Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell ; 167(4): 1028-1040.e15, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27881301

RESUMO

Kinetochores, multisubunit protein assemblies, connect chromosomes to spindle microtubules to promote chromosome segregation. The 10-subunit KMN assembly (comprising KNL1, MIS12, and NDC80 complexes, designated KNL1C, MIS12C, and NDC80C) binds microtubules and regulates mitotic checkpoint function through NDC80C and KNL1C, respectively. MIS12C, on the other hand, connects the KMN to the chromosome-proximal domain of the kinetochore through a direct interaction with CENP-C. The structural basis for this crucial bridging function of MIS12C is unknown. Here, we report crystal structures of human MIS12C associated with a fragment of CENP-C and unveil the role of Aurora B kinase in the regulation of this interaction. The structure of MIS12:CENP-C complements previously determined high-resolution structures of functional regions of NDC80C and KNL1C and allows us to build a near-complete structural model of the KMN assembly. Our work illuminates the structural organization of essential chromosome segregation machinery that is conserved in most eukaryotes.


Assuntos
Proteínas Cromossômicas não Histona/química , Cristalografia por Raios X , Cinetocoros/química , Complexos Multiproteicos/química , Animais , Aurora Quinase B/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas do Citoesqueleto , Humanos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Químicos , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo
2.
Cell ; 167(4): 1014-1027.e12, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27881300

RESUMO

Kinetochores connect centromeric nucleosomes with mitotic-spindle microtubules through conserved, cross-interacting protein subassemblies. In budding yeast, the heterotetrameric MIND complex (Mtw1, Nnf1, Nsl1, Dsn1), ortholog of the metazoan Mis12 complex, joins the centromere-proximal components, Mif2 and COMA, with the principal microtubule-binding component, the Ndc80 complex (Ndc80C). We report the crystal structure of Kluyveromyces lactis MIND and examine its partner interactions, to understand the connection from a centromeric nucleosome to a much larger microtubule. MIND resembles an elongated, asymmetric Y; two globular heads project from a coiled-coil shaft. An N-terminal extension of Dsn1 from one head regulates interactions of the other head, blocking binding of Mif2 and COMA. Dsn1 phosphorylation by Ipl1/Aurora B relieves this autoinhibition, enabling MIND to join an assembling kinetochore. A C-terminal extension of Dsn1 recruits Ndc80C to the opposite end of the shaft. The structure and properties of MIND show how it integrates phospho-regulatory inputs for kinetochore assembly and disassembly.


Assuntos
Proteínas Cromossômicas não Histona/química , Proteínas Fúngicas/química , Cinetocoros/química , Kluyveromyces/química , Complexos Multiproteicos/química , Proteínas Cromossômicas não Histona/metabolismo , Cristalografia por Raios X , Proteínas Fúngicas/metabolismo , Cinetocoros/metabolismo , Kluyveromyces/citologia , Kluyveromyces/metabolismo , Complexos Multiproteicos/metabolismo
3.
J Cell Sci ; 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39355896

RESUMO

Polo-like kinase 1 (PLK-1) is present in centrosomes, the nuclear envelope, and kinetochores and plays a significant role in meiosis and mitosis. PLK-1 depletion or inhibition has severe consequences for spindle assembly, spindle assembly checkpoint (SAC) activation, chromosome segregation, and cytokinesis. BUB-1 targets PLK-1 to the outer kinetochore and, in mammals, the inner kinetochore PLK1 targeting is mediated by the constitutive centromere associated network (CCAN). BUB1-targeted PLK-1 plays a key role in SAC activation and a SAC-independent role through targeting CDC-20. In contrast, whether there is a specific, non-redundant role for inner kinetochore targeted PLK-1 is unknown. Here, we used the C. elegans embryo to study the role of inner kinetochore PLK-1. We found that CENP-C, the sole CCAN component in C. elegans and other species, targets PLK-1 to the inner kinetochore during prometaphase and metaphase. Disruption of the CENP-C/PLK-1 interaction leads to an imbalance in kinetochore components and a defect in chromosome congression, without affecting CDC-20 recruitment. These findings indicate that PLK-1 kinetochore recruitment by CENP-C has at least partially distinct functions than outer kinetochore PLK-1, providing a platform for a better understanding of the different roles played by PLK-1 during mitosis.

4.
Plant J ; 109(5): 1064-1085, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34850467

RESUMO

The kinetochore is a supramolecular protein complex assembled on the chromosomes, essential for faithful segregation of the genome during cell divisions. More than 100 proteins are known to constitute the eukaryotic kinetochore architecture, primarily identified using non-plant organisms. A majority of them are fast evolving and are under positive selection. Thus, functional characterization of the plant kinetochore proteins is limited as only a few conserved orthologs sharing sequence similarity with their animal counterparts have been examined. Here, we report the functional characterization of the Arabidopsis thaliana homolog of the yeast NNF1/human PMF1 outer kinetochore protein and show that it has both kinetochore and non-kinetochore functions in plant growth and development. Knockout of NNF1 causes embryo lethality implying its essential role in cell division. AtNNF1 interacts with MIS12 in Y2H and co-immunoprecipitation assays, confirming it is one of the constituents of the plant MIS12 complex. GFP-NNF1 localizes to the kinetochore, rescuing the embryo lethal nnf1-1-/- phenotype, but the rescued plants (GFP-NNF1nnf1-/- ) are dwarf, displaying hypomorphic phenotypes with no evidence of mitotic or meiotic segregation defects. GFP-NNF1nnf1-/- dwarf plants have reduced levels of endogenous polyamines, which are partially rescued to wild-type levels upon exogenous application of polyamines. Mutations in the putative leucine zipper-like binding motif of NNF1 gave rise to a dominant-negative tall plant phenotype reminiscent of constitutive gibberellic acid (GA) action. These contrasting hypomorphic dwarf and antimorphic tall phenotypes facilitated us to attribute a moonlighting role to Arabidopsis NNF1 affecting polyamine and GA metabolism apart from its primary role in kinetochores.


Assuntos
Arabidopsis , Cinetocoros , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Divisão Celular , Segregação de Cromossomos , Poliaminas/metabolismo
5.
Development ; 147(8)2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32341029

RESUMO

Mammalian oocytes are arrested at G2/prophase of the first meiosis. After a hormone surge, oocytes resume meiosis, undergoing germinal vesicle breakdown (GVBD). This process is regulated by Cdk1/cyclin B1. Here, we report that Mis12 is required for G2/M transition by regulating cyclin B1 accumulation via Cdc14B-mediated APC/CCdh1 regulation, but is not essential for spindle and chromosome dynamics during meiotic maturation. Depletion of Mis12 severely compromised GVBD by impairing cyclin B1 accumulation. Importantly, impaired GVBD after Mis12 depletion was rescued not only by overexpressing cyclin B1 but also by depleting Cdc14B or Cdh1. Notably, oocytes rescued by cyclin B1 overexpression exhibited normal spindle and chromosome organization with intact kinetochore-microtubule attachments. In addition, after being rescued by cyclin B1 overexpression, Mis12-depleted oocytes normally extruded polar bodies. Moreover, Mis12-depleted oocytes formed pronuclear structures after fertilization but failed to develop beyond zygotes. Interestingly, Mis12 was localized in the cytoplasm and spindle poles in oocytes, in contrast to kinetochore localization in somatic cells. Therefore, our results demonstrate that Mis12 is required for meiotic G2/M transition but is dispensable for meiotic progression through meiosis I and II.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Ciclina B1/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Fase G2 , Meiose , Proteínas Associadas aos Microtúbulos/metabolismo , Oócitos/metabolismo , Animais , Feminino , Cinetocoros/metabolismo , Camundongos , Modelos Biológicos , Membrana Nuclear/metabolismo , Estabilidade Proteica , Fuso Acromático/metabolismo , Polos do Fuso/metabolismo
6.
Chromosome Res ; 30(1): 43-57, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34997387

RESUMO

The kinetochore is essential for faithful chromosome segregation during mitosis and is assembled through dynamic processes involving numerous kinetochore proteins. Various experimental strategies have been used to understand kinetochore assembly processes. Fluorescence recovery after photobleaching (FRAP) analysis is also a useful strategy for revealing the dynamics of kinetochore assembly. In this study, we introduced fluorescence protein-tagged kinetochore protein cDNAs into each endogenous locus and performed FRAP analyses in chicken DT40 cells. Centromeric protein (CENP)-C was highly mobile in interphase, but immobile during mitosis. CENP-C mutants lacking the CENP-A-binding domain became mobile during mitosis. In contrast to CENP-C, CENP-T and CENP-H were immobile during both interphase and mitosis. The mobility of Dsn1, which is a component of the Mis12 complex and directly binds to CENP-C, depended on CENP-C mobility during mitosis. Thus, our FRAP assays provide dynamic aspects of how the kinetochore is assembled.


Assuntos
Centrômero , Cinetocoros , Recuperação de Fluorescência Após Fotodegradação , Interfase , Mitose
7.
J Transl Med ; 20(1): 198, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35509101

RESUMO

BACKGROUND: Serine/arginine-rich splicing factor 9 (SRSF9) is a classical RNA-binding protein that is essential for regulating gene expression programs through its interaction with target RNA. Whether SRSF9 plays an essential role in colorectal cancer (CRC) progression and can serve as a therapeutic target is largely unknown. Here, we highlight new findings on the role of SRSF9 in CRC progression and elucidate the underlying mechanism. METHODS: CRC cell lines and clinical tissue samples were used. qRT-PCR, Western blotting, immunohistochemistry (IHC), gain- and loss-of-function assays, animal xenograft model studies, bioinformatic analysis, methylated single-stranded RNA affinity assays, gene-specific m6A quantitative qRT-PCR, dual-luciferase reporter assays and RNA stability assays were performed in this study. RESULTS: The expression level of SRSF9 was higher in CRC cell lines than that in an immortal human intestinal epithelial cell line. Overexpression of SRSF9 was positively associated with lymph node metastasis and Dukes stage. Functionally, SRSF9 promoted cell proliferation, migration and invasion in vitro and xenograft growth. The results of bioinformatic analysis indicated that DSN1 was the downstream target of SRSF9. In CRC cells and clinical tissue samples, the expression of SRSF9 was positively associated with the expression of DSN1. Knockdown of DSN1 partially inhibited the SRSF9-induced phenotype in CRC cells. Mechanistically, we further found that SRSF9 is an m6A-binding protein and that m6A modifications were enriched in DSN1 mRNA in CRC cells. Two m6A modification sites (chr20:36773619-36773620 and chr20:36773645-chr20:36773646) in the SRSF9-binding region (chr20:36773597-36773736) of DSN1 mRNA were identified. SRSF9 binds to DSN1 in an m6A motif- and dose-dependent manner. SRSF9 modulates the expression of DSN1 in CRC cells. Such expression regulation was largely impaired upon methyltransferase METTL3 knockdown. Moreover, knockdown of SRSF9 accelerated DSN1 mRNA turnover, while overexpression of SRSF9 stabilized DSN1 mRNA in CRC cells. Such stabilizing was also weakened upon METTL3 knockdown. CONCLUSION: Overexpression of SRSF9 was associated with lymph node metastasis and Dukes stage in CRC. Knockdown of DSN1 eliminated the effects by SRSF9 overexpression in CRC. Our results indicated that SRSF9 functions as an m6A-binding protein (termed "reader") by enhancing the stability of DSN1 mRNA in m6A-related manner. Our study is the first to report that SRSF9-mediated m6A recognition has a crucial role in CRC progression, and highlights SRSF9 as a potential therapeutic target for CRC management.


Assuntos
Neoplasias Colorretais , Metiltransferases , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Linfática , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Processamento de Serina-Arginina
8.
Proc Natl Acad Sci U S A ; 114(50): E10667-E10676, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29180432

RESUMO

Kinetochores are superprotein complexes that orchestrate chromosome segregation via a dynamic interaction with spindle microtubules. A physical connection between CENP-C and the Mis12-Ndc80-Knl1 (KMN) protein network is an important pathway that is used to assemble kinetochores on CENP-A nucleosomes. Multiple outer kinetochore components are phosphorylated by Aurora B kinase to activate the spindle assembly checkpoint (SAC) and to ensure accurate chromosome segregation. However, it is unknown whether Aurora B can phosphorylate inner kinetochore components to facilitate proper mitotic chromosome segregation. Here, we reported the structure of the fission yeast Schizosaccharomyces pombe Mis12-Nnf1 complex and showed that N-terminal residues 26-50 in Cnp3 (the CENP-C homolog of S. pombe) are responsible for interacting with the Mis12 complex. Interestingly, Thr28 of Cnp3 is a substrate of Ark1 (the Aurora B homolog of S. pombe), and phosphorylation impairs the interaction between the Cnp3 and Mis12 complex. The expression of a phosphorylation-mimicking Cnp3 mutant results in defective chromosome segregation due to improper kinetochore assembly. These results establish a previously uncharacterized regulatory mechanism involved in CENP-C-Mis12-facilitated kinetochore attachment error correction to ensure accurate chromosome segregation during mitosis.


Assuntos
Aurora Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Mitose , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Schizosaccharomyces pombe/metabolismo , Aurora Quinases/genética , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Proteínas Nucleares/genética , Fosforilação , Ligação Proteica , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
9.
Chromosoma ; 126(1): 145-163, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-26892014

RESUMO

Kinetochores allow attachment of chromosomes to spindle microtubules. Moreover, they host proteins that permit correction of erroneous attachments and prevent premature anaphase onset before bi-orientation of all chromosomes in metaphase has been achieved. Kinetochores are assembled from subcomplexes. Kinetochore proteins as well as the underlying centromere proteins and the centromeric DNA sequences evolve rapidly despite their fundamental importance for faithful chromosome segregation during mitotic and meiotic divisions. During evolution of Drosophila melanogaster, several centromere proteins were lost and a recent gene duplication has resulted in two Nnf1 paralogs, Nnf1a and Nnf1b, which code for alternative forms of a Mis12 kinetochore complex component. The rapid evolutionary divergence of centromere/kinetochore constituents in animals and plants has been proposed to be driven by an intragenome conflict resulting from centromere drive during female meiosis. Thus, a female meiosis-specific paralog might be expected to evolve rapidly under positive selection. While our characterization of the D. melanogaster Nnf1 paralogs hints at some partial functional specialization of Nnf1b for meiosis, we have failed to detect evidence for positive selection in our analysis of Nnf1 sequence evolution in the Drosophilid lineage. Neither paralog is essential, even though we find some clear differences in subcellular localization and expression during development. Loss of both paralogs results in developmental lethality. We therefore conclude that the two paralogs are still in early stages of differentiation.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Células Germinativas/metabolismo , Cinetocoros/metabolismo , Animais , Animais Geneticamente Modificados , Ciclo Celular/genética , Sobrevivência Celular/genética , Drosophila/classificação , Drosophila/genética , Proteínas de Drosophila/genética , Feminino , Fertilidade/genética , Duplicação Gênica , Expressão Gênica , Masculino , Meiose , Filogenia , Transporte Proteico , Seleção Genética
10.
Proc Natl Acad Sci U S A ; 112(41): E5583-9, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26430240

RESUMO

Multiple protein subcomplexes of the kinetochore cooperate as a cohesive molecular unit that forms load-bearing microtubule attachments that drive mitotic chromosome movements. There is intriguing evidence suggesting that central kinetochore components influence kinetochore-microtubule attachment, but the mechanism remains unclear. Here, we find that the conserved Mis12/MIND (Mtw1, Nsl1, Nnf1, Dsn1) and Ndc80 (Ndc80, Nuf2, Spc24, Spc25) complexes are connected by an extensive network of contacts, each essential for viability in cells, and collectively able to withstand substantial tensile load. Using a single-molecule approach, we demonstrate that an individual MIND complex enhances the microtubule-binding affinity of a single Ndc80 complex by fourfold. MIND itself does not bind microtubules. Instead, MIND binds Ndc80 complex far from the microtubule-binding domain and confers increased microtubule interaction of the complex. In addition, MIND activation is redundant with the effects of a mutation in Ndc80 that might alter its ability to adopt a folded conformation. Together, our results suggest a previously unidentified mechanism for regulating microtubule binding of an outer kinetochore component by a central kinetochore complex.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Complexos Multiproteicos/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , Complexos Multiproteicos/genética , Mutação , Estrutura Terciária de Proteína
11.
J Inflamm Res ; 17: 1857-1871, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38523689

RESUMO

Purpose: Atherosclerosis is the main cause of atherosclerotic cardiovascular disease (CVD). Here, we aimed to uncover the role and mechanisms of fat mass and obesity-associated genes (FTO) in the regulation of vascular smooth muscle cell (VSMC) senescence in atherosclerotic plaques. Methods: ApoE-/- mice fed a high-fat diet (HFD) were used to establish an atherosclerotic animal model. Immunohistochemistry, and the staining of hematoxylin-eosin, Oil Red O, Sirius red, and Masson were performed to confirm the role of FTO in atherosclerosis in vivo. Subsequently, FTO expression in primary VSMCs is either upregulated or downregulated. Oxidized low-density lipoprotein (ox-LDL) was used to treat VSMCs, followed by EdU staining, flow cytometry, senescence-associated ß-galactosidase (SA-ß-gal) staining, immunofluorescence, telomere detection, RT-qPCR, and Western blotting to determine the molecular mechanisms by which FTO inhibits VSMC senescence. Results: Decreased FTO expression was observed in progressive atherosclerotic plaques of ApoE-/- mice fed with HFD. FTO upregulation inhibits atherosclerotic lesions in mice. FTO inhibits VSMC aging in atherosclerotic plaques by helping VSMC withstand ox-LDL-induced cell cycle arrest and senescence. This process is achieved by stabilizing the MIS12 protein in VSMC through a proteasome-mediated pathway. Conclusion: FTO inhibits VSMC senescence and subsequently slows the progression of atherosclerotic plaques by stabilizing the MIS12 protein.

12.
Int J Biol Sci ; 17(8): 1909-1924, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34131395

RESUMO

Background: Estrogen-related receptor-α (ESRRA) is an orphan nuclear receptor, expressing at high level in exuberant metabolism organs and acting as transcription factor. High expression was found in many malignances but no research was done in gastric cancer (GC), where lipid metabolism disorder is common. Methods: Kaplan-Meier plot was utilized to find the relationship between ESRRA expression and patients' prognoses. The expression level of ESRRA was measured by real-time PCR. The protein expression levels were tested with western-blot and immunohistochemistry. Cell cycle and apoptosis was identified with flow cytometry. RNA-seq, bioinformatics analysis, dual-luciferase assay and ChIP assay were used to predict and validate ESRRA's target gene and binding motif. Animal models were also introduced in our study. Results: ESRRA expression is notably higher in GC cell lines and high ESRRA levels are correlated to poor prognoses. ESRRA silencing decreased GC cell viability, migration, and invasion capacities. Its downstream gene DSN1 was spotted by RNA-seq and confirmed by later bioinformatics analyses, dual-luciferase, and ChIP assays. Western-blot showed G2M arrest caused by ESRRA silencing was via CDC25C-CDK1-Cyclin B1 pathway. Conclusion: ESRRA/DSN1/CDC25C-CDK1-Cyclin B1 is of great importance in GC development. ESRRA could be a potential target as well as prognostic marker in GC.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Ciclina B1/metabolismo , Receptores de Estrogênio , Neoplasias Gástricas , Fosfatases cdc25/metabolismo , Animais , Apoptose , Biomarcadores Tumorais , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Descoberta de Drogas , Regulação Neoplásica da Expressão Gênica , Humanos , Metabolismo dos Lipídeos , Prognóstico , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Transdução de Sinais , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Receptor ERRalfa Relacionado ao Estrogênio
13.
Dev Cell ; 48(6): 873-882.e4, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30827899

RESUMO

The kinetochore is a complex of proteins, broadly conserved from yeast to man, that resides at the centromere and is essential for chromosome segregation in dividing cells. There are no known functions of the core complex outside of the centromere. We now show that the proteins of the kinetochore have an essential post-mitotic function in neurodevelopment. At the embryonic neuromuscular junction of Drosophila melanogaster, mutation or knockdown of many kinetochore components cause neurites to overgrow and prevent formation of normal synaptic boutons. Kinetochore proteins were detected in synapses and axons in Drosophila. In post-mitotic cultured hippocampal neurons, knockdown of mis12 increased the filopodia-like protrusions in this region. We conclude that the proteins of the kinetochore are repurposed to sculpt developing synapses and dendrites and thereby contribute to the correct development of neuronal circuits in both invertebrates and mammals.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Cinetocoros/metabolismo , Mitose , Sistema Nervoso/citologia , Sistema Nervoso/embriologia , Animais , Axônios/metabolismo , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Células HEK293 , Humanos , Mutação/genética , Junção Neuromuscular/crescimento & desenvolvimento , Junção Neuromuscular/metabolismo , Neurópilo/metabolismo , Fenótipo , Ratos , Sinapses/metabolismo
14.
Curr Biol ; 29(22): 3791-3802.e6, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31679929

RESUMO

Centromeres are rapidly evolving across eukaryotes, despite performing a conserved function to ensure high-fidelity chromosome segregation. CENP-A chromatin is a hallmark of a functional centromere in most organisms. Due to its critical role in kinetochore architecture, the loss of CENP-A is tolerated in only a few organisms, many of which possess holocentric chromosomes. Here, we characterize the consequence of the loss of CENP-A in the fungal kingdom. Mucor circinelloides, an opportunistic human pathogen, lacks CENP-A along with the evolutionarily conserved CENP-C but assembles a monocentric chromosome with a localized kinetochore complex throughout the cell cycle. Mis12 and Dsn1, two conserved kinetochore proteins, were found to co-localize to a short region, one in each of nine large scaffolds, composed of an ∼200-bp AT-rich sequence followed by a centromere-specific conserved motif that echoes the structure of budding yeast point centromeres. Resembling fungal regional centromeres, these core centromere regions are embedded in large genomic expanses devoid of genes yet marked by Grem-LINE1s, a novel retrotransposable element silenced by the Dicer-dependent RNAi pathway. Our results suggest that these hybrid features of point and regional centromeres arose from the absence of CENP-A, thus defining novel mosaic centromeres in this early-diverging fungus.


Assuntos
Centrômero/metabolismo , Cinetocoros/fisiologia , Mucor/genética , Centrômero/fisiologia , Proteína Centromérica A/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/fisiologia , Segregação de Cromossomos/fisiologia , Histonas/metabolismo , Cinetocoros/metabolismo , Mucor/metabolismo
15.
Dev Cell ; 48(6): 864-872.e7, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30827898

RESUMO

Dynamic coupling of microtubule ends to kinetochores, built on the centromeres of chromosomes, directs chromosome segregation during cell division. Here, we report that the evolutionarily ancient kinetochore-microtubule coupling machine, the KMN (Knl1/Mis12/Ndc80-complex) network, plays a critical role in neuronal morphogenesis. We show that the KMN network concentrates in microtubule-rich dendrites of developing sensory neurons that collectively extend in a multicellular morphogenetic event that occurs during C. elegans embryogenesis. Post-mitotic degradation of KMN components in sensory neurons disrupts dendritic extension, leading to patterning and functional defects in the sensory nervous system. Structure-guided mutations revealed that the molecular interface that couples kinetochores to spindle microtubules also functions in neuronal development. These results identify a cell-division-independent function for the chromosome-segregation machinery and define a microtubule-coupling-dependent event in sensory nervous system morphogenesis.


Assuntos
Cinetocoros/metabolismo , Microtúbulos/metabolismo , Morfogênese , Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans/metabolismo , Dendritos/metabolismo , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Mitose
16.
Open Biol ; 6(2): 150236, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26911624

RESUMO

Accurate chromosome segregation during mitosis and meiosis is crucial for cellular and organismal viability. Kinetochores connect chromosomes with spindle microtubules and are essential for chromosome segregation. These large protein scaffolds emerge from the centromere, a specialized region of the chromosome enriched with the histone H3 variant CENP-A. In most eukaryotes, the kinetochore core consists of the centromere-proximal constitutive centromere-associated network (CCAN), which binds CENP-A and contains 16 subunits, and of the centromere-distal Knl1 complex, Mis12 complex, Ndc80 complex (KMN) network, which binds microtubules and contains 10 subunits. In the fruitfly, Drosophila melanogaster, the kinetochore underwent remarkable simplifications. All CCAN subunits, with the exception of centromeric protein C (CENP-C), and two KMN subunits, Dsn1 and Zwint, cannot be identified in this organism. In addition, two paralogues of the KMN subunit Nnf1 (Nnf1a and Nnf1b) are present. Finally, the Spc105R subunit, homologous to human Knl1/CASC5, underwent considerable sequence changes in comparison with other organisms. We combined biochemical reconstitution with biophysical and structural methods to investigate how these changes reflect on the organization of the Drosophila KMN network. We demonstrate that the Nnf1a and Nnf1b paralogues are subunits of distinct complexes, both of which interact directly with Spc105R and with CENP-C, for the latter of which we identify a binding site on the Mis12 subunit. Our studies shed light on the structural and functional organization of a highly divergent kinetochore particle.


Assuntos
Drosophila melanogaster/metabolismo , Cinetocoros/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Drosophila melanogaster/genética , Humanos , Cinetocoros/química , Cinetocoros/ultraestrutura , Espectrometria de Massas , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes , Alinhamento de Sequência
17.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 4): 438-42, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25849506

RESUMO

The spindle-assembly checkpoint (SAC) monitors kinetochore-microtubule attachment during mitosis. In metazoans, the three-subunit Rod-Zwilch-ZW10 (RZZ) complex is a crucial SAC component that interacts with additional SAC-activating and SAC-silencing components, including the Mad1-Mad2 complex and cytoplasmic dynein. The RZZ complex contains two copies of each subunit and has a predicted molecular mass of ∼800 kDa. Given the low abundance of the RZZ complex in natural sources, its recombinant reconstitution was attempted by co-expression of its subunits in insect cells. The RZZ complex was purified to homogeneity and subjected to systematic crystallization attempts. Initial crystals containing the entire RZZ complex were obtained using the sitting-drop method and were subjected to optimization to improve the diffraction resolution limit. The crystals belonged to space group P31 (No. 144) or P32 (No. 145), with unit-cell parameters a = b = 215.45, c = 458.7 Å, α = ß = 90.0, γ = 120.0°.


Assuntos
Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Pontos de Checagem da Fase M do Ciclo Celular/genética , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Sequência de Aminoácidos , Animais , Cristalização , Cristalografia por Raios X , Humanos , Insetos , Dados de Sequência Molecular
18.
FEBS Lett ; 588(17): 3265-73, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25064841

RESUMO

A predominant mechanism of spindle assembly checkpoint (SAC) silencing is dynein-mediated transport of certain kinetochore proteins along microtubules. There are still conflicting data as to which SAC proteins are dynein cargoes. Using two ATP reduction assays, we found that the core SAC proteins Mad1, Mad2, Bub1, BubR1, and Bub3 redistributed from attached kinetochores to spindle poles, in a dynein-dependent manner. This redistribution still occurred in metaphase-arrested cells, at a time when the SAC should be satisfied and silenced. Unexpectedly, we found that a pool of Hec1 and Mis12 also relocalizes to spindle poles, suggesting KMN components as additional dynein cargoes. The potential significance of these results for SAC silencing is discussed.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dineínas/metabolismo , Cinetocoros/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Polos do Fuso/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/genética , Inativação Gênica , Células HeLa , Humanos , Transporte Proteico
19.
Open Biol ; 2(2): 110032, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22645658

RESUMO

The formation of kinetochores shortly before each cell division is a prerequisite for proper chromosome segregation. The synchronous mitoses of Drosophila syncytial embryos have provided an ideal in vivo system to follow kinetochore assembly kinetics and so address the question of how kinetochore formation is regulated. We found that the nuclear exclusion of the Spc105/KNL1 protein during interphase prevents precocious assembly of the Mis12 complex. The nuclear import of Spc105 in early prophase and its immediate association with the Mis12 complex on centromeres are thus the first steps in kinetochore assembly. The cumulative kinetochore levels of Spc105 and Mis12 complex then determine the rate of Ndc80 complex recruitment commencing only after nuclear envelope breakdown. The carboxy-terminal part of Spc105 directs its nuclear import and is sufficient for the assembly of all core kinetochore components and CENP-C, when localized ectopically to centrosomes. Super-resolution microscopy shows that carboxy-terminus of Spc105 lies at the junction of the Mis12 and Ndc80 complexes on stretched kinetochores. Our study thus indicates that physical accessibility of kinetochore components plays a crucial role in the regulation of Drosophila kinetochore assembly and leads us to a model in which Spc105 is a licensing factor for its onset.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Cinetocoros/fisiologia , Mitose , Animais , Centrômero , Segregação de Cromossomos , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa