RESUMO
Long-term pure forest (PF) management and successive planting has result resulted in "low-efficiency artificial forests" in large areas. However, controversy persists over the promoting effect of introduction of broadleaf tree species on production efficiency of PF. This study hypothesised that introduced broadleaf tree species can significantly promote both water-nutrient use efficiency and gross primary productivity (GPP)of PF. Tree ring chronologies, water source, water use efficiency and GPP were analysed in coniferous Cunninghamia lanceolata and broadleaved Phoebe zhennan growing over the past three decades. The introduction of P. zhennan into C. lanceolata plantations resulted in inter-specific competition for water, probably because of the similarity of the main water source of these two tree species. However, C. lanceolata absorbed more water with a higher nutrient level from the 40-60-cm soil layer in mixed forests (MF). Although the co-existing tree species limited the basal area increment and growth rates of C. lanceolata in MF plots, the acquisition of dissolved nutrients from the fertile topsoil layer were enhanced; this increased the water use efficiency and GPP of MF plots. To achieve better ecological benefits and GPP, MFs should be constructed in southern China.
RESUMO
BACKGROUND AND AIMS: Submediterranean areas are rich ecotones, where slight modifications in environmental conditions can lead to substantial changes in the composition of plant communities. They thus offer an ideal scenario to examine plant community assembly. In this study, we followed a trait-based approach including intraspecific variability to elucidate (1) the relationship between niche occupancy components and species richness, (2) the processes governing the assembly of these communities and (3) the contribution of intraspecific trait variability in shaping the functional trait space. METHODS: We measured eight morphological and chemical traits in 405 individuals across 60 plots located in different forest communities (Mediterranean, Eurosiberian and Mixed) coexisting within a submediterranean ecosystem in central Spain. We calculated three niche occupancy components related to Hutchinson's n-dimensional hypervolumes: the total functional volume of the community, the functional overlap between species within the community and the average functional volume per species, and then used null models to explore the relative importance of habitat filtering, limiting similarity and intraspecific variability as assembly patterns. KEY RESULTS: Both habitat filtering and niche differentiation drive the community assembly of Mediterranean communities, whereas limiting similarity and hierarchical competition shape Eurosiberian communities. Intraspecific responses were mostly explained by shifts in species niches across the functional space (changes in the position of the centroids of hypervolumes). CONCLUSIONS: Different assembly mechanisms govern the structure of Mediterranean, Eurosiberian and Mixed plant communities. Combining niche occupancy components with a null model approach at different spatial scales offers new insights into the mechanisms driving plant community assembly. Consideration of intraspecific variability is key for understanding the mechanisms governing species coexistence in species-rich ecotones.
Assuntos
Ecossistema , Plantas , Humanos , Florestas , Fenótipo , OcupaçõesRESUMO
The assembly of biological communities depends on deterministic and stochastic processes whose influence varies across spatial and temporal scales. Although ectomycorrhizal (ECM) fungi play a key role in forest ecosystems, our knowledge on ECM community assembly processes and their dependency on spatial scales is still scarce. We analysed the assembly processes operating on ECM fungal communities associated with Cistus albidus L. and Quercus spp. in Mediterranean mixed forests (Southern Spain), for which root tip ECM fungi were characterized by high-throughput sequencing. The relative contribution of deterministic and stochastic processes that govern the ECM fungal community assembly was inferred by using phylogenetic and compositional turnover descriptors across spatial scales. Our results revealed that stochastic processes had a significantly higher contribution than selection on root tip ECM fungal community assembly. The strength of selection decreased at the smallest scale and it was linked to the plant host identity and the environment. Dispersal limitation increased at finer scales, whilst drift showed the opposite pattern likely suggesting a main influence of priority effects on ECM fungal community assembly. This study highlights the potential of phylogeny to infer ECM fungal community responses and brings new insights into the ecological processes affecting the structure and dynamics of Mediterranean forests.
Assuntos
Micobioma , Micorrizas , Biodiversidade , Ecossistema , Florestas , Micorrizas/fisiologia , Filogenia , Microbiologia do SoloRESUMO
The Hyrcanian Forest holds broad leaf forest remnants dating back to the early Cenozoic Era, which once covered a vast area of the North Temperate Zone. Today, many rivers within this region have been altered by human activities and urgently need rehabilitation. In this regard, 35 wadeable rivers including 14 reference and impacted sites were investigated to determine how different human pressures altered riverine landscapes and habitats. Hence, five common human pressures (agriculture, urbanization, aquaculture, dams, aggregate mining) were identified, then the riverine landscape and habitat condition of each site were assessed. At each site, 17 aquatic, riparian, and terrestrial features, including abiotic and biotic substrate types, were investigated. The number and ratio of pressure-influenced channel features and substrate types differed from those in reference sites. Reference sites were dominated by microlithal, mesolithal, and macrolithal abiotic substrates and large wood, algae, and coarse particulate organic matter biotic substrates. Urbanized sites were most altered and dominated by single channels, steep unvegetated riprap banks, and algae substrate. The results provide valuable information for managers and decision-makers to restore riverine ecosystems considering the impaired parameters resulting from human pressures.
Assuntos
Ecossistema , Rios , Monitoramento Ambiental/métodos , Florestas , Humanos , Irã (Geográfico) , PlantasRESUMO
Emergent diseases are an increasing problem in forests worldwide. Exotic pathogens are now threatening forests where pathogens have not traditionally been considered to be major ecological drivers of tree demography, such as water-limited Mediterranean forests. However, how pathogens might limit regeneration in invaded forests is largely unknown. Here we used fungicide to analyse the impact of soil-borne oomycete pathogens on seedling establishment at community level in Mediterranean forests invaded by the exotic oomycete Phytophthora cinnamomi. Fungicide effects were modelled as a function of the tree neighbourhood composition, the seed mass of the target species, and the abiotic environment. Fungicide application had positive effects on seedling performance that varied in magnitude and spatial structure among coexisting species. Seed mass predicted fungicide effects on seedling emergence, but not on survival or growth. Positive fungicide effects were modulated by levels of abiotic resources, mainly water, increasing with soil moisture. Our results support a novel role for soil-borne oomycete pathogens as one more axis of the regeneration niche of woody species in water-limited forests. Given the increasing numbers of exotic oomycete pathogens worldwide, more research is needed to understand the role of this relevant microbial group as a factor shaping seedling establishment.
Assuntos
Phytophthora , Solo , Florestas , Plântula , ÁrvoresRESUMO
Forest roads alter the biotic and abiotic components of ecosystems, modifying temperature, humidity, wind speed, and light availability that, in turn, cause changes in plant community composition and diversity. We aim at investigating and comparing the diversity of herbaceous species along main and secondary forest roads in a temperate-managed hornbeam-beech forest, north of Iran. Sixteen transects along main and secondary forest roads were established (eight transects along main roads and eight along secondary roads). To eliminate the effect of forest type, all transects were located in Carpinetum-Fagetum forests, the dominant forest type in the study area. The total length of each transect was 200 m (100 m toward up slope and 100 m toward down slope), and plots were established along it at different distances from road edge. The diversity of herbaceous plant species was calculated in each plot using Shannon-Wiener index, species richness, and Pielou's index. The results showed that diversity index decreased when distance from road edge increases. This decreasing trend continued up to 60 m from forest road margin, and after this threshold, the index slightly increased. Depending on the type of road (main or secondary) as well as cut or fill slopes, the area showing a statistical different plant composition and diversity measured through Shannon-Wiener, species richness, and Pielou's index is up to 10 m. The length depth of the road edge effect found in main and secondary forest roads was small, but it could have cumulative effects on forest microclimate and forest-associated biota at the island scale. Forest managers should account for the effect of road buildings on plant communities.
Assuntos
Biodiversidade , Plantas/classificação , Betulaceae , Ecossistema , Monitoramento Ambiental , Fagus , Florestas , Geografia , Irã (Geográfico) , Solo , ÁrvoresRESUMO
The variability of chlorophyll a fluorescence (ChlF) parameters of forest tree species was investigated in 209 stands belonging to six European forests, from Mediterranean to boreal regions. The modifying role of environmental factors, forest structure and tree diversity (species richness and composition) on ChlF signature was analysed. At the European level, conifers showed higher potential performance than broadleaf species. Forests in central Europe performed better than those in Mediterranean and boreal regions. At the site level, homogeneous clusters of tree species were identified by means of a principal component analysis (PCA) of ChlF parameters. The discrimination of the clusters of species was influenced by their taxonomic position and ecological characteristics. The species richness influenced the tree ChlF properties in different ways depending on tree species and site. Tree species and site also affected the relationships between ChlF parameters and other plant functional traits (specific leaf area, leaf nitrogen content, light-saturated photosynthesis, wood density, leaf carbon isotope composition). The assessment of the photosynthetic properties of tree species, by means of ChlF parameters, in relation to their functional traits, is a relevant issue for studies in forest ecology. The connections of data from field surveys with remotely assessed parameters must be carefully explored.
Assuntos
Clorofila/metabolismo , Fenômenos Ecológicos e Ambientais , Florestas , Árvores/classificação , Absorção de Radiação , Clorofila A , Análise por Conglomerados , Europa (Continente) , Fluorescência , Análise de Componente Principal , Característica Quantitativa Herdável , Especificidade da EspécieRESUMO
Recognition of biotic and abiotic factors affecting biomass of natural mixed forests is of great importance for forest carbon estimation and management. When estimating stand biomass using models, different variable selection methods often yield inconsistent results, and there is lack of systematic analysis. This study aimed to combine multiple feature selection methods with structural equation modelling (SEM) to identify a set of variables affecting stand biomass more reasonably. Eight methods were applied for feature selection based on data from 286 permanent sample plots in natural coniferous-broad leaved mixed forests in northeast China. These methods included Pearson correlation analysis, two methods derived from principal component analysis (PCA), stepwise regression, redundancy analysis (RDA), generalized additive model (GAM), random forest (RF), and boosted regression tree (BRT). A total of 56 candidate variables were considered, covering stand, biodiversity, climate and soil features. Significant variability was observed in the variables selected, however, there were 6 variables consistently identified across all methods, including tree species diversity (N_Sp_Div), stand structural diversity (N_ Size_ Div), nearest taxon index (NRI), community weighted mean based on dry matter mass of leaves (CWM.LDMC), soil pH, and degree-days above 18 °C (DD18). Then, these variables were included in the SEM with stand average age and additive stand density index (aSDI) to explore the direction and magnitude of their impacts on stand biomass. The SEM results showed that aSDI and average age had the greatest positive effects on stand biomass, and structural diversity also had a significant positive effect. DD18 affected stand biomass both directly and indirectly, with the total negative effect. Soil pH indirectly affected stand biomass via aSDI. Our findings demonstrated that combining multiple feature selection methods with SEM was an effective approach for understanding multiple factors affecting stand biomass, and provided valuable insights for forest biomass estimation and carbon management.
RESUMO
Accurately predicting tree mortality in mixed forests sets a challenge for conventional models because of large uncertainty, especially under changing climate. Machine learning algorithms had potential for predicting individual tree mortality with higher accuracy via filtering the relevant climatic and environmental factors. In this study, the sensitivity of individual tree mortality to regional climate was validated by modeling in seminatural mixed coniferous forests based on 25-year observations in northeast of China. Three advanced machine learning and deep learning algorithms were employed, including support vector machines, multi-layer perceptron, and random forests. Mortality was predicted by the effects of multiple inherent and environmental factors, including tree size and growth, topography, competition, stand structure and regional climate. All three types of models performed satisfactorily with their values of the areas under receiving operating characteristic curve (AUC) > 0.9. With tree growth, competition and regional climate as input variables, a model based on random forests showed the highest values of the explained variance score (0.862) and AUC (0.914). Since the trees were vulnerable despite their species, mortality could occur after growth limit induced by insufficient or excessive sun radiation during growing seasons, cold threat caused thermal insufficiency in winters, and annual moisture constraints in these mixed coniferous forests. Our findings could enrich basic knowledge on individual tree mortality caused by water and heat inadequacy with the negative impacts of global warming. Successful individual tree mortality modeling via advanced algorithms in mixed forests could assist in adaptive forest ecology modeling in large areas.
Assuntos
Florestas , Árvores , China , Mudança Climática , Aprendizado de Máquina , Temperatura Baixa , Monitoramento Ambiental/métodosRESUMO
This study aims to broaden our historical knowledge about ideas of rationalism and monocultures in forestry science and rational forest management. Empirically, it focuses on the writings of Swedish forestry scientist Henrik Hesselman, active in the early twentieth century. The texts were analyzed using the method of historical contextualization. The study indicates that monocultures historically have been subjected to debates richer than what previous research gives credit for. Besides a rationalist technology, monocultures have been conceptualized as an example of non-rational forestry failing to deliver sustainable yields. Moreover, instead of only simplifications, one-size-fits-all solutions, and top-down reforms, historical forestry science representatives have also at times understood rational forest management as a quest for complexity, site-specific solutions, and bottom-up approaches. It is argued that our understanding of forest use and society-environment relations, more generally, benefit from more historical contextualization.
Assuntos
Agricultura Florestal , Agricultura Florestal/história , Suécia , História do Século XX , Conservação dos Recursos NaturaisRESUMO
Tree species and interkingdom relationships in the belowground metacommunity are key factors in determining soil microbial diversity and community composition. However, how bacterial-fungal interactions mediate soil nutrient and plant growth remains largely unexplored in the coniferous forests. Here, we selected three types of naturally growing coniferous forests on the Loess Plateau-pure stands of Platycladus orientalis, mixed stands of Platycladus orientalis and Pinus tabuliformis, and pure stands of Pinus tabuliformis-to compare the differences in soil properties, microbial diversity and community composition, soil enzymatic activity, and plant growth conditions across these stand types. We found that tree species mixing significantly alters soil microbial community diversity and composition, increasing the positive associations between bacteria and fungi. Compared to pure stands, mixed stands exhibit significantly higher bacterial diversity, whereas fungal diversity shows no significant difference. Additionally, available soil nutrients (ammonium nitrogen and available phosphorus) are significantly increased in mixed stands, along with their associated soil enzymatic activities. The partial least squares path model suggests that higher bacterial diversity enhances bacterial-fungal positive interactions, increasing the relative abundance of ectomycorrhizal fungi and the decomposition rate of organic matter in mixed stands, thereby boosting soil nutrient availability and plant growth. These results highlight the importance of positive bacterial-fungal associations for soil nutrient availability and plant growth, deepen the understanding of the role of soil microbial interactions in mediating plant species coexistence. Most importantly, our results implied a stable coexistence of the pioneer P. orientalis and the late successional species P. tabuliformis in the Loess Plateau region and provided a microbiological interpretation.
RESUMO
Pure and mixed pine forests are found all over the world. The mycorrhizal type affects soil microbial activity and carbon sequestration capacity in pure forests. However, the effects of mycorrhizal type on microbial characteristics and carbon sequestration capacity in pine mixed forests remain untested. Further, making it difficult to predict carbon storage of the conversion from pure pine forests to mixed forests at larger scales. Herein, a meta-analysis showed that the contents of soil microbial biomass, mineral-associated organic carbon, and soil organic carbon in pine mixed forests with introduced arbuscular mycorrhizal tree species (PMAM) increased by 26.41 %, 58.55 %, and 27.41 %, respectively, compared to pure pine forests, whereas those of pine mixed forests without arbuscular mycorrhizal tree species (PMEcM) remained unchanged. Furthermore, the effect size of microbial biomass, mineral-associated organic carbon and organic carbon contents in subsoil of PMAM are 56.48 %, 78.49 % and 43.05 %, respectively, which are higher than those in topsoil. The improvement of carbon sinks throughout the PMAM soil profile is positively correlated with increases in microbial biomass and mineral-associated organic carbon in subsoil, according to regression analysis and structural equation modelling. In summary, these results highlight that the positive effects of introducing arbuscular mycorrhizal tree species rather than ectomycorrhizal tree species into pure pine forests on soil microbial biomass and carbon sequestration. The positive link between microbial biomass, mineral-associated organic carbon, and soil organic carbon suggests an underlying mechanism for how soil microorganisms store carbon in pine mixed forests. Nevertheless, our findings also imply that the soil carbon pool of PMAM may be vulnerable under climate change. Based on the above findings, we propose that incorporating mycorrhizal type of tree species and soil thickness into mixed forests management and biodiversity conservation.
Assuntos
Sequestro de Carbono , Florestas , Micorrizas , Pinus , Microbiologia do Solo , Biomassa , Carbono/análise , Micorrizas/fisiologia , Pinus/microbiologia , Solo/química , ÁrvoresRESUMO
Objectives: Bamboo is a globally significant plant with ecological, environmental, and economic bene-fits. Choosing suitable native tree species for mixed planting in bamboo forests is an effective measure for achieving both ecological and economic benefits of bamboo forests. However, little is currently known about the impact of bamboo forests on nitrogen cycling and utilization efficiency after mixing with other tree species. Therefore, our study aims to compare the nitrogen cycling in pure bamboo forests with that in mixed forests. Methods: Through field experiments, we investigated pure Qiongzhuea tumidinoda forests and Q. tumidinoda-Phellodendron chinense mixed forests, and utilized 15N tracing technology to explore the fertilization effects and fate of urea-15N in different forest stands. Results: The results demonstrated the following: 1) in both forest stands, bamboo culms account for the highest biomass percentage (42.99%-51.86%), while the leaves exhibited the highest nitrogen concentration and total nitrogen uptake (39.25%-44.52%/29.51%-33.21%, respectively) Additionally, the average nitrogen uptake rate of one-year-old bamboo is higher (0.25 mg kg-1 a-1) compared to other age groups. 2) the urea-15N absorption in mixed forests (1066.51-1141.61 g ha-1, including 949.65-1000.07 g ha-1 for bamboo and 116.86-141.54 g ha-1 for trees) was significantly higher than that in pure forests (663.93-727.62 g ha-1, P<0.05). Additionally, the 15N recovery efficiency of culms, branches, leaves, stumps, and stump roots in mixed forests was significantly higher than that in pure forests, with increases of 43.14%, 69.09%, 36.84%, 51.63%, 69.18%, 34.60%, and 26.89%, respectively. 3) the recovery efficiency of urea-15N in mixed forests (45.81%, comprising 40.43% for bamboo and 5.38% for trees) and the residual urea-15N recovery rate in the 0-60 cm soil layer (23.46%) are significantly higher compared to those in pure forests (28.61%/18.89%). This could be attributed to the nitrogen losses in mixed forests (30.73%, including losses from ammonia volatilization, runoff, leaching, and nitrification-denitrification) being significantly lower than those in pure forests (52.50%). Conclusion: These findings suggest that compared to pure bamboo forests, bamboo in mixed forests exhibits higher nitrogen recovery efficiency, particularly with one-year-old bamboo playing a crucial role.
RESUMO
Introduction: Density management is a key silvicultural tool in management programs that enhances compositional and structural diversity and hence forest growth during the conversion of even-aged pure stands into mixed forests. Methods: To determine the optimum stand density, a model of maximum size-density relationships was employed to explore the relationship of the self-thinning trajectory with growth, species mixing, latitude, and site conditions during the transition of even-aged pure Chinese fir stands to Chinese fir-dominated mixed forests using stochastic frontier analysis. Data were obtained from a total of 591 permanent plots located in Fujian, Jiangxi, Zhejiang, and Anhui provinces in southern China. Results: The results showed that (1) the slope of the maximum size-density relationship of Chinese fir-dominated mixed forests increased and plateaued over time; (2) the slope of the maximum size-density relationship of Chinese fir-dominated mixed forests did not deviate from Reineke's assumed universal slope of -1.605; and (3) mixing proportion had a positive effect on maximum size-density relationships, and latitude and site conditions had the opposite effect on maximum size-density relationships. Conclusions: Our findings will provide valuable guidance for the forest management of areas in which even-aged pure stands are being converted to mixed forests (i.e., when broadleaved tree species are planted after thinning to improve overall stand density and promote stand growth).
RESUMO
Stand basal area (SBA) is an important variable in the prediction of forest growth and harvest yield. However, achieving the additivity of SBA models for multiple tree species in the complex structure of broad-leaved mixed forests is an urgent scientific issue in the study of accurately predicting the SBA of mixed forests. This study used data from 58 sample plots (30 m × 30 m) for Populus davidiana × Betula platyphylla broad-leaved mixed forests to construct the SBA basic model based on nonlinear least squares regression (NLS). Adjustment in proportion (AP) and nonlinear seemingly unrelated regression (NSUR) were used to construct a multi-species additive basal area prediction model. The results identified the Richards model (M6) and Korf model (M1) as optimal for predicting the SBA of P. davidiana and B. platyphylla, respectively. The SBA models incorporate site quality, stand density index, and age at 1.3 m above ground level, which improves the prediction accuracy of basal area. Compared to AP, NSUR is an effective method for addressing the additivity of basal area in multi-species mixed forests. The results of this study can provide a scientific basis for optimizing stand structure and accurately predicting SBA in multi-species mixed forests.
RESUMO
Thinning in forest management primarily reduces the density of trees and alters the patchiness and spatial complexity of environmental factors and individual interactions between plant recruits. At fine spatial scales, little is known about the relative weight of ecological processes affecting tree regeneration before and after thinning events. Here we studied the density and aggregation of tree recruits in fully-mapped plots located in mixed forests in Northern Iberian Peninsula (Southern Europe) for over four years, which comprises one year before and three years after a thinning event. We applied spatial point-pattern analyses to examine (a) the aggregation of recruits, and their association with trees and (b) the relative effect of both environmental (i.e., the patchiness of the local environment) and density-dependent factors (i.e., the aggregation of trees and/or recruits) to predict the density, aggregation, and survival of recruits. We found, in thinning plots, that recruits were less dense, their aggregation pattern was more heterogeneous, were distributed randomly in respect of trees and their survival was almost unaffected by the tree proximity. By contrast, recruits in control plots were denser, were only aggregated at distances lower than 1.0 m, were closer to trees, and such closer distance to trees affected negatively in their survival. Independently of the treatment, the aggregation of recruits was chiefly determined by the density-dependent factors at less than 1.0 m and environmental factors at distances beyond that proximity. Overall, our results suggest that thinning affected the aggregation of recruits at two spatial scales: (a) by favoring the tree-recruit and recruit-recruit facilitation at less than 1.0 m and (b) by modifying spatial heterogeneity of the environment at distances beyond that proximity.
Assuntos
Florestas , Árvores , Conservação dos Recursos Naturais , Europa (Continente) , Análise EspacialRESUMO
Soil sampling is a critical step affecting perceived fungal diversity, however sampling optimization for high-throughput-DNA sequencing studies have never been tested in Mediterranean forest ecosystems. We identified the minimum number of pooled samples needed to obtain a reliable description of fungal communities in terms of diversity and composition in three different Mediterranean forests (pine, oak, and mixed-pine-oak). Twenty soil samples were randomly selected in each of the three plots per type. Samples obtained in 100 m2 plots were pooled to obtain mixtures of 3, 6, 10, 15, 20 samples, and sequenced using Illumina MiSeq of fungal ITS2 amplicons. Pooling three soil samples in Pinus and Quercus stands provided consistent richness estimations, while at least six samples were needed in mixed-stands. ß-diversity decreased with increasing sample pools in monospecific-stands, while there was no effect of sample pool size on mixed-stands. Soil sample pooling had no effect over species composition. We estimate that three samples would be already optimal to describe fungal richness and composition in Mediterranean pure stands, while at least six samples would be needed in mixed stands.
Assuntos
Biodiversidade , Monitoramento Ambiental , Florestas , Fungos , Microbiologia do Solo , DNA Fúngico/genética , Monitoramento Ambiental/métodos , Fungos/classificação , Fungos/genética , Pinus/microbiologia , Quercus/microbiologiaRESUMO
Associational resistance theory predicts that insect herbivory decreases with increasing tree diversity in forest ecosystems. However, the generality of this effect and its underlying mechanisms are still debated, particularly since evidence has accumulated that climate may influence the direction and strength of the relationship between diversity and herbivory.We quantified insect leaf herbivory and leaf chemical defences (phenolic compounds) of silver birch Betula pendula in pure and mixed plots with different tree species composition across 12 tree diversity experiments in different climates. We investigated whether the effects of neighbouring tree species diversity on insect herbivory in birch, that is, associational effects, were dependent on the climatic context, and whether neighbour-induced changes in birch chemical defences were involved in associational resistance to insect herbivory.We showed that herbivory on birch decreased with tree species richness (i.e. associational resistance) in colder environments but that this relationship faded as mean annual temperature increased.Birch leaf chemical defences increased with tree species richness but decreased with the phylogenetic distinctiveness of birch from its neighbours, particularly in warmer and more humid environments.Herbivory was negatively correlated with leaf chemical defences, particularly when birch was associated with closely related species. The interactive effect of tree diversity and climate on herbivory was partially mediated by changes in leaf chemical defences.Our findings confirm that tree species diversity can modify the leaf chemistry of a focal species, hence its quality for herbivores. They further stress that such neighbour-induced changes are dependent on climate and that tree diversity effects on insect herbivory are partially mediated by these neighbour-induced changes in chemical defences.
RESUMO
Tilia cordata Mill. is a valuable tree species enriching the ecological values of the coniferous-dominated boreal forests in Europe. Following the historical decline, spreading of Tilia sp. is challenged by the elevated inbreeding and habitat fragmentation. We studied the geographical distribution of genetic diversity of Tilia cordata populations in Lithuania. We used 14 genomic microsatellite markers to genotype 543 individuals from 23 wild-growing populations. We found that Tilia cordata retained high levels of genetic diversity (population F IS = 0-0.15, H o = 0.53-0.69, H e = 0.56-0.75). AMOVA, Bayesian clustering, and Monmonier's barrier detection indicate weak but significant differentiation among the populations (F ST = 0.037***) into geographically interpretable clusters of (a) western Lithuania with high genetic heterogeneity but low genetic diversity, bottleneck effects, (b) relatively higher genetic diversity of Tilia cordata on rich and most soils of midland lowland, and (c) the most differentiated populations on poor soils of the coolest northeastern highland possessing the highest rare allele frequency but elevated inbreeding and bottleneck effects. Weak genetic differentiation among the Tilia cordata populations in Lithuania implies common ancestry, absence of strong adaptive gradients, and effective genetic exchange possible mediated via the riparian networks. A hypothesis on riparian networks as gene flow mediators in Tilia cordata was raised based on results of this study.
RESUMO
Topography and soil factors are known to play crucial roles in the species composition of plant communities in subtropical evergreen-deciduous broadleaved mixed forests. In this study, we used a systematic quantitative approach to classify plant community types in the subtropical forests of Hubei Province (central China), and then quantified the relative contribution of drivers responsible for variation in species composition and diversity. We classified the subtropical forests in the study area into 12 community types. Of these, species diversity indices of three communities were significantly higher than those of others. In each community type, species richness, abundance, basal area and importance values of evergreen and deciduous species were different. In most community types, deciduous species richness was higher than that of evergreen species. Linear regression analysis showed that the dominant factors that affect species composition in each community type are elevation, slope, aspect, soil nitrogen content, and soil phosphorus content. Furthermore, structural equation modeling analysis showed that the majority of variance in species composition of plant communities can be explained by elevation, aspect, soil water content, litterfall, total nitrogen, and total phosphorus. Thus, the major factors that affect evergreen and deciduous species distribution across the 12 community types in subtropical evergreen-deciduous broadleaved mixed forests include elevation, slope and aspect, soil total nitrogen content, soil total phosphorus content, soil available nitrogen content and soil available phosphorus content.