Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
IUBMB Life ; 75(4): 289-310, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36518060

RESUMO

The spindle assembly checkpoint (SAC) is a cellular surveillance mechanism that functions to ensure accurate chromosome segregation during mitosis. Macromolecular complexes known as kinetochores, act as the interface of sister chromatid attachment to spindle microtubules. In response to unattached kinetochores, the SAC activates its effector, the mitotic checkpoint complex (MCC), which delays mitotic exit until all sister chromatid pairs have achieved successful attachment to the bipolar mitotic spindle. Formation of the MCC (composed of Mad2, BubR1, Bub3 and Cdc20) is regulated by an Mps1 kinase-dependent phosphorylation signaling cascade which assembles and repositions components of the MCC onto a catalytic scaffold. This scaffold functions to catalyze the conversion of the HORMA-domain protein Mad2 from an "inactive" open-state (O-Mad2) into an "active" closed-Mad2 (C-Mad2), and simultaneous Cdc20 binding. Here, our current understanding of the molecular mechanisms underlying the kinetic barrier to C-Mad2:Cdc20 formation will be reviewed. Recent progress in elucidating the precise molecular choreography orchestrated by the catalytic scaffold to rapidly assemble the MCC will be examined, and unresolved questions will be highlighted. Ultimately, understanding how the SAC rapidly activates the checkpoint not only provides insights into how cells maintain genomic integrity during mitosis, but also provides a paradigm for how cells can utilize molecular switches, including other HORMA domain-containing proteins, to make rapid changes to a cell's physiological state.


Assuntos
Cinetocoros , Proteínas Serina-Treonina Quinases , Cinetocoros/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Transdução de Sinais , Fuso Acromático , Mitose , Catálise
2.
EMBO Rep ; 22(7): e52242, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34013668

RESUMO

During metaphase, in response to improper kinetochore-microtubule attachments, the spindle assembly checkpoint (SAC) activates the mitotic checkpoint complex (MCC), an inhibitor of the anaphase-promoting complex/cyclosome (APC/C). This process is orchestrated by the kinase Mps1, which initiates the assembly of the MCC onto kinetochores through a sequential phosphorylation-dependent signalling cascade. The Mad1-Mad2 complex, which is required to catalyse MCC formation, is targeted to kinetochores through a direct interaction with the phosphorylated conserved domain 1 (CD1) of Bub1. Here, we present the crystal structure of the C-terminal domain of Mad1 (Mad1CTD ) bound to two phosphorylated Bub1CD1 peptides at 1.75 Å resolution. This interaction is mediated by phosphorylated Bub1 Thr461, which not only directly interacts with Arg617 of the Mad1 RLK (Arg-Leu-Lys) motif, but also directly acts as an N-terminal cap to the CD1 α-helix dipole. Surprisingly, only one Bub1CD1 peptide binds to the Mad1 homodimer in solution. We suggest that this stoichiometry is due to inherent asymmetry in the coiled-coil of Mad1CTD and has implications for how the Mad1-Bub1 complex at kinetochores promotes efficient MCC assembly.


Assuntos
Proteínas de Ciclo Celular , Cinetocoros , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos , Cinetocoros/metabolismo , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Fosforilação , Transdução de Sinais , Fuso Acromático/metabolismo
3.
Breast Cancer Res Treat ; 185(2): 331-341, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33130993

RESUMO

PURPOSE: The study aimed to investigate the role of spindle assembly checkpoint (SAC) in cancer cells with compromised genomic integrity. Chromosomal instability (CIN) gives cancer cells an adaptive advantage. However, maintaining the balance of this instability is crucial for the survival of cancer cells as it could lead them to the mitotic catastrophe. Therefore, cancer cells adapt to the detrimental effects of CIN. We hypothesized that changes in SAC might be one such adaptation mechanism. The focus of the study was BUB1B, an integral part of the checkpoint. METHODS: Clinical datasets were analyzed to compare expression levels of SAC genes in normal tissue vs. breast carcinoma. The effects of the reduction of BUB1B expression was examined utilizing RNA interference method with siRNAs. In vitro viability, clonogenicity, apoptosis, and SAC activity levels of a variety of breast cancer (BrCa) cell lines, as well as in vivo tumorigenicity of the triple-negative breast cancer (TNBC) cell line MDA-MB-468, were tested. Additionally, the chromosomal stability of these cells was tested by immunofluorescence staining and flow cytometry. RESULTS: In clinical breast cancer datasets, SAC genes were elevated in BrCa with BUB1B having the highest fold change. BUB1B overexpression was associated with a decreased probability of overall survival. The knockdown of BUB1B resulted in reduced viability and clonogenicity in BrCa cell lines and a significant increase in apoptosis and cell death. However, the viability and apoptosis levels of the normal breast epithelial cell line, MCF12A, were not affected. BUB1B knockdown also impaired chromosome alignment and resulted in acute chromosomal abnormalities. We also showed that BUB1B knockdown on the MDA-MB-468 cell line decreases tumor growth in mice. CONCLUSIONS: A functional spindle assembly checkpoint is essential for the survival of BrCa cells. BUB1B is a critical factor in SAC, and therefore breast cancer cell survival. Impairment of BUB1B has damaging effects on cancer cell viability and tumorigenicity, especially on the more aggressive variants of BrCa.


Assuntos
Neoplasias da Mama , Proteínas de Ciclo Celular , Pontos de Checagem da Fase M do Ciclo Celular , Proteínas Serina-Treonina Quinases , Animais , Neoplasias da Mama/genética , Proteínas de Ciclo Celular/genética , Sobrevivência Celular/genética , Instabilidade Cromossômica/genética , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/genética , Camundongos , Proteínas Serina-Treonina Quinases/genética
4.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360748

RESUMO

Research on the budding yeast Saccharomyces cerevisiae has yielded fundamental discoveries on highly conserved biological pathways and yeast remains the best-studied eukaryotic cell in the world. Studies on the mitotic cell cycle and the discovery of cell cycle checkpoints in budding yeast has led to a detailed, although incomplete, understanding of eukaryotic cell cycle progression. In multicellular eukaryotic organisms, uncontrolled aberrant cell division is the defining feature of cancer. Some of the most successful classes of anti-cancer chemotherapeutic agents are mitotic poisons. Mitotic poisons are thought to function by inducing a mitotic spindle checkpoint-dependent cell cycle arrest, via the assembly of the highly conserved mitotic checkpoint complex (MCC), leading to apoptosis. Even in the presence of mitotic poisons, some cancer cells continue cell division via 'mitotic slippage', which may correlate with a cancer becoming refractory to mitotic poison chemotherapeutic treatments. In this review, knowledge about budding yeast cell cycle control is explored to suggest novel potential drug targets, namely, specific regions in the highly conserved anaphase-promoting complex/cyclosome (APC/C) subunits Apc1 and/or Apc5, and in a specific N-terminal region in the APC/C co-factor cell division cycle 20 (Cdc20), which may yield molecules which block 'mitotic slippage' only in the presence of mitotic poisons.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Pontos de Checagem do Ciclo Celular , Mitose , Neoplasias , Saccharomyces cerevisiae , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Apoptose/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Mitose/efeitos dos fármacos , Mitose/genética , Neoplasias/genética , Neoplasias/metabolismo , Venenos/química , Venenos/farmacologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
5.
J Biol Chem ; 290(4): 2431-43, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25505175

RESUMO

The spindle checkpoint ensures accurate chromosome segregation by monitoring kinetochore-microtubule attachment. Unattached or tensionless kinetochores activate the checkpoint and enhance the production of the mitotic checkpoint complex (MCC) consisting of BubR1, Bub3, Mad2, and Cdc20. MCC is a critical checkpoint inhibitor of the anaphase-promoting complex/cyclosome, a ubiquitin ligase required for anaphase onset. The N-terminal region of BubR1 binds to both Cdc20 and Mad2, thus nucleating MCC formation. The middle region of human BubR1 (BubR1M) also interacts with Cdc20, but the nature and function of this interaction are not understood. Here we identify two critical motifs within BubR1M that contribute to Cdc20 binding and anaphase-promoting complex/cyclosome inhibition: a destruction box (D box) and a phenylalanine-containing motif termed the Phe box. A BubR1 mutant lacking these motifs is defective in MCC maintenance in mitotic human cells but is capable of supporting spindle-checkpoint function. Thus, the BubR1M-Cdc20 interaction indirectly contributes to MCC homeostasis. Its apparent dispensability in the spindle checkpoint might be due to functional duality or redundant, competing mechanisms.


Assuntos
Caderinas/metabolismo , Proteínas Cdc20/metabolismo , Mitose , Proteínas Serina-Treonina Quinases/metabolismo , Motivos de Aminoácidos , Antígenos CD , Ciclo Celular , Inativação Gênica , Glutationa Transferase/metabolismo , Células HeLa , Homeostase , Humanos , Cinetocoros/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Saccharomyces cerevisiae/metabolismo , Fuso Acromático , Ubiquitina/metabolismo
6.
J Biol Chem ; 289(16): 11367-11373, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24596092

RESUMO

The spindle assembly checkpoint (SAC) ensures the faithful segregation of the genome during mitosis by ensuring that sister chromosomes form bipolar attachments with microtubules of the mitotic spindle. p31(Comet) is an antagonist of the SAC effector Mad2 and promotes silencing of the SAC and mitotic progression. However, p31(Comet) interacts with Mad2 throughout the cell cycle. We show that p31(Comet) binds Mad2 solely in an inhibitory manner. We demonstrate that attenuating the affinity of p31(Comet) for Mad2 by phosphorylation promotes SAC activity in mitosis. Specifically, phosphorylation of Ser-102 weakens p31(Comet)-Mad2 binding and enhances p31(Comet)-mediated bypass of the SAC. Our results provide the first evidence for regulation of p31(Comet) and demonstrate a previously unknown event controlling SAC activity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Proteínas Mad2/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/genética , Células HeLa , Humanos , Proteínas Mad2/genética , Proteínas Nucleares/genética , Fosforilação/fisiologia , Ligação Proteica/fisiologia
7.
J Biol Chem ; 289(34): 23928-37, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25012665

RESUMO

The mitotic checkpoint (or spindle assembly checkpoint) is a fail-safe mechanism to prevent chromosome missegregation by delaying anaphase onset in the presence of defective kinetochore-microtubule attachment. The target of the checkpoint is the E3 ubiquitin ligase anaphase-promoting complex/cyclosome. Once all chromosomes are properly attached and bioriented at the metaphase plate, the checkpoint needs to be silenced. Previously, we and others have reported that TRIP13 AAA-ATPase binds to the mitotic checkpoint-silencing protein p31(comet). Here we show that endogenous TRIP13 localizes to kinetochores. TRIP13 knockdown delays metaphase-to-anaphase transition. The delay is caused by prolonged presence of the effector for the checkpoint, the mitotic checkpoint complex, and its association and inhibition of the anaphase-promoting complex/cyclosome. These results suggest that TRIP13 is a novel mitotic checkpoint-silencing protein. The ATPase activity of TRIP13 is essential for its checkpoint function, and interference with TRIP13 abolished p31(comet)-mediated mitotic checkpoint silencing. TRIP13 overexpression is a hallmark of cancer cells showing chromosomal instability, particularly in certain breast cancers with poor prognosis. We suggest that premature mitotic checkpoint silencing triggered by TRIP13 overexpression may promote cancer development.


Assuntos
Proteínas de Transporte/fisiologia , Mitose/fisiologia , ATPases Associadas a Diversas Atividades Celulares , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/metabolismo , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Proteínas Mad2/metabolismo , Microscopia de Fluorescência , Proteínas Nucleares/metabolismo , Interferência de RNA
8.
J Biol Chem ; 288(49): 35149-58, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24151075

RESUMO

MPS1 kinase is an essential component of the spindle assembly checkpoint (SAC), but its functioning mechanisms are not fully understood. We have shown recently that direct interaction between BUBR1 and MAD2 is critical for assembly and function of the human mitotic checkpoint complex (MCC), the SAC effector. Here we report that inhibition of MPS1 kinase activity by reversine disrupts BUBR1-MAD2 as well as CDC20-MAD2 interactions, causing premature activation of the anaphase-promoting complex/cyclosome. The effect of MPS1 inhibition is likely due to reduction of closed MAD2 (C-MAD2), as expressing a MAD2 mutant (MAD2(L13A)) that is locked in the C conformation rescued the checkpoint defects. In the presence of reversine, exogenous C-MAD2 does not localize to unattached kinetochores but is still incorporated into the MCC. Contrary to a previous report, we found that sustained MPS1 activity is required for maintaining both the MAD1·C-MAD2 complex and open MAD2 (O-MAD2) at unattached kinetochores to facilitate C-MAD2 production. Additionally, mitotic phosphorylation of BUBR1 is also affected by MPS1 inhibition but seems dispensable for MCC assembly. Our results support the notion that MPS1 kinase promotes C-MAD2 production and subsequent MCC assembly to activate the SAC.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Mad2/química , Proteínas Mad2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/química , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Células HeLa , Humanos , Cinetocoros/efeitos dos fármacos , Cinetocoros/metabolismo , Proteínas Mad2/genética , Mitose , Morfolinas/farmacologia , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Conformação Proteica , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Purinas/farmacologia , Transdução de Sinais , Fuso Acromático/metabolismo
9.
Adv Sci (Weinh) ; : e2406009, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39018254

RESUMO

The spindle assembly checkpoint (SAC) ensures chromosome segregation fidelity by manipulating unattached kinetochore-dependent assembly of the mitotic checkpoint complex (MCC). The MCC binds to and inhibits the anaphase promoting complex/cyclosome (APC/C) to postpone mitotic exit. However, the mechanism by which unattached kinetochores mediate MCC formation is not yet fully understood. Here, it is shown that CCDC68 is an outer kinetochore protein that preferentially localizes to unattached kinetochores. Furthermore, CCDC68 interacts with the SAC factor CDC20 to inhibit its autoubiquitination and MCC disassembly. Therefore, CCDC68 restrains APC/C activation to ensure a robust SAC and allow sufficient time for chromosome alignment, thus ensuring chromosomal stability. Hence, the study reveals that CCDC68 is required for CDC20-dependent MCC stabilization to maintain mitotic checkpoint activation.

10.
Zhongguo Fei Ai Za Zhi ; 26(4): 310-318, 2023 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-37183646

RESUMO

Spindle assembly checkpoint (SAC) is a protective mechanism for cells to undergo accurate mitosis. SAC prevented chromosome segregation when kinetochores were not, or incorrectly attached to microtubules in the anaphase of mitosis, thus avoiding aneuploid chromosomes in daughter cells. Aneuploidy and altered expression of SAC component proteins are common in different cancers, including lung cancer. Therefore, SAC is a potential new target for lung cancer therapy. Five small molecule inhibitors of monopolar spindle 1 (MPS1), an upstream component protein of SAC, have entered clinical trials. This article introduces the biological functions of SAC, summarizes the abnormal expression of SAC component proteins in various cancers and the research progress of MPS1 inhibitors, and expects to provide a reference for the future development of lung cancer therapeutic strategies targeting SAC components.
.


Assuntos
Proteínas de Ciclo Celular , Neoplasias Pulmonares , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fuso Acromático/genética , Fuso Acromático/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo
11.
Curr Cancer Drug Targets ; 21(5): 401-415, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33511944

RESUMO

The spindle assembly checkpoint (SAC) is a surveillance mechanism that prevents mitotic exit at the metaphase-to-anaphase transition until all chromosomes have established correct bipolar attachment to spindle microtubules. Activation of SAC relies on the assembly of the mitotic checkpoint complex (MCC), which requires conformational change from inactive open Mad2 (OMad2) to the active closed Mad2 (C-Mad2) at unattached kinetochores. The Mad2-binding protein p31comet plays a key role in controlling timely mitotic exit by promoting SAC silencing, through preventing Mad2 activation and promoting MCC disassembly. Besides, increasing evidences highlight the p31comet potential as target for cancer therapy. Here, we provide an updated overview of the functional significance of p31comet in mitotic progression, and discuss the potential of deregulated expression of p31comet in cancer and in therapeutic strategies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Neoplasias , Proteínas Nucleares , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Descoberta de Drogas , Regulação Neoplásica da Expressão Gênica , Humanos , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
12.
Curr Biol ; 30(2): 335-343.e5, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31928870

RESUMO

Accurate chromosome segregation requires bipolar attachment of kinetochores to spindle microtubules. A conserved surveillance mechanism, the spindle assembly checkpoint (SAC), responds to lack of kinetochore-microtubule connections and delays anaphase onset until all chromosomes are bipolarly attached [1]. SAC signaling fires at kinetochores and involves a soluble mitotic checkpoint complex (MCC) that inhibits the anaphase-promoting complex (APC) [2, 3]. The mitotic delay imposed by SAC, however, is not everlasting. If kinetochores fail to establish bipolar connections, cells can escape from the SAC-induced mitotic arrest through a process called mitotic slippage [4]. Mitotic slippage occurs in the presence of SAC signaling at kinetochores [5, 6], but whether and how MCC stability and APC inhibition are actively controlled during slippage is unknown. The PP1 phosphatase has emerged as a key factor in SAC silencing once all kinetochores are bipolarly attached [7, 8]. PP1 turns off SAC signaling through dephosphorylation of the SAC scaffold Knl1/Blinkin at kinetochores [9-11]. Here, we show that, in budding yeast, PP1 is also required for mitotic slippage. However, its involvement in this process is not linked to kinetochores but rather to MCC stability. We identify S268 of Mad3 as a critical target of PP1 in this process. Mad3 S268 dephosphorylation destabilizes the MCC without affecting the initial SAC-induced mitotic arrest. Conversely, it accelerates mitotic slippage and overcomes the slippage defect of PP1 mutants. Thus, slippage is not the mere consequence of incomplete APC inactivation that brings about mitotic exit, as originally proposed, but involves the exertive antagonism between kinases and phosphatases.


Assuntos
Proteínas de Ciclo Celular/genética , Segregação de Cromossomos , Pontos de Checagem da Fase M do Ciclo Celular/genética , Mitose/genética , Proteínas Nucleares/genética , Proteína Fosfatase 1/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Biol Open ; 8(6)2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31182632

RESUMO

The spindle assembly checkpoint (SAC) prevents erroneous chromosome segregation by delaying mitotic progression when chromosomes are incorrectly attached to the mitotic spindle. This delay is mediated by mitotic checkpoint complexes (MCCs), which assemble at unattached kinetochores and repress the activity of the anaphase promoting complex/cyclosome (APC/C). The cellular localizations of MCCs are likely critical for proper SAC function, yet remain poorly defined. We recently demonstrated that in mammalian cells, in which the nuclear envelope disassembles during mitosis, MCCs diffuse throughout the spindle region and cytoplasm. Here, we employed an approach using binucleate yeast zygotes to examine the localization dynamics of SAC effectors required for MCC assembly and function in budding yeast, in which the nuclear envelope remains intact throughout mitosis. Our findings indicate that in yeast, MCCs are confined to the nuclear compartment and excluded from the cytoplasm during mitosis.

14.
Chinese Journal of Lung Cancer ; (12): 310-318, 2023.
Artigo em Chinês | WPRIM | ID: wpr-982161

RESUMO

Spindle assembly checkpoint (SAC) is a protective mechanism for cells to undergo accurate mitosis. SAC prevented chromosome segregation when kinetochores were not, or incorrectly attached to microtubules in the anaphase of mitosis, thus avoiding aneuploid chromosomes in daughter cells. Aneuploidy and altered expression of SAC component proteins are common in different cancers, including lung cancer. Therefore, SAC is a potential new target for lung cancer therapy. Five small molecule inhibitors of monopolar spindle 1 (MPS1), an upstream component protein of SAC, have entered clinical trials. This article introduces the biological functions of SAC, summarizes the abnormal expression of SAC component proteins in various cancers and the research progress of MPS1 inhibitors, and expects to provide a reference for the future development of lung cancer therapeutic strategies targeting SAC components.
.


Assuntos
Humanos , Proteínas de Ciclo Celular/metabolismo , Fuso Acromático/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/genética , Neoplasias Pulmonares/metabolismo
15.
Exp Hematol Oncol ; 6: 19, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28670501

RESUMO

Nuclear PTEN plays an important role during mitosis. To understand the molecular basis by which PTEN mediates mitotic progression, we examined whether PTEN regulated the formation of mitotic checkpoint complex (MCC). We observed that arsenic trioxide, a mitotic inducer, stimulated nuclear translocation of PTEN in a time-dependent manner. PTEN physically interacted with Cdc20 and Mad2, two important components of MCC. Arsenic treatment diminished the physical association of PTEN with BubR1 and Bub3 but not with Cdc20 and Mad2. Our further studies revealed that downregulation of PTEN via RNAi enhanced formation of MCC during the cell cycle. Moreover, PTEN silencing induced chromosomal instability. Given the crucial role of PTEN in suppressing tumor development, our study strongly suggests that PTEN also functions to maintain chromosomal stability, partly through suppressing unscheduled formation of MCC.

16.
Cell Cycle ; 15(2): 225-33, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26652909

RESUMO

The spindle checkpoint prevents activation of the anaphase-promoting complex (APC/C) until all chromosomes are correctly attached to the mitotic spindle. Early in mitosis, the mitotic checkpoint complex (MCC) inactivates the APC/C by binding the APC/C activating protein CDC20 until the chromosomes are properly aligned and attached to the mitotic spindle, at which point MCC disassembly releases CDC20 to activate the APC/C. Once the APC/C is activated, it targets cyclin B and securin for degradation, and the cell progresses into anaphase. While phosphorylation is known to drive many of the events during the checkpoint, the precise molecular mechanisms regulating spindle checkpoint maintenance and inactivation are still poorly understood. We sought to determine the role of mitotic phosphatases during the spindle checkpoint. To address this question, we treated spindle checkpoint-arrested cells with various phosphatase inhibitors and examined the effect on the MCC and APC/C activation. Using this approach we found that 2 phosphatase inhibitors, calyculin A and okadaic acid (1 µM), caused MCC dissociation and APC/C activation leading to cyclin A and B degradation in spindle checkpoint-arrested cells. Although the cells were able to degrade cyclin B, they did not exit mitosis as evidenced by high levels of Cdk1 substrate phosphorylation and chromosome condensation. Our results provide the first evidence that phosphatases are essential for maintenance of the MCC during operation of the spindle checkpoint.


Assuntos
Anáfase/efeitos dos fármacos , Cromossomos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Fosfoproteínas Fosfatases/genética , Fuso Acromático/efeitos dos fármacos , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteína Quinase CDC2 , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Cromossomos/química , Ciclina A/genética , Ciclina A/metabolismo , Ciclina B/genética , Ciclina B/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Regulação da Expressão Gênica , Células HeLa , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Toxinas Marinhas , Ácido Okadáico/farmacologia , Oxazóis/farmacologia , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/metabolismo , Fosforilação/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Securina/genética , Securina/metabolismo , Transdução de Sinais , Fuso Acromático/química
17.
AIMS Mol Sci ; 3(4): 597-634, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28920074

RESUMO

The mitotic checkpoint is a specialized signal transduction pathway that contributes to the fidelity of chromosome segregation. The signaling of the checkpoint originates from defective kinetochore-microtubule interactions and leads to formation of the mitotic checkpoint complex (MCC), a highly potent inhibitor of the Anaphase Promoting Complex/Cyclosome (APC/C)-the E3 ubiquitin ligase essential for anaphase onset. Many important questions concerning the MCC and its interaction with APC/C have been intensively investigated and debated in the past 15 years, such as the exact composition of the MCC, how it is assembled during a cell cycle, how it inhibits APC/C, and how the MCC is disassembled to allow APC/C activation. These efforts have culminated in recently reported structure models for human MCC:APC/C supra-complexes at near-atomic resolution that shed light on multiple aspects of the mitotic checkpoint mechanisms. However, confusing statements regarding the MCC are still scattered in the literature, making it difficult for students and scientists alike to obtain a clear picture of MCC composition, structure, function and dynamics. This review will comb through some of the most popular concepts or misconceptions about the MCC, discuss our current understandings, present a synthesized model on regulation of CDC20 ubiquitination, and suggest a few future endeavors and cautions for next phase of MCC research.

18.
Cell Cycle ; 14(9): 1459-70, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25789401

RESUMO

The Human Papillomavirus (HPV) E2 protein, which inhibits the E6 and E7 viral oncogenes, is believed to have anti-oncogenic properties. Here, we challenge this view and show that HPV-18 E2 over-activates the Spindle Assembly Checkpoint (SAC) and induces DNA breaks in mitosis followed by aneuploidy. This phenotype is associated with interaction of E2 with the Mitotic Checkpoint Complex (MCC) proteins Cdc20, MAD2 and BUBR1. While BUBR1 silencing rescues the mitotic phenotype induced by E2, p53 silencing or presence of E6/E7 (inactivating p53 and increasing BUBR1 levels respectively) both amplify it. This work pinpoints E2 as a key protein in the initiation of HPV-induced cervical cancer and identifies the SAC as a target for oncogenic pathogens. Moreover, our results suggest a role of p53 in regulating the mitotic process itself and highlight SAC over-activation in a p53-negative context as a highly pathogenic event.


Assuntos
Aneuploidia , Papillomavirus Humano 18/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fuso Acromático/metabolismo , Neoplasias do Colo do Útero/metabolismo , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Regulação da Expressão Gênica , Células HeLa , Interações Hospedeiro-Patógeno , Papillomavirus Humano 18/genética , Humanos , Queratinócitos/metabolismo , Queratinócitos/virologia , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/virologia , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Transdução de Sinais , Fuso Acromático/genética , Fuso Acromático/virologia , Fatores de Tempo , Transfecção , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/virologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa