madr) ; 51(1): 187-194, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36617839

RESUMO

BACKGROUND: Long noncoding RNA (lncRNA) THRIL targets microRNA (miR)-34a and miR-125b to modify immunity, inflammation, and respiratory injury. The current study aimed to determine the inter-correlation of lncRNA THRIL with miR-34a and miR-125b and their relationship with childhood asthma risk, severity, and inflammation. METHODS: Exacerbated asthma children (N=65), remissive asthma children (N=65), and healthy controls (N=65) were enrolled in this case-control study. LncRNA THRIL, miR-34a, and miR-125b in peripheral blood mononuclear cells, as well as inflammatory cytokines in serum, were detected by reverse transcription-quantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. RESULTS: LncRNA THRIL was highest in exacerbated asthma children, then in remissive asthma children, and lowest in healthy controls (P<0.001); reversely, miR-34a (P<0.001) and miR-125b (P=0.004) exhibited the opposite treads. LncRNA THRIL (area under curve (AUC)=0.686) and miR-34a (AUC=0.614) could predict exacerbation risk of asthma, while miR-125b failed. Interestingly, lncRNA THRIL was negatively related to miR-34a and miR-125b in exacerbated asthma children and remissive asthma children (all P<0.05) but not in healthy controls (both P>0.05). Specifically, in exacerbated asthma children: lncRNA THRIL is related to increased eosinophil count (P=0.013), immunoglobulin E (P=0.020), tumor necrosis factor-α (P=0.002), interleukin-1ß (P=0.004), interleukin-6 (P=0.012), interleukin-17 (P=0.004) and exacerbated severity (P=0.030); Meanwhile, miR-34a and miR-125b linked with decreased levels of most of the above indexes (most P<0.05). CONCLUSION: LncRNA THRIL negatively relates to miR-34a and miR-125b, correlate with inflammatory cytokines, and exacerbated the risk and severity of childhood asthma, indicating their potential as biomarkers for childhood asthma management.


Assuntos
Asma , MicroRNAs , RNA Longo não Codificante , Criança , Humanos , Asma/genética , Estudos de Casos e Controles , Citocinas , Inflamação/genética , Leucócitos Mononucleares , MicroRNAs/genética , RNA Longo não Codificante/genética
16.
Int J Mol Sci ; 24(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37958999

RESUMO

MiR-125b has therapeutic potential in the amelioration of myocardial ischemic injury. MicroRNA isomiRs, with either 5' or 3' addition or deletion of nucleotide(s), have been reported from next-generation sequencing data (NGS). However, due to technical challenges, validation and functional studies of isomiRs are few. In this study, we discovered using NGS, four 3'isomiRs of miR-125b, i.e., addition of A (adenosine), along with deletions of A, AG (guanosine) and AGU (uridine) from rat and sheep heart. These findings were validated using RT-qPCR. Comprehensive functional studies were carried out in the H9C2 hypoxia model. After miR-125b, isomiRs of Plus A, Trim A, AG and AGU mimic transfection, the H9C2 cells were subjected to hypoxic challenge. As assessed using cell viability, apoptosis, CCK-8 and LDH release, miR-125b and isomiRs were all protective against hypoxia. However, Plus A and Trim A were more effective than miR-125b, whilst Trim AG and Trim AGU had far weaker effects than miR-125b. Interestingly, both the gene regulation profile and apoptotic gene validation indicated a major overlap among miR-125b, Plus A and Trim A, whilst Trims AG and AGU revealed a different profile compared to miR-125b. Conclusions: miR-125b and its 3' isomiRs are expressed stably in the heart. miR-125b and isomiRs with addition or deletion of A might function concurrently and concordantly under specific physiological and pathophysiological conditions. In-depth understanding of isomiRs' metabolism and function will contribute to better miRNA therapeutic drug design.


Assuntos
MicroRNAs , Ratos , Animais , Ovinos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação da Expressão Gênica , Apoptose/genética , Hipóxia/genética
17.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36982329

RESUMO

Extracellular vesicles (EVs) from allogeneic-tissue-derived mesenchymal stem cells (MSCs) are promising to improve Sjögren's syndrome (SS) treatment, but their application is hindered by high variations in and limited expandability of tissue MSCs. We derived standardized and scalable MSCs from iPS cells (iMSCs) and reported that EVs from young but not aging iMSCs (iEVs) inhibited sialadenitis onset in SS mouse models. Here, we aim to determine cellular mechanisms and optimization approaches of SS-inhibitory effects of iEVs. In NOD.B10.H2b mice at the pre-disease stage of SS, we examined the biodistribution and recipient cells of iEVs with imaging, flow cytometry, and qRT-PCR. Intravenously infused iEVs accumulated in the spleen but not salivary glands or cervical lymph nodes and were mainly taken up by macrophages. In the spleen, young but not aging iEVs increased M2 macrophages, decreased Th17 cells, and changed expression of related immunomodulatory molecules. Loading miR-125b inhibitors into aging iEVs significantly improved their effects on repressing sialadenitis onset and regulating immunomodulatory splenocytes. These data indicated that young but not aging iEVs suppress SS onset by regulating immunomodulatory splenocytes, and inhibiting miR-125b in aging iEVs restores such effects, which is promising to maximize production of effective iEVs from highly expanded iMSCs for future clinical application.


Assuntos
Vesículas Extracelulares , Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , MicroRNAs , Sialadenite , Síndrome de Sjogren , Camundongos , Animais , Síndrome de Sjogren/terapia , Síndrome de Sjogren/tratamento farmacológico , Baço/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Distribuição Tecidual , Camundongos Endogâmicos NOD , Sialadenite/terapia , Sialadenite/metabolismo , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Modelos Animais de Doenças
18.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047293

RESUMO

It is known that E2F2 (E2F transcription factor 2) plays an important role as controller in the cell cycle. This study aimed to analyse the expression of the E2F2 gene and E2F2 protein and demonstrate E2F2 target microRNAs (miRNAs) candidates (miR-125b-5p, miR-155-3p, and miR-214-5p) in oral squamous cell carcinoma tumour and margin samples. The study group consisted 50 patients. The E2F2 gene and miRNAs expression levels were assessed by qPCR, while the E2F2 protein was assessed by ELISA. When analysing the effect of miRNAs expression on E2F2 gene expression and E2F2 protein level, we observed no statistically significant correlations. miR-125b-5p was downregulated, while miR-155-3p, and miR-214-5p were upregulated in tumour samples compared to margin. We observed a difference between the miR-125b-5p expression level in smokers and non-smokers in margin samples. Furthermore, HPV-positive individuals had a significantly higher miR-125b-5p and miR-214-5p expression level compared to HPV-negative patients in tumour samples. The study result showed that the E2F2 gene is not the target for analysed miRNAs in OSCC. Moreover, miR-155-3p and miR-125b-5p could play roles in the pathogenesis of OSCC. A differential expression of the analysed miRNAs was observed in response to tobacco smoke and HPV status.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , MicroRNAs , Neoplasias Bucais , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Fator de Transcrição E2F2/genética , Fator de Transcrição E2F2/metabolismo , Infecções por Papillomavirus/genética , Neoplasias Bucais/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Regulação Neoplásica da Expressão Gênica
19.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139235

RESUMO

Type 2 diabetes mellitus (T2D) is a chronic metabolic disease characterized by insulin resistance and ß-cell dysfunction and leading to many micro- and macrovascular complications. In this study we analyzed the circulating miRNA expression profiles in plasma samples from 44 patients with T2D and 22 healthy individuals using next generation sequencing and detected 229 differentially expressed miRNAs. An increased level of miR-5588-5p, miR-125b-2-3p, miR-1284, and a reduced level of miR-496 in T2D patients was verified. We also compared the expression landscapes in the same group of patients depending on body mass index and identified differential expression of miR-144-3p and miR-99a-5p in obese individuals. Identification and functional analysis of putative target genes was performed for miR-5588-5p, miR-125b-2-3p, miR-1284, and miR-496, showing chromatin modifying enzymes and apoptotic genes being among the significantly enriched pathways.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , MicroRNAs , Humanos , Diabetes Mellitus Tipo 2/genética , Projetos Piloto , MicroRNAs/metabolismo , Perfilação da Expressão Gênica
20.
Exp Eye Res ; 222: 109157, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35718188

RESUMO

Diabetic retinopathy (DR) is a high-incidence microvascular complication with retinal neovascularization that generates irreversible visual impairment. However, the mechanism of DR is unclear and needs to be further explored. To explore the the effects of crocetin on expression of NEAT1 and miR-125b-5p and the proliferation activity, migration ability, and angiogenesis ability of human retinal microvascular endothelial cells (hRMECs), RT-qPCR, CCK-8, Transwell, and tube formation assays were performed. Additionally, Western blot was used to detect the expression of SOX7, VEGFA and CD31. Furthermore, a dual-luciferase reporter gene was used to verify the targeting connection. The DR mouse model was constructed by STZ. The effect of crocetin on DR angiogenesis was detected by hematoxylin-eosin (HE) staining, immunohistochemistry (IHC), retinal digest preparations and Western blot. The results showed that crocetin inhibited the high-glucose (Hg)-induced upregulation of NEAT1 and SOX7 and the downregulation of miR-125b-5p. Crocetin inhibited Hg-induced proliferation, migration and angiogenesis by upregulating the targeted inhibition of SOX7 by miR-125b-5p through the inhibition of NEAT1. To summarize, our study revealed that crocetin has a protective effect on Hg-induced DR by regulating the lncRNA NEAT1/miR-125b-5p/SOX7 molecular axis.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , MicroRNAs , RNA Longo não Codificante , Animais , Carotenoides , Proliferação de Células , Diabetes Mellitus/metabolismo , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Glucose/metabolismo , Glucose/toxicidade , Humanos , Camundongos , MicroRNAs/genética , Neovascularização Patológica/metabolismo , RNA Longo não Codificante/genética , Fatores de Transcrição SOXF/metabolismo , Vitamina A/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa