Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Transl Med ; 21(1): 701, 2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37807060

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is closely associated with steroid hormones and their receptors affected by lipid metabolism. Recently, there has been growing interest in the carcinogenic role of NR3C1, the sole gene responsible for encoding glucocorticoid receptor. However, the specific role of NR3C1 in ccRCC remains unclear. The present study was thus developed to explore the underlying mechanism of NR3C1's carcinogenic effects in ccRCC. METHODS: Expression of NR3C1 was verified by various tumor databases and assessed using RT-qPCR and western blot. Stable transfected cell lines of ccRCC with NR3C1 knockdown were constructed, and a range of in vitro and in vivo experiments were performed to examine the effects of NR3C1 on ccRCC proliferation and migration. Transcriptomics and lipidomics sequencing were then conducted on ACHN cells, which were divided into control and sh-NR3C1 group. Finally, the sequencing results were validated using transmission electron microscopy, mitochondrial membrane potential assay, immunofluorescence co-localization, cell immunofluorescent staining, and Western blot. The rescue experiments were designed to investigate the relationship between endoplasmic reticulum stress (ER stress) and mitophagy in ccRCC cells after NR3C1 knockdown, as well as the regulation of their intrinsic signaling pathways. RESULTS: The expression of NR3C1 in ccRCC cells and tissues was significantly elevated. The sh-NR3C1 group, which had lower levels of NR3C1, exhibited a lower proliferation and migration capacity of ccRCC than that of the control group (P < 0.05). Then, lipidomic and transcriptomic sequencing showed that lipid metabolism disorders, ER stress, and mitophagy genes were enriched in the sh-NR3C1 group. Finally, compared to the control group, ER stress and mitophagy were observed in the sh-NR3C1 group, while the expression of ATF6, CHOP, PINK1, and BNIP3 was also up-regulated (P < 0.05). Furthermore, Ceapin-A7, an inhibitor of ATF6, significantly down-regulated the expression of PINK1 and BNIP3 (P < 0.05), and significantly increased the proliferation and migration of ccRCC cells (P < 0.05). CONCLUSIONS: This study confirms that knockdown of NR3C1 activates ER stress and induces mitophagy through the ATF6-PINK1/BNIP3 pathway, resulting in reduced proliferation and migration of ccRCC. These findings indicate potential novel targets for clinical treatment of ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Mitofagia/genética , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático , Proliferação de Células/genética , Proteínas Quinases/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
2.
Redox Biol ; 38: 101767, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137712

RESUMO

Sepsis is the major cause of acute kidney injury (AKI) associated with high mortality rates. Mitochondrial dysfunction contributes to the pathophysiology of septic AKI. Mitophagy is an important mitochondrial quality control mechanism that selectively eliminates damaged mitochondria, but its role and regulation in septic AKI remain largely unknown. Here, we demonstrate the induction of mitophagy in mouse models of septic AKI induced by lipopolysaccharide (LPS) treatment or by cecal ligation and puncture. Mitophagy was also induced in cultured proximal tubular epithelial cells exposed to LPS. Induction of mitophagy under these experimental setting was suppressed by pink1 or park2 knockout, indicating the role of the PINK1/PARK2 pathway of mitophagy in septic AKI. In addition, sepsis induced more severe kidney injury and cell apoptosis in pink1 or park2 knockout mice than in wild-type mice, suggesting a beneficial role of mitophagy in septic AKI. Furthermore, in cultured renal tubular cells treated with LPS, knockdown of pink1 or park2 inhibited mitochondrial accumulation of the autophagy adaptor optineurin (OPTN) and silencing Optn inhibited LPS-induced mitophagy. Taken together, these findings suggest that the PINK1/PARK2 pathway of mitophagy plays an important role in mitochondrial quality control, tubular cell survival, and renal function in septic AKI.


Assuntos
Injúria Renal Aguda , Proteínas de Ciclo Celular/genética , Proteínas de Membrana Transportadoras/genética , Mitofagia , Proteínas Quinases , Ubiquitina-Proteína Ligases , Injúria Renal Aguda/genética , Animais , Camundongos , Camundongos Knockout , Mitocôndrias , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa