Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38879757

RESUMO

The reactions to novelty manifesting in mismatch negativity in the rat brain were studied. During dissociative anesthesia, mismatch negativity-like waves were recorded from the somatosensory cortex using an epidural 32-electrode array. Experimental animals: 7 wild-type Wistar rats and 3 transgenic rats. During high-dose anesthesia, deviant 1,500 Hz tones were presented randomly among many standard 1,000 Hz tones in the oddball paradigm. "Deviant minus standard_before_deviant" difference waves were calculated using both the classical method of Naatanen and method of cross-correlation of sub-averages. Both methods gave consistent results: an early phasic component of the N40 and later N100 to 200 (mismatch negativity itself) tonic component. The gamma and delta rhythms power and the frequency of down-states (suppressed activity periods) were assessed. In all rats, the amplitude of tonic component grew with increasing sedation depth. At the same time, a decrease in gamma power with a simultaneous increase in delta power and the frequency of down-states. The earlier phasic frontocentral component is associated with deviance detection, while the later tonic one over the auditory cortex reflects the orienting reaction. Under anesthesia, this slow mismatch negativity-like wave most likely reflects the tendency of the system to respond to any influences with delta waves, K-complexes and down-states, or produce them spontaneously.


Assuntos
Ratos Wistar , Animais , Masculino , Estimulação Acústica/métodos , Eletroencefalografia/métodos , Ratos , Ratos Transgênicos , Anestésicos Dissociativos/administração & dosagem , Anestésicos Dissociativos/farmacologia , Potenciais Evocados Auditivos/fisiologia , Córtex Somatossensorial/fisiologia , Ritmo Gama/fisiologia , Ritmo Delta/fisiologia , Ritmo Delta/efeitos dos fármacos
2.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38615240

RESUMO

The mismatch negativity and the P3a of the event-related EEG potential reflect the electrocortical response to a deviant stimulus in a series of stimuli. Although both components have been investigated in various paradigms, these paradigms usually incorporate many repetitions of the same deviant, thus leaving open whether both components vary as a function of the deviant's position in a series of deviant stimuli-i.e. whether they are subject to qualitative/quantitative habituation from one instantiation of a deviant to the next. This is so because the detection of mismatch negativity/P3a in the event-related EEG potential requires an averaging over dozens or hundreds of stimuli, i.e. over many instantiations of the deviant per participant. The present study addresses this research gap. We used a two-tone oddball paradigm implementing only a small number of (deviant) stimuli per participant, but applying it to a large number of participants (n > 230). Our data show that the mismatch negativity amplitude exhibits no decrease as a function of the deviant's position in a series of (standard and) deviant stimuli. Importantly, only after the very first deviant stimulus, a distinct P3a could be detected, indicative of an orienting reaction and an attention shift, and thus documenting a dissociation of mismatch negativity and P3a.


Assuntos
Cafeína , Habituação Psicofisiológica , Humanos , Potenciais Evocados , Eletroencefalografia
3.
Eur J Neurosci ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39363511

RESUMO

Adaptation refers to the decreased neural response that occurs after repeated exposure to a stimulus. While many electroencephalogram (EEG) studies have investigated adaptation by using either single or multiple repetitions, the adaptation patterns under controlled expectations manifested in the two main auditory components, N1 and P2, are still largely unknown. Additionally, although multiple repetitions are commonly used in mismatch negativity (MMN) experiments, it is unclear how adaptation at different time windows contributes to this phenomenon. In this study, we conducted an EEG experiment with 37 healthy adults using a random stimulus arrangement and extended tone sequences to control expectations. We tracked the amplitudes of the N1 and P2 components across the first 10 tones to examine adaptation patterns. Our findings revealed an L-shaped adaptation pattern characterised by a significant decrease in N1 amplitude after the first repetition (N1 initial adaptation), followed by a continuous, linear increase in P2 amplitude after the first repetition (P2 subsequent adaptation), possibly indicating model adjustment. Regression analysis demonstrated that the peak amplitudes of both the N1 initial adaptation and the P2 subsequent adaptation significantly accounted for variance in MMN amplitude. These results suggest distinct adaptation patterns for multiple repetitions across different components and indicate that the MMN reflects a combination of two processes: the initial adaptation in the N1 and a continuous model adjustment effect in the P2. Understanding these processes separately could have implications for models of cognitive processing and clinical disorders.

4.
Brain Topogr ; 37(6): 1089-1117, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38958833

RESUMO

The cortical generators of the pure tone MMN and P300 have been thoroughly studied. Their nature and interaction with respect to phoneme perception, however, is poorly understood. Accordingly, the cortical sources and functional connections that underlie the MMN and P300 in relation to passive and active speech sound perception were identified. An inattentive and attentive phonemic oddball paradigm, eliciting a MMN and P300 respectively, were administered in 60 healthy adults during simultaneous high-density EEG recording. For both the MMN and P300, eLORETA source reconstruction was performed. The maximal cross-correlation was calculated between ROI-pairs to investigate inter-regional functional connectivity specific to passive and active deviant processing. MMN activation clusters were identified in the temporal (insula, superior temporal gyrus and temporal pole), frontal (rostral middle frontal and pars opercularis) and parietal (postcentral and supramarginal gyrus) cortex. Passive discrimination of deviant phonemes was aided by a network connecting right temporoparietal cortices to left frontal areas. For the P300, clusters with significantly higher activity were found in the frontal (caudal middle frontal and precentral), parietal (precuneus) and cingulate (posterior and isthmus) cortex. Significant intra- and interhemispheric connections between parietal, cingulate and occipital regions constituted the network governing active phonemic target detection. A predominantly bilateral network was found to underly both the MMN and P300. While passive phoneme discrimination is aided by a fronto-temporo-parietal network, active categorization calls on a network entailing fronto-parieto-cingulate cortices. Neural processing of phonemic contrasts, as reflected by the MMN and P300, does not appear to show pronounced lateralization to the language-dominant hemisphere.


Assuntos
Córtex Cerebral , Eletroencefalografia , Potenciais Evocados P300 , Percepção da Fala , Humanos , Masculino , Feminino , Adulto , Eletroencefalografia/métodos , Adulto Jovem , Potenciais Evocados P300/fisiologia , Percepção da Fala/fisiologia , Córtex Cerebral/fisiologia , Mapeamento Encefálico/métodos , Estimulação Acústica/métodos , Fonética , Potenciais Evocados Auditivos/fisiologia
5.
Cereb Cortex ; 33(16): 9542-9553, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37344250

RESUMO

Segregation and integration are two fundamental yet competing computations in cognition. For example, in serial speech processing, stable perception necessitates the sequential establishment of perceptual representations to remove irrelevant features for achieving invariance. Whereas multiple features need to combine to create a coherent percept. How to simultaneously achieve seemingly contradicted computations of segregation and integration in a serial process is unclear. To investigate their neural mechanisms, we used loudness and lexical tones as a research model and employed a novel multilevel oddball paradigm with Electroencephalogram (EEG) recordings to explore the dynamics of mismatch negativity (MMN) responses to their deviants. When two types of deviants were presented separately, distinct topographies of MMNs to loudness and tones were observed at different latencies (loudness earlier), supporting the sequential dynamics of independent representations for two features. When they changed simultaneously, the latency of responses to tones became shorter and aligned with that to loudness, while the topographies remained independent, yielding the combined MMN as a linear additive of single MMNs of loudness and tones. These results suggest that neural dynamics can be temporally synchronized to distinct sensory features and balance the computational demands of segregation and integration, grounding for invariance and feature binding in serial processing.


Assuntos
Eletroencefalografia , Percepção da Fala , Eletroencefalografia/métodos , Percepção da Fala/fisiologia , Fala , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica/métodos
6.
Cereb Cortex ; 33(22): 11070-11079, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37815245

RESUMO

Adolescence is a critical period for psychological difficulties. Auditory mismatch negativity (MMN) and gamma-band auditory steady-state response (ASSR) are representative electrophysiological indices that mature during adolescence. However, the longitudinal association between MMN/ASSR and psychological difficulties among adolescents remains unclear. We measured MMN amplitude for duration and frequency changes and ASSR twice in a subsample (n = 67, mean age 13.4 and 16.1 years, respectively) from a large-scale population-based cohort. No significant longitudinal changes were observed in any of the electroencephalography indices. Changes in SDQ-TD were significantly associated with changes in duration MMN, but not frequency MMN and ASSR. Furthermore, the subgroup with higher SDQ-TD at follow-up showed a significant duration MMN decrease over time, whereas the subgroup with lower SDQ-TD did not. The results of our population neuroscience study suggest that insufficient changes in electroencephalography indices may have been because of the short follow-up period or non-monotonic change during adolescence, and indicated that the longitudinal association with psychological difficulties was specific to the duration MMN. These findings provide new insights that electrophysiological change may underlie the development of psychosocial difficulties emerging in adolescence.


Assuntos
Eletroencefalografia , Potenciais Evocados Auditivos , Humanos , Adolescente , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica/métodos , Percepção Auditiva/fisiologia
7.
Adv Exp Med Biol ; 1455: 227-256, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38918355

RESUMO

The aim of this chapter is to give an overview of how the perception of rhythmic temporal regularity such as a regular beat in music can be studied in human adults, human newborns, and nonhuman primates using event-related brain potentials (ERPs). First, we discuss different aspects of temporal structure in general, and musical rhythm in particular, and we discuss the possible mechanisms underlying the perception of regularity (e.g., a beat) in rhythm. Additionally, we highlight the importance of dissociating beat perception from the perception of other types of structure in rhythm, such as predictable sequences of temporal intervals, ordinal structure, and rhythmic grouping. In the second section of the chapter, we start with a discussion of auditory ERPs elicited by infrequent and frequent sounds: ERP responses to regularity violations, such as mismatch negativity (MMN), N2b, and P3, as well as early sensory responses to sounds, such as P1 and N1, have been shown to be instrumental in probing beat perception. Subsequently, we discuss how beat perception can be probed by comparing ERP responses to sounds in regular and irregular sequences, and by comparing ERP responses to sounds in different metrical positions in a rhythm, such as on and off the beat or on strong and weak beats. Finally, we will discuss previous research that has used the aforementioned ERPs and paradigms to study beat perception in human adults, human newborns, and nonhuman primates. In doing so, we consider the possible pitfalls and prospects of the technique, as well as future perspectives.


Assuntos
Percepção Auditiva , Música , Primatas , Humanos , Animais , Percepção Auditiva/fisiologia , Recém-Nascido , Adulto , Primatas/fisiologia , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica/métodos , Potenciais Evocados/fisiologia , Eletroencefalografia
8.
Psychol Med ; 53(12): 5818-5828, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36226640

RESUMO

BACKGROUND: Mismatch negativity (MMN) amplitude is reduced in psychotic disorders and associated with symptoms and functioning. Due to these robust associations, it is often considered a biomarker for psychotic illness. The relationship between MMN and clinical outcomes has been examined well in early onset psychotic illness; however, its stability and predictive utility in chronic samples are not clear. METHOD: We examined the five-year stability of MMN amplitude over two timepoints in individuals with established psychotic disorders (cases; N = 132) and never-psychotic participants (NP; N = 170), as well as longitudinal associations with clinical symptoms and functioning. RESULTS: MMN amplitude exhibited good temporal stability (cases, r = 0.53; never-psychotic, r = 0.52). In cases, structural equation models revealed MMN amplitude to be a significant predictor of worsening auditory hallucinations (ß = 0.19), everyday functioning (ß = -0.13), and illness severity (ß = -0.12) at follow-up. Meanwhile, initial IQ (ß = -0.24), negative symptoms (ß = 0.23), and illness severity (ß = -0.16) were significant predictors of worsening MMN amplitude five years later. CONCLUSIONS: These results imply that MMN measures a neural deficit that is reasonably stable up to five years. Results support disordered cognition and negative symptoms as preceding reduced MMN, which then may operate as a mechanism driving reductions in everyday functioning and the worsening of auditory hallucinations in chronic psychotic disorders. This pattern may inform models of illness course, clarifying the relationships amongst biological mechanisms of predictive processing and clinical deficits in chronic psychosis and allowing us to better understand the mechanisms driving such impairments over time.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Humanos , Esquizofrenia/complicações , Potenciais Evocados Auditivos , Transtornos Psicóticos/complicações , Alucinações , Doença Crônica , Eletroencefalografia , Estimulação Acústica/métodos
9.
Exp Brain Res ; 241(5): 1319-1327, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37004533

RESUMO

Multiple sclerosis (MS) is one of the most common neurological diseases in North America and it is frequently associated with sensory processing difficulties, cognitive deficits, and psychiatric illness. While many studies have examined cognitive deficits in MS measured by behavioural responses and neuroimaging techniques, only a few studies have examined neurophysiological measures of auditory functioning in MS, such as the mismatch negativity (MMN). The MMN is an event-related potential that indicates automatic auditory change detection. This study examined whether MMN endpoints measured by electroencephalography (EEG) differ in individuals with relapsing-remitting MS compared to healthy controls and whether the symptomatology of MS, including symptoms of depression and fatigue, are related to MMN measures. A multi-feature MMN paradigm, which includes five distinct deviant tones, was used to assess auditory cortex function in MS. There were no significant differences in MMN amplitudes or latencies between the MS and control group (p < 0.05) and corresponding effect sizes were small. However, there was a correlation between reduced MMN amplitudes in response to an intensity deviant and physician-reported disability. The intensity MMN may be more sensitive to deterioration in this population. Ultimately, this study provides a comprehensive profile of early auditory processing abilities in MS and suggests that a reduction in the MMN response may be representative of disease severity in MS.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Estimulação Acústica/métodos , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Percepção Auditiva/fisiologia , Potenciais Evocados/fisiologia , Eletroencefalografia/métodos , Potenciais Evocados Auditivos/fisiologia
10.
Neuroimage ; 233: 117954, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33716157

RESUMO

Predicting events in the ever-changing environment is a fundamental survival function intrinsic to the physiology of sensory systems, whose efficiency varies among the population. Even though it is established that a major source of such variations is genetic heritage, there are no studies tracking down auditory predicting processes to genetic mutations. Thus, we examined the neurophysiological responses to deviant stimuli recorded with magnetoencephalography (MEG) in 108 healthy participants carrying different variants of Val158Met single-nucleotide polymorphism (SNP) within the catechol-O-methyltransferase (COMT) gene, responsible for the majority of catecholamines degradation in the prefrontal cortex. Our results showed significant amplitude enhancement of prediction error responses originating from the inferior frontal gyrus, superior and middle temporal cortices in heterozygous genotype carriers (Val/Met) vs homozygous (Val/Val and Met/Met) carriers. Integrating neurophysiology and genetics, this study shows how the neural mechanisms underlying optimal deviant detection vary according to the gene-determined cathecolamine levels in the brain.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Catecol O-Metiltransferase/genética , Metionina/genética , Polimorfismo de Nucleotídeo Único/genética , Valina/genética , Adulto , Feminino , Previsões , Humanos , Imageamento por Ressonância Magnética/métodos , Magnetoencefalografia/métodos , Masculino
11.
Neuroimage ; 226: 117468, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33075561

RESUMO

We here turn the general and theoretical question of the complementarity of EEG and MEG for source reconstruction, into a practical empirical one. Precisely, we address the challenge of evaluating multimodal data fusion on real data. For this purpose, we build on the flexibility of Parametric Empirical Bayes, namely for EEG-MEG data fusion, group level inference and formal hypothesis testing. The proposed approach follows a two-step procedure by first using unimodal or multimodal inference to derive a cortical solution at the group level; and second by using this solution as a prior model for single subject level inference based on either unimodal or multimodal data. Interestingly, for inference based on the same data (EEG, MEG or both), one can then formally compare, as alternative hypotheses, the relative plausibility of the two unimodal and the multimodal group priors. Using auditory data, we show that this approach enables to draw important conclusions, namely on (i) the superiority of multimodal inference, (ii) the greater spatial sensitivity of MEG compared to EEG, (iii) the ability of EEG data alone to source reconstruct temporal lobe activity, (iv) the usefulness of EEG to improve MEG based source reconstruction. Importantly, we largely reproduce those findings over two different experimental conditions. We here focused on Mismatch Negativity (MMN) responses for which generators have been extensively investigated with little homogeneity in the reported results. Our multimodal inference at the group level revealed spatio-temporal activity within the supratemporal plane with a precision which, to our knowledge, has never been achieved before with non-invasive recordings.


Assuntos
Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Potenciais Evocados Auditivos/fisiologia , Magnetoencefalografia/métodos , Processamento de Sinais Assistido por Computador , Algoritmos , Teorema de Bayes , Encéfalo/fisiologia , Humanos , Modelos Neurológicos , Imagem Multimodal/métodos
12.
J Neural Transm (Vienna) ; 128(5): 645-657, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33895941

RESUMO

Behavioral studies on auditory deviance detection in patients with Parkinson's disease (PD) have reported contradictory results. The primary aim of this study was to investigate auditory deviance detection of multiple auditory features in patients with PD by means of objective and reliable electroencephalographic (EEG) measurements. Twelve patients with early-stage PD and twelve age- and gender-matched healthy controls (HCs) were included in this study. Patients with PD participated without their regular dopaminergic medication. All subjects underwent an audiometric screening and performed a passive multi-feature mismatch negativity (MMN) paradigm. Repeated-measures analysis of variance (ANOVA) demonstrated no significant differences between patients with PD and HCs regarding MMN mean amplitude and latency for frequency, duration and gap deviants. Nevertheless, a trend towards increased MMN mean amplitude and latency was found in response to intensity deviants in patients with PD compared to HCs. Increased intensity MMN amplitude may indicate that more neural resources are allocated to the processing of intensity deviances in patients with PD compared to HCs. The interpretation of this intensity-specific MMN alteration is further discussed in the context of a compensatory mechanism for auditory intensity processing and involuntary attention switching in PD.


Assuntos
Percepção Auditiva , Doença de Parkinson , Análise de Variância , Atenção , Eletroencefalografia , Humanos , Doença de Parkinson/fisiopatologia
13.
Exp Brain Res ; 238(1): 247-258, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31844911

RESUMO

Musical expertise promotes both the perception and the processing of music. The aim of the present study was to analyze if musicians compared to non-musicians already have auditory processing advantages at the neural level. 50 musicians and 50 non-musicians worked on a task to determine the individual auditory difference threshold (individual JND threshold). A passive oddball paradigm followed while the EEG activity was recorded. Frequent standard sounds (528 hertz [Hz]) and rare deviant sounds (individual JND threshold, 535 Hz, and 558 Hz) were presented in the oddball paradigm. The mismatch negativity (MMN) and the P3a were used as indicators of auditory discrimination skills for frequency differences. Musicians had significantly smaller individual JND thresholds than non-musicians, but musicians were not faster than non-musicians. Musicians and non-musicians showed both the MMN and the P3a at the 535 Hz and 558 Hz condition. In the individual JND threshold condition, non-musicians, whose individual JND threshold was at 539.8 Hz (and therefore even above the deviant sound of 535 Hz), predictably showed the MMN and the P3a. Musicians, whose individual JND threshold was at 531.1 Hz (and thus close to the standard sound of 528 Hz), showed no MMN and P3a-although they were behaviorally able to differentiate frequencies individually within their JND threshold range. This may indicate a key role of attention in triggering the MMN during the detection of frequency differences in the individual JND threshold range (see Tervaniemi et al. in Exp Brain 161:1-10, 2005).


Assuntos
Limiar Auditivo/fisiologia , Potenciais Evocados Auditivos/fisiologia , Música , Discriminação da Altura Tonal/fisiologia , Adolescente , Adulto , Eletroencefalografia , Potenciais Evocados P300/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
14.
J Psycholinguist Res ; 49(2): 187-198, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31745824

RESUMO

Lexical ERPs (event-related potentials) obtained in an oddball paradigm were suggested to be an index of the formation of new word representations in the brain in the learning process: with increased exposure to new lexemes, the ERP amplitude grows, which is interpreted as a signature of a new memory-trace build-up and activation. Previous learning studies using this approach have, however, mostly used meaningless novel word forms; it therefore remains uncertain whether the increased amplitude simply reflects increased familiarity with the new stimulus or is indeed a reflection of a complete word representation. Here, we used the oddball paradigm to measure the mismatch negativity (MMN) responses to novel word forms before and after semantic training, during which they were associated with previously familiar words of either high or low frequency of occurrence. Following training, the amplitude of the MMN to novel words was enhanced. Furthermore, these changes were dependent on the frequency of the reference which novel items became associated with: namely, the MMN amplitude became greater and the latency shorter for the item which was assigned the high-frequency meaning. Even though the amount of training was the same for both types of items, the low-frequency stimulus did not achieve similar significant changes. Our results suggest that the new surface form becomes linked to the existing representation, which then automatically activates in full when the respective stimulus is present at the input. This finding indicates that the learning-related MMN dynamics, manifest as a response increase after learning, likely reflects the formation and activation of a complete lexicosemantic memory circuits for words.


Assuntos
Percepção Auditiva/fisiologia , Potenciais Evocados Auditivos/fisiologia , Memória/fisiologia , Semântica , Adulto , Encéfalo/fisiologia , Feminino , Humanos , Aprendizagem , Masculino , Federação Russa
15.
Cogn Affect Behav Neurosci ; 18(4): 748-763, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29736682

RESUMO

Voices transmit social signals through speech and/or prosody. Emotional prosody conveys key information about the emotional state of a speaker and is thus a crucial cue that one has to detect in order to develop efficient social communication. Previous studies in adults reported different brain responses to emotional than to neutral prosodic deviancy. The aim of this study was to characterize such specific emotional deviancy effects in school-age children. The mismatch negativity (MMN) and P3a evoked potentials, reflecting automatic change detection and automatic attention orienting, respectively, were obtained for neutral and emotional angry deviants in both school-age children (n = 26) and adults (n = 14). Shorter latencies were found for emotional than for neutral preattentional responses in both groups. However, whereas this effect was observed on the MMN in adults, it appeared in an early discriminative negativity preceding the MMN in children. A smaller P3a amplitude was observed for the emotional than for the neutral deviants at all ages. Overall, the brain responses involved in specific emotional change processing are already present during childhood, but responses have not yet reached an adult pattern. We suggest that these processing differences might contribute to the known improvement of emotional prosody perception between childhood and adulthood.


Assuntos
Ira , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Detecção de Sinal Psicológico/fisiologia , Percepção Social , Percepção da Fala/fisiologia , Adulto , Atenção/fisiologia , Criança , Eletroencefalografia , Potenciais Evocados , Feminino , Humanos , Masculino , Adulto Jovem
16.
Neuroimage ; 157: 184-195, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28576412

RESUMO

Mismatch negativity (MMN) is a neurophysiological measure of auditory novelty detection that could serve as a translational biomarker of psychiatric disorders, such as schizophrenia. However, the replicability of its magnetoencephalographic (MEG) counterpart (MMNm) has been insufficiently addressed. In the current study, test-retest reliability of the MMNm response to both duration and omission deviants was evaluated over two MEG sessions in 16 healthy adults. MMNm amplitudes and latencies were obtained at both sensor- and source-level using a cortically-constrained minimum-norm approach. Intraclass correlations (ICC) were derived to assess stability of MEG responses over time. In addition, signal-to-noise ratios (SNR) and within-subject statistics were obtained in order to determine MMNm detectability in individual participants. ICC revealed robust values at both sensor- and source-level for both duration and omission MMNm amplitudes (ICC = 0.81-0.90), in particular in the right hemisphere, while moderate to strong values were obtained for duration MMNm and omission MMNm peak latencies (ICC = 0.74-0.88). Duration MMNm was robustly identified in individual participants with high SNR, whereas omission MMNm responses were only observed in half of the participants. Our data indicate that MMNm to unexpected duration changes and omitted sounds are highly reproducible, providing support for the use of MEG-parameters in basic and clinical research.


Assuntos
Percepção Auditiva/fisiologia , Córtex Cerebral/fisiologia , Potenciais Evocados Auditivos/fisiologia , Magnetoencefalografia/métodos , Processamento de Sinais Assistido por Computador , Adulto , Feminino , Humanos , Magnetoencefalografia/normas , Masculino , Reprodutibilidade dos Testes , Adulto Jovem
17.
J Neural Transm (Vienna) ; 124(11): 1489-1501, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28864916

RESUMO

Cognitive impairment has been proposed to be the core feature of schizophrenia (Sz). Transcranial direct current stimulation (tDCS) is a non-invasive form of brain stimulation which can improve cognitive function in healthy participants and in psychiatric patients with cognitive deficits. tDCS has been shown to improve cognition and hallucination symptoms in Sz, a disorder also associated with marked sensory processing deficits. Recent findings in healthy controls demonstrate that anodal tDCS increases auditory deviance detection, as measured by the brain-based event-related potential, mismatch negativity (MMN), which is a putative biomarker of Sz that has been proposed as a target for treatment of Sz cognition. This pilot study conducted a randomized, double-blind assessment of the effects of pre- and post-tDCS on MMN-indexed auditory discrimination in 12 Sz patients, moderated by auditory hallucination (AH) presence, as well as working memory performance. Assessments were conducted in three sessions involving temporal and frontal lobe anodal stimulation (to transiently excite local brain activity), and one control session involving 'sham' stimulation (meaning with the device turned off, i.e., no stimulation). Results demonstrated a trend for pitch MMN amplitude to increase with anodal temporal tDCS, which was significant in a subgroup of Sz individuals with AHs. Anodal frontal tDCS significantly increased WM performance on the 2-back task, which was found to positively correlate with MMN-tDCS effects. The findings contribute to our understanding of tDCS effects for sensory processing deficits and working memory performance in Sz and may have implications for psychiatric disorders with sensory deficits.


Assuntos
Variação Contingente Negativa/fisiologia , Transtornos da Memória/etiologia , Transtornos da Memória/terapia , Memória de Curto Prazo/fisiologia , Esquizofrenia/complicações , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação Acústica , Adolescente , Adulto , Método Duplo-Cego , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Projetos Piloto , Escalas de Graduação Psiquiátrica , Tempo de Reação/fisiologia , Adulto Jovem
18.
Brain Topogr ; 30(1): 136-148, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27752799

RESUMO

The auditory mismatch negativity (MMN) component of event-related potentials (ERPs) has served as a neural index of auditory change detection. MMN is elicited by presentation of infrequent (deviant) sounds randomly interspersed among frequent (standard) sounds. Deviants elicit a larger negative deflection in the ERP waveform compared to the standard. There is considerable debate as to whether the neural mechanism of this change detection response is due to release from neural adaptation (neural adaptation hypothesis) or from a prediction error signal (predictive coding hypothesis). Previous studies have not been able to distinguish between these explanations because paradigms typically confound the two. The current study disambiguated effects of stimulus-specific adaptation from expectation violation using a unique stimulus design that compared expectation violation responses that did and did not involve stimulus change. The expectation violation response without the stimulus change differed in timing, scalp distribution, and attentional modulation from the more typical MMN response. There is insufficient evidence from the current study to suggest that the negative deflection elicited by the expectation violation alone includes the MMN. Thus, we offer a novel hypothesis that the expectation violation response reflects a fundamentally different neural substrate than that attributed to the canonical MMN.


Assuntos
Adaptação Fisiológica/fisiologia , Percepção Auditiva/fisiologia , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica , Adulto , Atenção/fisiologia , Eletroencefalografia , Feminino , Humanos , Masculino
19.
Scand J Psychol ; 58(5): 409-421, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28901574

RESUMO

Our aim was to explore whether a multi-feature paradigm (Optimum-1) for eliciting mismatch negativity (MMN) would objectively capture difficulties in perceiving small sound contrasts in children with hearing impairment (HI) listening through their hearing aids (HAs) and/or cochlear implants (CIs). Children aged 5-7 years with HAs, CIs and children with normal hearing (NH) were tested in a free-field setting using a multi-feature paradigm with deviations in pitch, intensity, gap, duration, and location. There were significant mismatch responses across all subjects that were positive (p-MMR) for the gap and pitch deviants (F(1,43) = 5.17, p = 0.028 and F(1,43) = 6.56, p = 0.014, respectively) and negative (MMN) for the duration deviant (F(1,43) = 4.74, p = 0.035). Only the intensity deviant showed a significant group interaction with MMN in the HA group and p-MMR in the CI group (F(2,43) = 3.40, p = 0.043). The p-MMR correlated negatively with age, with the strongest correlation in the NH subjects. In the CI group, the late discriminative negativity (LDN) was replaced by a late positivity with a significant group interaction for the location deviant. Children with severe HI can be assessed through their hearing device with a fast multi-feature paradigm. For further studies a multi-feature paradigm including more complex speech sounds may better capture variation in auditory processing in these children.


Assuntos
Percepção Auditiva/fisiologia , Encéfalo/fisiopatologia , Perda Auditiva/fisiopatologia , Testes Auditivos/métodos , Estimulação Acústica , Criança , Pré-Escolar , Implantes Cocleares , Eletroencefalografia , Potenciais Evocados Auditivos , Feminino , Humanos , Masculino
20.
Neuroimage ; 142: 645-655, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27431760

RESUMO

OBJECTIVES: Auditory and visual deviant stimuli evoke mismatch negativity (MMN) responses, which can be recorded with electroencephalography (EEG) and magnetoencephalography (MEG). However, little is known about the role of neuronal oscillations in encoding of rare stimuli. We aimed at verifying the existence of a mechanism for the detection of deviant visual stimuli on the basis of oscillatory responses, so-called visual mismatch oscillatory response (vMOR). METHODS: Peripheral visual stimuli in an oddball paradigm, standard vs. deviant (7:1), were presented to twenty healthy subjects. The oscillatory responses to an infrequent change in the direction of moving peripheral stimuli were recorded with a 60-channel EEG system. In order to enhance the detection of oscillatory responses, we used the common spatial pattern (CSP) algorithm, designed for the optimal extraction of changes in the amplitude of oscillations. RESULTS: Both standard and deviant visual stimuli produced Event-Related Desynchronization (ERD) and Synchronization (ERS) primarily in the occipito-parietal cortical areas. ERD and ERS had overlapping time-courses and peaked at about 500-730 ms. These oscillatory responses, however, were significantly stronger for the deviant than for the standard stimuli. A difference between the oscillatory responses to deviant and standard stimuli thus reflects the presence of vMOR. CONCLUSIONS: The present study shows that the detection of visual deviant stimuli can be reflected in both synchronization and desynchronization of neuronal oscillations. This broadens our knowledge about the brain mechanisms encoding deviant sensory stimuli.


Assuntos
Sincronização de Fases em Eletroencefalografia/fisiologia , Potenciais Evocados/fisiologia , Lobo Occipital/fisiologia , Lobo Parietal/fisiologia , Processamento de Sinais Assistido por Computador , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa